江苏省南京市2014-2015学年高一上学期期末考试数学试题(PDF版,含解析)
- 格式:pdf
- 大小:799.89 KB
- 文档页数:7
江苏省12市2015届高三上学期期末考试数学试题分类汇编立体几何一、填空题1、(泰州市2015届高三上期末)若αβ、是两个相交平面,则在下列命题中,真命题的序号为 ▲ .(写出所有真命题的序号) ①若直线m α⊥,则在平面β内,一定不存在与直线m 平行的直线. ②若直线m α⊥,则在平面β内,一定存在无数条直线与直线m 垂直. ③若直线m α⊂,则在平面β内,不一定存在与直线m 垂直的直线. ④若直线m α⊂,则在平面β内,一定存在与直线m 垂直的直线.2、(无锡市2015届高三上期末)三棱锥P ABC -中,,D E 分别为,PB PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =二、解答题1、(常州市2015届高三)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD , PB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC的中点,连结OM .求证: (1)OM ∥平面PAD ; (2)OM ⊥平面PCD .D(第16题)2、(连云港、徐州、淮安、宿迁四市2015届高三)如图,在三棱锥P ABC -中,已知平面PBC ⊥平面ABC .(1) 若AB ⊥BC ,且CP ⊥PB ,求证:CP ⊥PA ;(2) 若过点A 作直线l ⊥平面ABC ,求证:l //平面PBC .3、(南京市、盐城市2015届高三)如图,在正方体1111ABCD A BC D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE .4、(南通市2015届高三)如图,在直三棱柱111ABC A B C -中,1,4,AC BC CC M ⊥=是棱1CC 上的一点.()1求证:BC AM ⊥;()2若N 是AB 的中点,且CN ∥平面1AB M .A PB (第16题)BACDB 1A 1 C 1 D 1 E第16题图O5、(南通市2015届高三)如图,在四棱锥A-BCDE 中,底面BCDE 为平行四边形,平面ABE ⊥平面BCDE ,AB =AE ,DB =DE ,∠BAE =∠BDE =90º。
2024级高一年级10月学情检测试题数学2024.10注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,,则等于( )A. B. C. D.2.下列各图中,可作为函数图象的是( )A. B.C.D.3.命题,的否定是( )A.,B.,C.,D.,4.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件{}220A x x x =--<{}1B x x =∈≤Z A B {}1,0-{}0,1{}1,0,1-∅1x ∀>21x m ->1x ∀≤21x m -≤1x ∃≤21x m -≤1x ∀>21x m -≤1x ∃>21x m -≤x ∈R 0x ≤11x ≤5.已知集合,均为的子集,且,则等于( )A. B. C. D.6.命题“,”为真命题,则实数的取值范围是( )A. B.C. D.7.已知实数为常数,且,,函数.甲同学:的解集为;乙同学:的解集为;丙同学:函数图象的对称轴在轴右侧.在这三个同学中,只有一个同学的论述是错误的,则的取值范围为( )A. B. C.(0,1) D.8.若,,,则( )A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的有( )A.若函数的定义域是,则函数的定义域是B.与C.已知函数,则D.函数的值域为10.已知,,.下列命题正确的有( )A.若,则B.若,则C.若,则 D.若,则11.已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值可以是( )A. B.-2 C. D.0第Ⅱ卷(非选择题)P Q R ()Q P =R R ð()P Q R ð∅PR ðQ R x ∃∈R ()()222240a x a x -+--≥a [)2,2-(]2,2-(](),22,-∞-+∞ (][),22,-∞-+∞ a 0a ≠1a ≠()()1y ax x a =--0y >()1,,a a ⎛⎫-∞+∞⎪⎝⎭ 0y <()1,,a a ⎛⎫-∞+∞ ⎪⎝⎭ y a (),1-∞-()1,0-()1,+∞1a -1b -1c -a b c>>a c b >>c a b >>c b a >>()23f x -[]3,3-()2f x +[]0,5()f t t =()g x =2211f x x x x ⎛⎫-=+ ⎪⎝⎭()13f =y =[)0,∞+a b c ∈R a b >22ac bc >a b >33a b >0a b >>11a a b b+>+0a b >>22a b >a ∈Z x 2380x x a -+≤a 3-1-三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,且,则实数的值为______.13.已知函数,则______;若当时,,则的最大值是______14.已知集合,,若,实数的取值范围为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合,,.(1)若,求实数的取值范围;(2)若,,求实数的值.16.(本小题满分15分)请在①充分不必要条件;②必要不充分条件;③充要条件这三个条件中任选一个,补充在下面问题(3)横线中,并完成解答.已知集合,.(1)当时,求;(2)求集合;(3)当时,若是成立的_____,试判断实数是否存在?若存在,求出实数的取值范围;若不存在,请说明理由.17.(本小题满分15分)某商品2023年的价格为8元/件,年销量是件.现经销商计划在2024年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后,新增的年销量与实际价格和顾客期望价格的差成反比,且比例系数为.该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益(单位:元)与实际价格(单位:元/件)的函数解析式;(2)设,当实际价格最低定为多少时,仍然可以保证经销商2024年的收益比2023年至少增长20%?18.(本小题满分17分)已知函数,,,.(1)若关于的不等式的解集为,求实数,的值;(2)当时,图像始终在图像上方,求实数的取值范围;{}20,,32A m m m =-+2A ∈m ()223f x x x =--()()22f f =[],x a b ∈()45f x -≤≤b a -{}1A x x =≥B x y ⎧⎪==⎨⎪⎩A B B = a (){}222110A x x a x a =+++-={}240B x x x =+={}2340C x x x =+-=A B A = a A B ≠∅ A C =∅ a {}24120A x x x =--≤{}22210B x x x m =-+-≤4m =(),A B A B R ðB 0m >x A ∈x B ∈m m m a k y x 2k a =()221f x ax x b =+++a b ∈R ()1g x x =-x ()0f x >{}42x x x <->或a b 0b =()f x ()g x a(3)当时,若对任意,总存在,使得成立,求实数的取值范围.19.(本小题满分17分)对于函数,若存在,使成立,则称为的不动点.(1)求函数的不动点;(2)若函数有两个不相等的不动点、,求的取值范围;(3)若函数在区间上有唯一的不动点,求实数的取值范围.1a =[]12,2x ∈-[]22,2x ∈-()()12g x f x =b ()f x 0x ∈R ()00f x x =0x ()f x 23y x x =--()221y x a x =-++1x 2x 1221x x x x +()()211g x mx m x m =-+++()0,2m数学答案一、单项选择题(每小题5分)1-8. BADDACCA二、选择题(每小题全部选对的得6分,部分选对的得部分分)有选错的得0分)9. BCD 10. BD 11. BCD三、填空题(每小题5分)12.3 13.12;6 14.四、解答题15.(本小题满分13分)解:(1)因为,所以.又因为,,所以,或,或,或当时,,解得;当时,,无解;当时,,解得;当时,,解得.综上,实数的取值范围为.(2)因为,,,且,,所以,所以,所以.当时,,此时,不合题意,舍去;当时,,此时,合题意.综上,实数的取值为.16.(本小题满分15分)⎫+∞⎪⎪⎭A B A = A B ⊆(){}222110A x x a x a =+++-={}{}2404,0B x x x =+==-A =∅{}4A =-{}0A ={}4,0A =-A =∅()()224141880a a a ∆=+--=+<1a <-{}4A =-()2218116a a ⎧-+=-⎨-=⎩a {}0A =()221010a a ⎧-+=⎨-=⎩1a =-{}4,0A =-()221410a a ⎧-+=-⎨-=⎩1a =a (]{},11-∞- (){}222110A x x a x a =+++-={}4,0B =-{}{}23404,1C x x x =+-==-A B ≠∅ A C =∅ 0A ∈210a -=1a =±1a ={}4,0A =-{}4A C =-≠∅ 1a =-{}0A =A C =∅ a 1-解:(1)当时,,因为,所以,所以,所以.(2)由,得,当时,;当时,;当时,.(3)当时,由(2)知;若选择条件①,即是成立的充分不必要条件,集合是集合的真子集,则有,且等号不能同时取到,解得,所以实数的取值范围是.若选择条件②,即是成立的必要不充分条件,集合是集合的真子集,则有,且等号不能同时取到,解得,所以实数的取值范围是.若选择条件③,即是成立的充要条件,则集合等于集合,则有,方程组无解,所以不存在满足条件的实数.17.(本小题满分15分)解:(1)设该商品价格下降后为元/件,则由题意可知年销量增加到件,4m ={}[]221503,5B x x x =--≤=-{}[]241202,6A x x x =--≤=-[]2,5A B =- ()(),35,B =-∞-+∞R ð()()[),32,A B =-∞--+∞R ð22210x x m -+-≤()()110x m x m ⎡⎤⎡⎤---+≤⎣⎦⎣⎦0m ={}1B =0m >[]1,1B m m =-+0m <[]1,1B m m =+-0m >[]1,1B m m =-+x A ∈x B ∈A B 1216m m -≤-⎧⎨+≥⎩5m ≥m [)5,+∞x A ∈x B ∈B A 1216m m -≥-⎧⎨+≤⎩03m <≤m (]0,3x A ∈x B ∈A B 1216m m -=-⎧⎨+=⎩m x 4k a x ⎛⎫+ ⎪-⎝⎭故经销商的年收益,.(3)当时,依题意有,化简得,即,解得或.又,故,即当实际价格最低定为6元/件时,仍然可以保证经销商2024年的收益比2023年至少增长20%.18.(本小题满分17分)解:(1)因为关于的不等式的解集为,所以且方程的两根为,,所以,解得,.(2)当时,,因为函数的图像始终在图像上方,所以在上恒成立,即在上恒成立,所以在上恒成立,当时,恒成立,所以合题意;当时,依题意得,解得.综上,实数的取值范围为.(3)当时,,记.当时,,所以当时,()34k y a x x ⎛⎫=+- ⎪-⎝⎭5.57.5x ≤≤2k a =()()()383120%4k a x a x ⎛⎫+-≥-⨯+⎪-⎝⎭2113004x x x -+≥-()()5604x x x --≥-6x ≥45x <≤5.57.5x ≤≤67.5x ≤≤x ()0f x >{}42x x x <->或0a >2210ax x b +++=14x =-22x =121202218a x x a b x x a ⎧⎪>⎪⎪+=-=-⎨⎪+⎪==-⎪⎩1a =9b =-0b =()221f x ax x =++()f x ()g x ()()f x g x >x ∈R 2211ax x x ++>-x ∈R 220ax x ++>x ∈R 0a =20>0a ≠0180a a >⎧⎨∆=-<⎩18a >a {}1,08⎛⎫+∞ ⎪⎝⎭ []2,2x ∈-()[]13,1g x x =-∈-[]3,1A =-1a =()221f x x x b =+++[]2,2x ∈-,记.因为对任意,总存在,使得成立,所以,所以,解得.实数的取值范围为.19.(本小题满分17分)解:(1)由题意知,即,则,解得,,所以不动点为和3.(2)依题意,有两个不相等的实数根、,即方程有两个不相等的实数根、,所以,解得,或,且,,,所以的取值范围为.(3)由,得,由于函数在上有且只有一个不动点,即在上有且只有一个解,令,①,则,解得;②,即时,方程可化为,另一个根为,不符合题意,舍去;③,即时,方程可化为,另一个根为1,满足;()()[]22211,9f x x x b x b b b =+++=++∈+[]9,9B b =+[]12,2x ∈-[]22,2x ∈-()()12g x f x =A B ⊆391b b ≤-⎧⎨+≥⎩83b -≤≤-b []8,3--23x x x --=2230x x --=()()310x x -+=11x =-23x =1-()221x a x x -++=1x 1x 2x ()2310x a x -++=1x 2x ()2234650a a a ∆=+-=++>5a <-1a >-123x x a +=+121x x =()()2322,a =+-∈+∞1221x x x x +()2,+∞()()211g x mx m x m x =-+++=()2210mx m x m -+++=()g x ()0,2()2210mx m x m -+++=()0,2()()221h x mx m x m =-+++()()020h h ⋅<()()110m m +-<11m -<<()00h =1m =-20x x --=1-()20h =1m =2320x x -+=④,即,解得,(ⅰ)当,满足;(ⅱ)当,不符合题意,舍去;综上,的取值范围是.0∆=()()22410m m m +-+=m =m =()2222m m x m m -++=-==m =()2222m m x m m -++=-==m (]1,1-。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
雨花区2013年下学期期末质量检测卷高一化学满分:100分 时量:90分钟可能用到的相对原子质量:H :1 O :16 S:32 Na:23 Mg:24 Al:27一、选择题(本大题共18小题,每小题3分,满分54分) 1.下列说法中正确的是A .单质硅是将太阳能转化为电能的常用材料B .能使润湿的淀粉KI 试纸变成蓝色的物质一定是Cl 2C .原子的最外电子层只有1个电子的元素一定是金属元素D .光束通过稀豆浆,不会产生丁达尔效应2.下列说法中正确的是 A .硫酸的摩尔质量是98 g B .摩尔是物质质量的单位C .氮原子的质量就是氮的相对原子质量D .氧气的摩尔质量(单位:g·mol -1)在数值上等于它的相对分子质量 3. 若A +酸===盐+水,则A 不可能属于A .氧化物B .单质C .碱D .电解质4、下列过程或应用不涉及氧化还原反应的是A .工业上以Cl 2和Ca(OH )2为原料制备漂白粉B .FeCl 3溶液“腐蚀”Cu 板C .Na 2O 2用作呼吸面具的供氧剂D .利用Al 2(SO 4)3和氨水反应来制取氢氧化铝5.下列离子方程式中正确的是 A .澄清石灰水与稀盐酸反应 Ca(OH)2+2H +===Ca 2++2H 2OB .氢氧化钡与硫酸反应OH -+H +===H 2OC .铜片插入硝酸银溶液中Cu +Ag +===Cu 2++AgD .氯化镁溶液与氢氧化钠溶液反应 Mg 2++2OH -===Mg(OH)2↓6.某溶液中只含有Na +、Fe 3+、Cl -、SO2-4四种离子,已知Na +、Fe 3+、Cl -的个数比为3∶2∶1。
则溶液中Fe 3+和SO2-4的个数比为A .1∶2B .1∶4C .3∶4D .3∶27. 要证明某溶液中不含Fe 3+而可能含有Fe 2+进行如下实验操作时,最佳顺序为 ①加入足量氯水②加入足量KMnO 4溶液 ③加入少量NH 4SCN 溶液A .①③B .③②C .③①D .①②③8. 在某无色、碱性溶液中,下列离子能大量共存的是A.Cu 2+、NH 4+、Cl -B. Al 3+、S 2-、HCO 3-C. Na +、Cl -、CO 32-D. H +、K +、SO 42–9. 取100 mL 0.3 mol/L 和300 mL 0.25 mol/L 的硫酸注入500mL 容量瓶中,加水稀释至刻度线,该混合溶液中H +的物质的量浓度是 mo l/L A .0.21 B .0.42 C .0.56 D .0.2610. 在氯化铁、氯化铜和盐酸的混合溶液中加入铁粉,待反应结束后,所剩余的固体滤出后能被磁铁吸引,则反应后溶液中存在较多的阳离子是A .Cu 2+B .Fe 3+C .Fe 2+D .H +11. 以下物质间的每步转化都能通过一步反应实现的是 ①Fe →FeCl 2→FeCl 3 ②Fe →Fe 3O 4→Fe(OH)3③Fe 3O 4→Fe →FeCl 3 ④Fe 2O 3→FeCl 3→Fe A .①③④ B .②③④ C .①②③ D .②④12.既能与盐酸反应,又能与NaOH 溶液反应的是 ①Na 2SiO 3 ②Al(OH)3 ③NaHCO 3 ④Al 2O 3 A .①②④ B .②③④ C .②④ D .全部 13.将金属钠投入AlCl 3溶液中,下列有关叙述一定正确的是 A 、有气体生成,最后一定有白色沉淀 B 、一定无气体生成 C 、溶液最后澄清且有气体放出 D 、一定有气体生成 14.向MgSO 4和Al 2(SO 4)3的混合溶液中, 逐滴加入NaOH溶液。
高淳中学2022-2023学年高一上学期期末考试数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则( ){}{}1,2,3,2A B x N x ==∈≤∣A B ⋃=A. B. C. D.{}2,3{}0,1,2,3{}1,2{}1,2,32.命题“”的否定是( )0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭A. B.0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭0,,sin 2x x x π⎛⎫∀∈> ⎪⎝⎭C. D.0,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭3.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()3π6πB. C. D.13π23π43π4.,不等式恒成立,则的取值范围为()x R ∀∈2410ax x +-<a A.B.或4a <-4a <-0a =C.D.4a ≤-40a -<<5.已知,则( )0.50.5e ,ln5,log e a b c -===A.B.c a b <<c b a <<C.D.b a c <<a b c <<6.已知函数是定义在上的奇函数,,且,则()f x R ()()4f x f x =+()11f -=-()()()20202021f f +=A. B.0 C.1D.21-7.已知函数的零点分别为,则的大小顺序为(()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+,,a b c ,,a b c )A.B.c b a <<b a c <<C.D.a c b <<c a b <<8.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为( ()()sin f x A x ωϕ=+)A.B.122y f x ⎛⎫=+ ⎪⎝⎭()21y f x =+C.D.122x y f ⎛⎫=+ ⎪⎝⎭12x y f ⎛⎫=+ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,既是偶函数又在区间上是增函数的是( )()0,∞+A. B.21y x =+3y x =C. D.23y x =3xy -=10.若,则下列不等式正确的是( )110a b <<A. B.a b <a b<C. D.a b ab +<2b a a b +>11.若函数,则下列选项正确的是( )()tan 23f x x π⎛⎫=+ ⎪⎝⎭A.最小正周期是πB.图象关于点对称,03π⎛⎫ ⎪⎝⎭C.在区间上单调递增7,1212ππ⎛⎫ ⎪⎝⎭D.图象关于直线对称12x π=12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令x ∈R []x x []y x =,以下结论正确的是( )()[]22f x x x =-A.()1.10.8f -=B.为偶函数()f x C.最小正周期为()f x 12D.的值域为()f x []0,1第II 卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)5log 25+=14.请写出一个同时满足下列两个条件的函数:__________.(1),若则12,x x R ∀∈12x x >()()12f x f x >(2)()()()121212,,x x R f x x f x f x ∀∈+=15.在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆相交于,两xOy Ox ,αβP Q 点,的纵坐标分别为.则的终边与单位圆交点的纵坐标为__________.,P Q 34,55αβ+16.已知函数,使方程有4个不同的解:,则()2log ,04,2cos ,482x x f x t R x x π⎧<<⎪=∃∈⎨≤≤⎪⎩()f x t =1234,,,x x x x 的取值范围是__________;的取值范围是__________.1234x x x x 1234x x x x +++四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题10.0分)求值:(1)22log 33582lg2lg22+--(2)251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭18.(本小题12.0分)已知全集,集合,集合.U R ={}2120A x x x =--≤∣{}11B x m x m =-≤≤+∣(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 19.已知函数的部分图象如图.()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移个单位,()f x 6π得到函数的图象,当时,求值域.()g x ,6x ππ⎡⎤∈-⎢⎥⎣⎦()g x 20.(本小题12.0分)已知函数()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭(1)化简;()f α(2)若,求的值.()1,052f παα=-<<sin cos ,sin cos αααα⋅-21.(本小题12.0分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要500m 500m ⨯建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.S(1)分别用表示和的函数关系式,并给出定义域;x y S (2)怎样设计能使取得最大值,并求出最大值.S 22.(本小题12.0分)已知函数.()1ln1x f x x -=+(1)求证:是奇函数;()f x (2)若对于任意都有成立,求的取值范围;[]3,5x ∈()3f x t >-(3)若存在,且,使得函数在区间上的值域为(),1,αβ∞∈+αβ<()f x [],αβ,求实数的取值范围.ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m 高淳中学2022-2023学年高一上学期期末考试数学试题参考答案)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】【分析】先求出集合,再求.B A B ⋃【详解】因为,所以.{}{}1,2,3,0,1,2A B =={}0,1,2,3A B ⋃=故选:B2.【答案】D【解析】【分析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭按照改量词否结论的法则,所以否定为:,0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭故选:D3.【答案】B【解析】【分析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.326ππ=12233ππ⋅⋅=故选:B4.【答案】A【解析】【分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】,不等式恒成立,x R ∀∈2410ax x +-<当时,显然不恒成立,0a =所以,解得:.0Δ1640a a <⎧⎨=+<⎩4a <-故选:A.5.【答案】A【解析】【分析】借助指对函数的单调性,利用中间量0或1比较即可.【详解】因为,0.500.50.50e e 1,ln5lne <1,log e log 10a b c -<===>==<=所以,c a b <<故选:A.6.【答案】C【解析】【分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值.()()4f x f x =+【详解】是奇函数,,()f x ()()()00,111f f f ∴==--=又是周期函数,周期为4.()()()4,f x f x f x =+∴.()()()()2020202101011f f f f ∴+=+=+=故选:C.7.【答案】C【解析】【分析】利用数形结合,画出函数的图象,判断函数的零点的大小即可.【详解】函数的零点转化为与()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+e ,ln ,sin x y y x y x ===的图象的交点的横坐标,因为零点分别为,y x =-,,a b c 在坐标系中画出与的图象如图:e ,ln ,sin x y y x y x ===y x =-可知,0,0,0a b c <>=满足.a cb <<故选:C.8.【答案】B【解析】【分析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把()1y f x =+的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,()1y f x =-12所以如图的图象所对应的解析式为.()21y f x =+故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.【答案】AC【解析】【分析】利用函数的奇偶性和单调性的概念进行判断.【详解】对于A :22()11y x x =-+=+函数是偶函数,在上是增函数,故A 正确;∴21y x =+()0,∞+对于:B 33()y x x =-=- 函数是奇函数,故错误;∴3y x =B 对于:C 2233()y x x=-= 是偶函数,在上是增函数,故C 正确;23y x ∴=()0,∞+对于:D 33x x y ---== 是偶函数,在上是减函数,故错误.3xy -∴=()0,∞+D 故选:AC10.【答案】BCD【解析】【分析】利用不等式的基本性质求解即可【详解】由于,则,故错误;110a b <<0b a <<a b <正确;正确;,正确0a b ab +<<a b <2222,2a b a b ab b a b a ab ab a b ++=>=∴+>故选:BC D.11.【答案】BC【解析】【分析】利用正切函数的周期,对称中心,函数的单调性,判断选项即可.【详解】函数,函数的最小正周期为:错误;tan 23y x π⎛⎫=+ ⎪⎝⎭,A 2π令,2,3246k k x x k Z ππππ+=⇒=-∈当时,,所以图象关于点对称,正确;2k =3x π=,03π⎛⎫ ⎪⎝⎭B 因为,解得,当时,,所2,232k x k k Z πππππ-<+<+∈5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭1k =7,1212x ππ⎛⎫∈ ⎪⎝⎭以在区间上单调递增,C 正确;又正切函数不具有对称轴,所以D 错误7,1212ππ⎛⎫ ⎪⎝⎭故选:B C.12.【答案】AC【解析】【分析】根据高斯函数的定义逐项检验即可,对于,直接求解即可,对于,取,检验可得反A B 1.1x =-例,对于,直接求解即可;对于,要求的值域,只需求时的C ()12f x f x ⎛⎫+= ⎪⎝⎭D ()f x 102x ≤<()f x 值域即可.【详解】对于A ,,故A 正确.()[]1.1 2.2 2.2 2.230.8f -=---=-+=对于,取,则,而,B 1.1x =-()1.10.8f -=()[]1.1 2.2 2.2 2.220.2f =-=-=故,所以函数不偶函数,故B 错误.()()1.1 1.1f f -≠-()f x 对于,则,故C 正确.C [][]()1212121212f x x x x x f x ⎛⎫+=+-+=+--= ⎪⎝⎭对于,由的判断可知,为周期函数,且周期为,D C ()f x 12要求的值域,只需求时的值域即可.()f x 102x ≤<()f x 当时,则,0x =()[]0000f =-=当时,,102x <<()[]()222020,1f x x x x x =-=-=∈故当时,则有,故函数的值域为,故错误.102x ≤<()01f x ≤<()f x [)0,1D 故选:A C.第II卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.【答案】6【解析】【分析】利用根式性质与对数运算进行化简.,5log 25426+=+=故答案为:614.【解析】【分析】由条件(1),若则.可知函数为上增函数;12,x x R ∀∈12x x >()()12f x f x >()f x R 由条件(2).可知函数可能为指数型函数.()()()121212,,x x R f x x f x f x ∀∈+=()f x 【详解】令,()2x f x =则为上增函数,满足条件(1).()2x f x =R 又()()()12121212122,222x x x x x x f x x f x f x +++==⨯=故()()()1212f x x f x f x +=即成立.()()()121212,,x x R f x x f x f x ∀∈+=故答案为:等均满足题意()()()(2,3,4x x x f x f x f x ===)15.【答案】1【解析】【分析】根据任意角三角函数的定义可得,再由展开3443sin ,cos ,sin ,cos 5555ααββ====()sin αβ+求解即可.【详解】以轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,的纵坐标分别Ox ,αβ,P Q ,P Q 为34,55所以是锐角,可得,3sin ,5αα=4cos 5α=因为锐角的终边与单位圆相交于点,且纵坐标为,βQ 45所以是锐角,可得,4sin ,5ββ=3cos 5β=所以,()3344sin sin cos cos sin 15555αβαβαβ+=+=⨯+⨯=所以的终边与单位圆交点的纵坐标为1.αβ+故答案为:1.16.【答案】①.②.()32,354⎝⎭【解析】【分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把()f x 12,x x 34,x x 和转化成只有一个自变量的代数式,再去求取值范围即可.1234x x x x +++1234x x x x 【详解】做出函数的图像如下:()2log ,042cos ,482x x f x x x π⎧<<⎪=⎨≤≤⎪⎩在单调递减:最小值在单调递增:最小值0,最大值2;()f x (]0,1()0;f x []1,4在上是部分余弦型曲线:最小值,最大值2.()f x []4,82-若方程有4个不同的解:,则()f x t =1234,,,x x x x 02t <<不妨设四个解依次增大,则12341145,784x x x x <<<<<<<<是方程的解,则,即;12,x x 2log (04)x t x =<<2122log log x x =-121x x =是方程的解,则由余弦型函数的对称性可知.34,x x ()2cos 482x t x π=≤≤3412x x +=故,()()212343433312636x x x x x x x x x ==-=--+由得即345x <<()233263635x <--+<12343235x x x x <<1234121111212x x x x x x x x +++=++=++当时,单调递减,1114x <<()112m x x x =++则1116514124x x <++<故答案为:①;②()32,354⎝⎭四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(1)解:;()()22log 33582lg 2lg243lg5lg22lg27lg5lg27162+--=+---=-+=-=(2)解:251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭sin 4cos 3tan 3634ππππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11sin cos tan 1063422πππ=+-=+-=18.解:(1)集合,{}34A x x =-≤≤∣当时,或,4m ={}35,{3U B x x B x x =≤≤=<∣∣ 5}x >所以或;(){4U A B x x ⋃=≤∣ 5}x >(2)由题可知或,{3U A x x =<-∣ 4}x >由可得或,U B A ⊆ 13m +<-14m ->解得或,4m <-5m >故的取值范围为或.m {4mm <-∣5}m >19.(1)由图象可知,的最大值为2,最小值为,又,故,()f x 2-0A >2A =周期,则,452,,03123T πππππωω⎡⎤⎛⎫=--=∴=> ⎪⎢⎥⎝⎭⎣⎦2ω=从而,代入点,得,()()2sin 2f x x ϕ=+5,212π⎛⎫ ⎪⎝⎭5sin 16πϕ⎛⎫+= ⎪⎝⎭则,即,52,Z 62k k ππϕπ+=+∈2,Z 3k k πϕπ=-+∈又,则.2πϕ<3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭(2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,()f x 故可得;2sin 3y x π⎛⎫=- ⎪⎝⎭再将所得图象向左平移个单位,得到函数的图象6π()g x 故可得;()2sin 6g x x π⎛⎫=- ⎪⎝⎭,5,,,sin 66366x x x ππππππ⎡⎤⎡⎤⎡⎤⎛⎫∈-∴-∈--∈⎢⎥ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦ 的值域为.()2sin 2,6x g x π⎛⎫⎡⎤-∈∴ ⎪⎣⎦⎝⎭2⎡⎤⎣⎦20.解(1)()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭()sin cos sin cos cos cos tan ααααααα-=+⋅-,sin cos αα=+故;()sin cos f ααα=+(2)由,()1sin cos 5f ααα=+=平方可得,221sin 2sin cos cos 25αααα++=即.242sin cos 25αα⋅=-所以,12sin cos 25αα⋅=-因为,249(sin cos )12sin cos 25αααα-=-=又,所以,2πα-<<sin 0,cos 0αα<>所以,sin cos 0αα-<所以.7sin cos 5αα-=-21.解:(1)由已知,其定义域是.30003000,xy y x =∴=()6,500,()()()46210S x a x a x a=-+-=-,150026,332y a y a x +=∴=-=- ,其定义域是.()150015000210330306S x x x x ⎛⎫⎛⎫∴=-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭()6,500(2),15000303063030303023002430S x x ⎛⎫=-+≤-=-⨯= ⎪⎝⎭当且仅当,即时,上述不等式等号成立,150006x x =()506,500x =∈此时,.max 50,60,2430x y S ===答:设计时,运动场地面积最大,最大值为2430平方米.50m,60m x y ==22.(1)证明:由函数,可得,()1lg 1x f x x -⎛⎫= ⎪+⎝⎭101x x ->+即,解得,故函数的定义域为,关于原点对称.101x x -<+11x -<<()1,1-再根据,可得是奇函数.()()11lg lg 11x x f x f x x x +-⎛⎫⎛⎫-==-=- ⎪ ⎪-+⎝⎭⎝⎭()f x (2)由(1)知,其定义域为.()1ln 1x f x x -=+()(),11,∞∞--⋃+.因为在上为增函数,()2ln 11f x x ⎛⎫=- ⎪+⎝⎭()211u x x =-+()1,∞+在上为增函数,当,时,()f x ()1,∞+[]3,5x ∈()ln2ln2ln3f x -≤≤-对任意都有成立,,即,[]3,5x ∈()3f x t >-ln23t ->-3ln2t <-的取值范围是.t (),3ln2∞--(3)由(2)知在上为增函数,()f x ()1,∞+又因为函数在上的值域为.()f x [],αβ11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以,且,0m >1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩所以1,121,12m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩则是方程的两实根,,αβ112x m mx x -=-+问题等价于放程在上有两个不等实根,211022m m mx x ⎛⎫--+-= ⎪⎝⎭()1,∞+令,对称轴()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭1124x m =-则,即解得.()2011124Δ14102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩0,20,522,9m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或209m <<。
2023-2024学年江苏省南京市高一上册期末数学试题一、单选题1.函数()ln 1y x =+的定义域为()A .()1,+∞B .()1,-+∞C .[)1,-+∞D .(),1-∞-【正确答案】B【分析】根据对数的真数大于零可得出关于x 的不等式,即可解得函数()ln 1y x =+的定义域.【详解】令10x +>,解得1x >-,故函数()ln 1y x =+的定义域为()1,-+∞.故选:B.2.“1x >”是“21x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据充分条件与必要条件的定义判断即可.【详解】解:因为1x >,则21x >,但是21x >不一定有1x >,所以“1x >”是“21x >”成立的充分不必要条件.故选:A .3.在某个物理实验中,测得变量x 和变量y 的几组数据,如下表:x 0.500.992.013.98y0.99-0.010.982.00则下列选项中对x ,y 最适合的拟合函数是()A .2y x =B .21y x =-C .22y x =-D .2log y x=【正确答案】D【分析】根据所给数据,代入各函数,计算验证可得结论.【详解】解:根据0.50x =,0.99y =-,代入计算,可以排除A ;根据 2.01x =,0.98y =,代入计算,可以排除B 、C ;将各数据代入检验,函数2log y x =最接近,可知满足题意故选:D .本题考查了函数关系式的确定,考查学生的计算能力,属于基础题.4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为()(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A .4B .5C .6D .7【正确答案】C【分析】设中周的半径是1R ,外周的半径是2R ,圆心角为α,根据中周九十二步,外周一百二十二步,径五步,列关系式即可.【详解】设中周的半径是1R ,外周的半径是2R ,圆心角为α,1221921225R R R R αα=⎧⎪=⎨⎪-=⎩,解得6α=.故选:C5.已知函数()12cos ,0,0x x f x x x <⎧⎪=⎨⎪≥⎩,则π3f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值为()AB.2C .4D .14【正确答案】B【分析】根据分段函数运算求解.【详解】由题意可得:πππ1cos cos 3332f ⎛⎫⎛⎫-=-== ⎪ ⎪⎝⎭⎝⎭,故12π113222f f f ⎡⎤⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.6.函数()2sin f x x x =的图像大致为()A .B .C .D .【正确答案】A【分析】根据函数()2sin f x x x =是奇函数,且函数在()0,πx ∈时函数值的正负,从而得出结论.【详解】由函数()2sin f x x x =定义域为R ,()()()()22sin sin f x x x x x f x -=--=-=-,故()2sin f x x x =为奇函数,故它的图像关于原点对称,可以排除C 和D ;又函数()2sin f x x x =在()0,πx ∈时,函数()2sin 0f x x x =>,可以排除B ,所以只有A 符合.故选:A .7.在科学技术中,常常使用以e 2.71828...=为底的对数,这种对数称为自然对数.若取3e 20≈,7e 1100≈,则ln 55≈()A .73B .113C .4D .6【正确答案】C【分析】根据题意结合指、对数运算求解.【详解】由题意可得.7431100e ln 55ln ln ln e 420e=≈==故选:C.8.函数()2log 4f x x x =+-的零点为1x ,函数()()()log 151a g x x x a =+-->的零点为2x ,若211x x ->,则实数a 的取值范围是()A .(B .()1,2C .)+∞D .()2,+∞【正确答案】D【分析】根据函数单调性,再由211x x ->确定范围,即可确定实数a 的取值范围.【详解】已知()2log 4f x x x =+-,()()()log 151a g x x x a =+-->,函数()2log 4f x x x =+-的零点为1x ,函数()()()log 151a g x x x a =+-->的零点为2x ,则()12122log 4log 150a x x x x +-=+--=()12122log 41log 14a x x x x +-=-+--()12122log 1log 1a x x x x +=-+-121x x <-又因为2log y x x =+,()()log 111a y x x a =+-->这两函数均单调递增,当121x x <-时,()212log >log 1a x x -,解得2a >.故选:D.二、多选题9.已知角θ的终边经过点()()2,0P a a a >,则()A .sin θ=B .cos θ=C .1tan 2θ=D .tan 2θ=【正确答案】AC【分析】根据三角函数的定义计算即可.【详解】因为角θ的终边经过点()()2,0P a a a >,所以sin θ=A 正确;cos θ=B 错误;1tan 22a a θ==,故C 正确,D 错误.故选:AC.10.若01m a b <<<<,则()A .a bm m <B .m m a b <C .log log m m a b >D .b aa mb m>++【正确答案】BCD【分析】对于A :构造函数()x f x m =,利用单调性判断;对于B :构造函数()mg x x =,利用单调性判断;对于C :构造函数()log m h x x =,利用单调性判断;对于D :利用作差法比较大小.【详解】对于A :因为01m <<,所以()xf x m =单调递减.因为a b <,所以a b m m >.故A 错误;对于B :因为01m <<,所以()mg x x =单调递增.因为a b <,所以m m a b <.故B 正确;对于C :因为01m <<,所以()log m h x x =单调递减.因为a b <,所以log log m m a b >.故C 正确;对于D :因为()()()()()()220b a b a m b a b bm a am a m b m a m b m a m b m -+-+---==>++++++,所以b aa mb m>++.故D 正确.故选:BCD11.已知函数()1tan tan f x x x=+,则()A .()f x 的最小正周期为πB .()f x 的图象关于y 轴对称C .()f x 的最小值为2D .()f x 在ππ,42⎛⎫⎪⎝⎭上为增函数【正确答案】AD【分析】先利用三角函数基本关系式化简得()2sin 2f x x=,再利用周期函数的定义与诱导公式即可判断A 正确;举反例即可排除B ;取特殊值计算即可判断C 错误;利用三角函数的单调性与复合函数的单调性即可判断D 正确.【详解】对于A ,因为()221sin cos sin cos 2tan tan cos sin sin cos sin 2x x x x f x x x x x x x x+=+=+==,设()f x 的正周期为T ,则()()f x T f x +=,即()22sin 2sin 2T x x=+,所以()sin 22sin 2T x x +=,由诱导公式可得22π,Z T k k =∈,即π,Z T k k =∈,又0T >,故π0k >,即0k >,则1k ≥,故ππT k =≥,所以T 的最小值为π,即()f x 的最小正周期为π,故A 正确;对于B ,因为ππ1ππ1tan 2,tan 2ππ4444tan tan 44f f ⎛⎫⎛⎫⎛⎫-=-+=-=+= ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎝⎭,又π,24⎛⎫-- ⎪⎝⎭与π,24⎛⎫⎪⎝⎭不关于y 轴对称,所以()f x 的图象关于y 轴对称,故B 错误;对于C ,因为π24f ⎛⎫-=- ⎪⎝⎭,所以2不是()f x 的最小值,故C 错误;对于D ,因为ππ42x <<,所以π2π2x <<,故sin 2y x =在ππ,42⎛⎫⎪⎝⎭上单调递减,且sin 20x >,又2y x=在()0,∞+上单调递减,所以()2sin 2f x x =在ππ,42⎛⎫⎪⎝⎭单调递增,故D 正确.故选:AD.12.已知函数()y f x =,对于任意,R x y ∈,()()()f x f x y f y =-,则()A .()01f =B .()()22f x f x =C .()0f x >D .()()22f x f y x y f ++⎛⎫⎪⎝⎭≥【正确答案】ACD【分析】通过赋值法,取具体函数,基本不等式等结合已知条件分选项逐个判断即可.【详解】令()()()()001f x x y f f f x =⇒=⇒=,故A 正确;由已知()()()()()()()()()f x f x y f x f y f x y f x y f x f y f y =-⇒=-⇒+=,①令()()(),0,11,x f x a a =∈+∞ 满足题干要求,()()2222,,x xf x a f x a ==则()()22f x f x ≠,故B 错误;由①可知,令2x x y ==,则()2222x x x f x f f f ⎡⎤⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又因为()()()f x f x y f y =-,则02x f ⎛⎫≠ ⎪⎝⎭,所以()202x f x f ⎡⎤⎛⎫=> ⎪⎢⎥⎝⎭⎣⎦,故C 正确;因为()0f x >,所以()()f x f y +≥=又由①,令2x y x y +==,则()2222x y x y x y f x y f f f ⎡⎤+++⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()()22f x f y x y f ++⎛⎫⎪⎝⎭≥,故D 正确.故选:ACD.三、填空题13.函数2cos y x =的图象关于点_________中心对称.(写出一个正确的点坐标即可)【正确答案】π,02⎛⎫⎪⎝⎭(答案不唯一)【分析】2cos y x =对称中心的横坐标满足ππ,Z 2x k k =+Î,取0k =得到【详解】2cos y x =对称中心的横坐标满足:ππ,Z 2x k k =+Î,取0k =得到对称中心为π,02⎛⎫⎪⎝⎭.故π,02⎛⎫⎪⎝⎭14.已知关于x 的不等式0ax b +>的解集为()3,-+∞,则关于x 的不等式20ax bx +<的解集为_________.【正确答案】()3,0-【分析】先根据不等式的解集可得,a b 的关系及a 的符号,再根据一元二次不等式的解法即可得解.【详解】由0ax b +>的解集为()3,-+∞,可得0a >,且方程0ax b +=的解为3-,所以3ba-=-,则3b a =,所以()222303030ax bx a x x x x x +=+<⇒+<⇒-<<,即关于x 的不等式20ax bx +<的解集为()3,0-.故答案为.()3,0-15.已知定义在R 上的函数()f x 满足()()4f x f x +=,且当[)0,4x ∈时,()2xf x m =+,若()()202331f f =,则m =___________.【正确答案】1【分析】由题意可得函数的周期为4,根据题意结合周期性可得答案.【详解】由()()4f x f x +=可得的函数()f x 周期为4,则()()()20235054338f f f m =⨯+==+,由()()202331f f =,则()832m m +=+,解得1m =.故1.四、双空题16.对于非空集合M ,定义()0,Φ1,x Mx x M ∉⎧=⎨∈⎩,若A ,B 是两个非空集合,且A B ⊆,则()()1A B x x Φ-Φ=⎡⎤⎣⎦___________;若1sin 2A x x ⎧⎫=≥⎨⎬⎩⎭,(),2B a a =,且存在x R ∈,()()2A B x x Φ+Φ=,则实数a 的取值范围是_______________.【正确答案】513,,12612πππ⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】第一空分x A ∈,x B ∉和x A ∉且x B ∈三种情况来研究,第二空根据已知分析出a 的大致范围,最后列出不等式求解即可.【详解】A B ⊆即x A ∈则一定有x B ∈,所以分三段研究:x A ∈时,()1A x Φ=,()1B x Φ=,即()()10A B x x Φ-Φ=⎡⎤⎣⎦;x B ∉时,()0A x Φ=,()0B x Φ=,即()()10A B x x Φ-Φ=⎡⎤⎣⎦;x A ∉且x B ∈时,()0A x Φ=,()1B x Φ=,即()()10A B x x Φ-Φ=⎡⎤⎣⎦.综上所述,()()10A B x x Φ-Φ=⎡⎤⎣⎦;由已知()()()()21A B A B x x x x Φ+Φ=⇒Φ=Φ=且522,66A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,(),20B a a a =⇒>要满足题意则A B ⋂≠∅,此时区间长度43a π≥时一定满足,故下研究403a π<<时,(其中452366ππππ=+-,即为集合A 的补集中一段的区间长)此时8023a a π<<<,因此满足题意的反面情况有026a a π<<≤或513266a a ππ<≤≤,解得012a π<≤或513612a ππ≤≤,因此满足题意的a 范围为513,12612πππ⎛⎫⎛⎫⋃+∞ ⎪⎪⎝⎭⎝⎭.五、解答题17.求下列各式的值:(1)6213222⎛⎫⋅ ⎪⎝⎭;(2)ln 3213log 8log 9e -+.【正确答案】(1)128(2)8【分析】(1)根据指数幂的运算求解;(2)根据对数和指数的运算性质求解.【详解】(1)612216723322222128⎛⎫+ ⎪⎝⎭⎛⎫⋅=== ⎪⎝⎭.(2)ln 3213log 8log 9e 3238-+=++=.18.若()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭.(1)求sin cos αα⋅的值;(2)若()0,πα∈,求tan α的值.【正确答案】(1)12sin cos 25αα=-(2)43-【分析】(1)化简得到1sin cos 5αα+=,平方得到112sin cos 25αα+=,得到答案.(2)根据12sin cos 025αα=-<得到7sin cos 5αα-=,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩,得到答案.【详解】(1)()π5sin 4sin cos π12ααα⎛⎫++=++ ⎪⎝⎭,则5sin 4cos cos 1ααα+=-+,1sin cos 5αα+=,()21sin cos 25αα+=,112sin cos 25αα+=,则12sin cos 25αα=-;(2)12sin cos 025αα=-<,所以2απ<<π,即sin 0α>,cos 0α<,7sin cos 5αα-===.7sin cos 51sin cos 5αααα⎧-=⎪⎪⎨⎪+=⎪⎩,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩,sin tan s 43co ααα==-19.已知集合14x A xx ⎧⎫=>⎨⎬+⎩⎭,()(){}230B x x m x m =---<.(1)若3m =-,求A B ⋃;(2)在①A B B = ,②A B ⋂=∅这两个条件中任选一个,补充在下面问题中,并解答该问题.若_________,求实数m 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【正确答案】(1)(),0A B ⋃=-∞;(2)选①(]{},73-∞-⋃;若选②[)2,-+∞.【分析】(1)代入m 的值,求出集合B ,用并集的运算性质计算即可.(2)若选①,A B B = 即B A ⊆,则对m 的值进行分类讨论,根据集合包含关系即可得到m 的取值范围.若选②,对m 的值进行分类讨论,依次根据A B ⋂=∅,求实数m 的取值范围.【详解】(1)()36060m x x x =-⇒+<⇒-<<,即()6,0B =-,而441004444x x x x x x x -->⇒>⇒<⇒<-+++,即(),4A =-∞-,所以(),0A B ⋃=-∞;(2)若选①A B B = 即B A⊆3m >时,23m m >+,即()3,2B m m =+,要满足题意则24m ≤-,与前提矛盾,舍;3m =时,23m m =+,即B =∅,符合题意;3m <时,23m m <+,即()2,3B m m =+,要满足题意则34m +≤-,即7m ≤-.综上所述,实数m 的取值范围是(]{},73-∞-⋃.若选②,若A B ⋂=∅,3m >时,23m m >+,即()3,2B m m =+,要满足题意则A B ⋂=∅,则满足34m +≥-,解得7m ≥-,则3m >;若3m =时,23m m =+,即B =∅,满足A B ⋂=∅;3m <时,23m m <+,即()2,3B m m =+,要满足题意则24,m ≥-解得2m ≥-,即23m -≤<;综上,实数m 的取值范围是[)2,-+∞.20.函数()()sin f x A x =+ωϕ0,0A ω>>0πϕ<<在一个周期内的图象如图所示.(1)求()f x 的解析式;(2)将()f x 的图象向右平移2π3个单位长度后得到函数()g x 的图象,设()()()h x f x g x =-,证明:()h x 为偶函数.【正确答案】(1)()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭(2)证明见解析【分析】(1)由图得到2,πA T ==,求得2ω=,代入点π,212⎛⎫- ⎪⎝⎭,求得()ππ2π62k k ϕ-+=+∈Z ,结合题意得到23ϕπ=,即可求得函数的解析式;(2)由三角函数的图象变换求得()2π2sin 23g x x ⎛⎫=- ⎪⎝⎭,根据偶函数的定义证明即可.【详解】(1)由最值得2A =,由相邻两条对称轴距离得5πππ212122T ⎛⎫=--= ⎪⎝⎭,则2ππT ω==,即2ω=,此时()()2sin 2f x x ϕ=+,代入点π,212⎛⎫- ⎪⎝⎭得:πsin 16ϕ⎛⎫-+= ⎪⎝⎭,则()ππ2π62k k ϕ-+=+∈Z ,即()2π2π3k k ϕ=+∈Z ,又因为0πϕ<<,所以230,k πϕ==,故()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.(2)由题意得()2π2π2π2sin 22sin 2333g x x x ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()2π2π2sin 22sin 233h x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,因为()()2π2π2π2π2sin 22sin 22sin 22sin 23333h x x x x x h x⎛⎫⎛⎫⎛⎫⎛⎫-=-+---=--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h x 为偶函数.21.某企业为响应国家节水号召,决定对污水进行净化再利用,以降低自来水的使用量.经测算,企业拟安装一种使用寿命为4年的污水净化设备.这种净水设备的购置费(单位:万元)与设备的占地面积x (单位:平方米)成正比,比例系数为0.2.预计安装后该企业每年需缴纳的水费C (单位:万元)与设备占地面积x 之间的函数关系为()()2005C x x x =>+.将该企业的净水设备购置费与安装后4年需缴水费之和合计为y (单位:万元).(1)要使y 不超过7.2万元,求设备占地面积x 的取值范围;(2)设备占地面积x 为多少时,y 的值最小?【正确答案】(1)[]11,20(2)设备占地面积为215m 时,y 的值最小.【分析】(1)由题意解不等式800.27.25x x ++≤,即可求得;(2)利用基本不等式即可求解.【详解】(1)由题意得()800.205y x x x =+>+.要满足题意,则7.2y ≤,即800.27.25x x ++≤,解得.1120x ≤≤即设备占地面积x 的取值范围为[]11,20.(2)805800.21117555x y x x x +=+=+-=++≥=,当且仅当5801555x x x +=⇒=+时等号成立.所以设备占地面积为215m 时,y 的值最小.22.已知函数()()1222x x f x -=+,()()1222x x g x -=-.(1)利用函数单调性的定义,证明:()f x 在区间[)0,∞上是增函数;(2)已知()()()2449F x fx mf x =-+,其中m 是大于1的实数,当[]20,log x m ∈时,()0F x ≥,求实数m 的取值范围;(3)当0a ≥,判断()()g x f x 与()()1af x a +-的大小,并注明你的结论.【正确答案】(1)证明见解析(2)(]1,3(3)()()()()1g x af x a f x <+-【分析】按照函数单调性的定义的证明步骤:设值,作差,变形,定号,下结论,即可证明;(2)先换元,再分离常数,最后再利用基本不等式即可求出实数m 的取值范围;(3)采用作差法,结合基本不等式和指数函数的值域即可比较出大小.【详解】(1)解:120x x ∀>≥,()()()()11221211222222x x x x f x f x ---=+-+2112121212121222222222221212222x x x x x x x x x x x x x x --++--+-+--⎛⎫===- ⎪⎝⎭因为120x x >≥,所以12220x x ->,1221x x +>,所以()()120f x f x ->,即()f x 在[)0,∞+上是增函数.(2)解:由已知()2222244922x x x x F x m --⎛⎫⎛⎫++=⋅-⋅+ ⎪ ⎪⎝⎭⎝⎭设222xxt -+=,由(1)得()f x 在[]20,log m 上单调递增,即11,2m m t ⎡⎤+⎢⎥∈⎢⎥⎢⎥⎣⎦,所以()229044904494F x t mt mt t m t t⇔-+⇔+⇔+≥≥≤≤,①32m ≥时,1322m m +≥,即934t t +=≥,当且仅当32t =时取等,此时要满足94m t t +≤恒成立,即min 934m t t ⎛⎫+= ⎪⎝⎭≤3m ≤;②1m <1322m m +<,此时94y t t =+在11,2m m ⎡⎤+⎢⎥⎢⎥⎢⎥⎣⎦上单调递减,即min119,1222m m m m t y m m ++==+⎛⎫+ ⎪⎝⎭,此时要满足94m t t+≤恒成立,即min 1991422m m m t t m m +⎛⎫+=+⎪⎛⎫⎝⎭+ ⎪⎝⎭≤,化简得42910m m --≤,此时因为2341122m m +<<⇒<<,此时42910m m --≤恒成立综上所述,实数m 的取值范围是(]1,3.(3)解:()()()()112222111222x xx x xxg x af x a a a f x -+---=-⋅-++2112222222111222222x xxxxx xx xx a a a ⎛⎫++ ⎪=--⋅=--⎪⎪++⎝⎭因为1222xx +≥(当且仅当0x =时取等),所以12212x x+≥,即122102x x +-≤,由已知0a ≥,所以122102xx a ⎛⎫+ ⎪- ⎪⎪⎝⎭≤,又因为20x >,所以220122xxx>+,即220122xxx-<+,因此()()()()122221101222xx x x x g x af x a a f x ⎛⎫+ ⎪---=--< ⎪⎪+⎝⎭,所以()()()()1g x af x a f x <+-.。
某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.84.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10 5.(5分)函数的定义域是()A.B.C.D.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x08.(5分)下列图象中表示函数图象的是()A.B.C.D.9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B=.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.某某省某某市新锐私立学校、水口中学2014-2015学年高一上学期第一次联考数学试卷参考答案与试题解析一.选择题(每题5分,共50分,每题只有一个符合题意的选项)1.(5分)设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(C U S)∩(C U T)等于()A.∅B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}考点:交、并、补集的混合运算.专题:计算题.分析:由全集U,找出不属于集合S的元素,求出S的补集,找出不属于集合T的元素,求出T的补集,找出两补集的公共元素,即可确定出所求的集合.解答:解:∵全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},∴C U S={2,4,6,7,8},C U T={1,2,4,5,7,8},则(C U S)∩(C U T)={2,4,7,8}.故选B点评:此题考查了交、并、补集的混合运算,其中补集即为全集中不属于集合的元素组成的集合,交集即为两集合的公共元素组成的集合,在求补集时注意全集的X围.2.(5分)如果A={x|x>﹣1},那么()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A考点:集合的包含关系判断及应用.专题:探究型.分析:利用元素和集合A的关系,以及集合Φ,{0}中元素与集合A的元素关系进行判断.解答:解:A.0为元素,而A={x|x>﹣1},为集合,元素与集合应为属于关系,∴A错误.B.{0}为集合,集合和集合之间应是包含关系,∴B错误.C.∅为集合,集合和集合之间应是包含关系,∴C错误.D.{0}为集合,且0∈A,∴{0}⊆A成立.故选D.点评:本题考查了元素和集合以及集合与集合之间的关系.元素与集合之间应使用“∈,∉”,而集合和集合之间应使用包含号.3.(5分)已知,则f{f}的值为()A.0 B.2 C.4 D.8考点:函数的值.专题:计算题.分析:欲求f{f}的值应从里向外逐一运算,根据自变量的大小代入相应的解析式进行求解即可.解答:解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f}=f(f(0))=f(2)=4故选C.点评:本题主要考查了分段函数求值,同时考查了分类讨论的数学思想和计算能力,属于基础题.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x)的表达式是()A.f(x)=x2+6x B.f(x)=x2+8x+7 C.f(x)=x2+2x﹣3 D.f(x)=x2+6x﹣10考点:函数解析式的求解及常用方法.专题:换元法;函数的性质及应用.分析:【方法﹣】用换元法,设t=x﹣1,用t表示x,代入f(x﹣1)即得f(t)的表达式;【方法二】凑元法,把f(x﹣1)的表达式x2+4x﹣5凑成含(x﹣1)的形式即得f(x)的表达式;解答:解:【方法﹣】设t=x﹣1,则x=t+1,∵f(x﹣1)=x2+4x﹣5,∴f(t)=(t+1)2+4(t+1)﹣5=t2+6t,f(x)的表达式是f(x)=x2+6x;【方法二】∵f(x﹣1)=x2+4x﹣5=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x)的表达式是f(x)=x2+6x;故选:A.点评:本题考查了函数解析式的常用求法的问题,是基础题.5.(5分)函数的定义域是()A.B.C.D.考点:函数的定义域及其求法.专题:计算题.分析:函数式由两部分构成,且每一部分都是分式,分母又含有根式,求解时既保证分式有意义,还要保证根式有意义.解答:解:要使原函数有意义,需解得,所以函数的定义域为.故选C.点评:本题考查了函数的定义域及其求法,解答的关键是保证构成函数式的每一部分都要有意义,属基础题.6.(5分)若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值X围是()A.C.考点:函数单调性的性质.专题:计算题.分析:由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a ﹣1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.解答:解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.点评:本题考查的知识点是函数单调性的性质,其中熟练掌握二次函数的图象和性质是解答本题的关键.7.(5分)下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x0考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:分别判断两个函数的定义域和对应法则是否完全相同即可.解答:解:A.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.B.函数f(x)和g(x)的定义域为R,两个函数的定义域相同,但对应法则不相同,不是同一函数.C.函数g(x)=x2,两个函数的定义域相同,对应法则相同,是同一函数.D.函数g(x)的定义域为{x|x≠0},两个函数的定义域不相同,不是同一函数.故选C.点评:本题主要考查判断两个函数是否为同一函数,判断的依据是判断两个函数的定义域和对应法则是否完全相同.8.(5分)下列图象中表示函数图象的是()A.B.C.D.考点:函数的图象;函数的概念及其构成要素.专题:作图题.分析:根据函数的定义,对任意的一个x都存在唯一的y与之对应可求解答:解:根据函数的定义,对任意的一个x都存在唯一的y与之对应而A、B、D都是一对多,只有C是多对一.故选C点评:本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应或多对一,但是不能多对一,属于基础试题9.(5分)f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f的解集是()A.(0,+∞)B.(0,2)C.(2,+∞)D.(2,)考点:函数单调性的性质.专题:常规题型.分析:把函数单调性的定义和定义域相结合即可.解答:解:由f(x)是定义在(0,+∞)上的增函数得,⇒2<x<,故选 D.点评:本题考查了函数的单调性的应用,是基础题,本题易错点是不考虑定义域.10.(5分)已知f(x)=ax3+bx﹣4,若f(2)=6,则f(﹣2)=()A.﹣14 B.14 C.﹣6 D.10考点:函数奇偶性的性质.分析:根据f(x)=ax3+bx﹣4,可得f(x)+f(﹣x)=﹣8,从而根据f(2)=6,可求f (﹣2)的值.解答:解:∵f(x)=ax3+bx﹣4∴f(x)+f(﹣x)=ax3+bx﹣4+a(﹣x)3+b×(﹣x)﹣4=﹣8∴f(x)+f(﹣x)=﹣8∵f(2)=6∴f(﹣2)=﹣14故选A.点评:本题以函数为载体,考查函数的奇偶性,解题的关键是判断f(x)+f(﹣x)=﹣8,以此题解题方法解答此类题,比构造一个奇函数简捷,此法可以推广.二.填空题(每题5分,共25分)11.(5分)若A={0,1,2,3},B={x|x=3a,a∈A}则A∩B={0,3}.考点:交集及其运算.专题:计算题.分析:将A中的元素代入x=3a中计算确定出B,求出两集合的交集即可.解答:解:∵A={0,1,2,3},B={x|x=3a,a∈A}={0,3,6,9},∴A∩B={0,3}.故答案为:{0,3}点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.(5分)函数y=x2﹣4x+6当x∈时,函数的值域为.考点:函数的值域;二次函数的性质.专题:计算题.分析:先对二次函数进行配方找出对称轴,利用对称轴相对区间的位置求出最大值及最小值,得函数的值域.解答:解:∵y=x2﹣4x+6=(x﹣2)2+2,x∈∴当x=2时,y min=2;当x=4时,y max=6∴函数的值域为故答案为:点评:本题主要考查二次函数在闭区间上的最值,属于基本试题,关键是对二次函数配方后,确定二次函数的对称轴相对闭区间的位置,以确定取得最大值及最小值的点.13.(5分)已知集合M={(x,y)|x+y=2},N={(x,y)|x﹣y=4},则M∩N等于{(3,﹣1)}.考点:交集及其运算.分析:集合M,N实际上是两条直线,其交集即是两直线的交点.解答:解:联立两方程解得∴M∩N={(3,﹣1)}.故答案为{(3,﹣1)}.点评:本题主要考查了集合的交运算,注意把握好各集合中的元素.14.(5分)已知函数f(x)满足2f(x)+3f(﹣x)=x2+x,则f(x)=.考点:函数解析式的求解及常用方法.专题:计算题;方程思想.分析:由2f(x)+3f(﹣x)=x2+x,用﹣x代入可得2f(﹣x)+3f(x)=x2﹣x,由两式联立解方程组求解.解答:解:∵2f(x)+3f(﹣x)=x2+x,①∴2f(﹣x)+3f(x)=x2﹣x,②得:f(x)=故答案为点评:本题主要考查函数的解析式的解法,主要应用了方程思想求解.15.(5分)已知集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,则a的值为0或1.考点:子集与真子集.专题:探究型.分析:根据集合A的子集只有两个,则说明集合A只有一个元素,进而通过讨论a的取值,求解即可.解答:解:∵集合A={x|ax2+2x+1=0,x∈R}的子集只有两个,∴集合A只有一个元素.若a=0,则方程ax2+2x+1=0,等价为2x+1=0,解得x=﹣,方程只有一解,满足条件.若a≠0,则方程ax2+2x+1=0,对应的判别式△=4﹣4a=0,解得a=1,此时满足条件.故答案为:0或1.点评:本题主要考查利用集合子集个数判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,注意对a进行讨论,防止漏解.三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分)16.(10分)设A={x∈Z|﹣6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∩(B∩C);(2)A∩∁A(B∪C)考点:交、并、补集的混合运算.专题:集合.分析:(1)由B与C求出B与C的交集,找出A与B月C交集的交集即可;(2)根据全集A求出B与C并集的交集,再求出与A交集即可.解答:解:(1)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∩C={3},则A∩(B∩C)={3};(2)∵A={x∈Z|﹣6≤x≤6}={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6},B={1,2,3},C={3,4,5,6},∴B∪C={1,2,3,4,5,6},∴∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0},则A∩∁A(B∪C)={﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.17.(10分)设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}(1)求a,b的值及A,B;(2)设全集U=A∪B,求(C U A)∩(C U B).考点:集合关系中的参数取值问题.专题:计算题.分析:(1)由A∩B={2}可知3分别是方程x2+ax+12=0,x2+3x+2b=0的根,代入可求a,b 及集合A,B(2)由题意可得U=A∪B={﹣5,2,6},结合已知A,B可求解答:解:(1)∵A∩B={2}∴4+2a+12=0即a=﹣84+6+2b=0即b=﹣5 …(4分)∴A={x|x2﹣8x+12=0}={2,6},B={x|x2+3x﹣10=0}={2,﹣5} …(8分)(2)∵U=A∪B={﹣5,2,6}∴C u A={﹣5},C u B={6}∴C u A∪C u B={﹣5,6} …(12分)点评:本题主要考查了集合的交集的基本运算及并集的基本运算,属于基础试题18.(10分)已知f(x)=9x﹣2×3x+4,x∈.(1)设t=3x,x∈,求t的最大值与最小值;(2)求f(x)的最大值与最小值.考点:指数函数综合题.专题:计算题.分析:(1)设t=3x,由 x∈,且函数t=3x在上是增函数,故有≤t≤9,由此求得t 的最大值和最小值.(2)由f(x)=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,由此求得f(x)的最大值与最小值.解答:解:(1)设t=3x,∵x∈,函数t=3x在上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.(2)由f(x)=9x﹣2×3x+4=t2﹣2t+4=(t﹣1)2+3,可得此二次函数的对称轴为 t=1,且≤t≤9,故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为 67.点评:本题主要考查指数函数的综合题,求二次函数在闭区间上的最值,属于中档题.19.(10分)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=x2﹣2x,(1)画出 f(x)图象;(2)求出f(x)的解析式.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:先求出奇函数的表达式,然后根据表达式作出函数的图象.解答:解:(1)先作出当x≥0,f(x)=x2﹣2x的图象,然后将图象关于原点对称,作出当x<0的图象.如图:(2)设x<0,则﹣x>0,代入f(x)=x2﹣2x得f(﹣x)=(﹣x)2﹣2(﹣x),因为函数f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),即f(x)=﹣x2﹣2x,所以函数的表达式为:点评:本题的考点是利用函数的奇偶性求函数的解析式.20.(11分)已知函数f(x)=,x∈,(1)用定义法证明函数f(x)的单调性;(2)求函数f(x)的最小值和最大值.考点:函数单调性的判断与证明.专题:计算题;证明题;函数的性质及应用.分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.(2)利用函数的单调性求最值.解答:解(1)证明:任取3≤x1<x2≤5,则,f(x1)﹣f(x2)=﹣=,∵3≤x1<x2≤5,∴x1﹣x2<0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴上是增函数,(2)∵上是增函数,∴当x=3时,f(x)有最小值,当x=5时,f(x)有最大值f(5)=.点评:本题考查了函数单调性的证明及函数单调性的应用,证明一般有两种方法,定义法,导数法,可应用于求最值.属于基础题.21.(12分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:应用题;压轴题.分析:(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.解答:解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.点评:本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.22.(12分)已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1(1)求f(9),f(27)的值;(2)若f(3)+f(a﹣8)<2,某某数a的取值X围.考点:函数单调性的性质;函数的值.专题:函数的性质及应用.分析:(1)由函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f (y),f(3)=1,能求出f(9)和f(27).(2)由f(x)+f(x﹣8)<2,知f(x)+f(x﹣8)=f<f(9),再由函数f(x)在定义域(0,+∞)上为增函数,能求出原不等式的解集.解答:解:(1)由原题条件,可得到f(9)=f(3×3)=f(3)+f(3)=1+1=2,f(27)=f(3×9)=f(3)+f(9)=1+2=3;(2)f(3)+f(a﹣8)=f(3a﹣24),又f(9)=2∴f(3a﹣24)<f(9),函数在定义域上为增函数,即有3a﹣24<9,∴,解得a的取值X围为8<a<11.点评:本题考查抽象函数的函数值的求法,考查不等式的解法,解题时要认真审题,仔细解答,注意合理地进行等价转化.。
南京市阶段学情调研试卷高一数学(答案在最后)注意事项:1.本试卷包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分。
本试卷满分为150分,考试时间为120分钟。
2.答卷前,考生务必将自己的姓名、学校、班级填在答题卡上指定的位置。
3.作答选择题时,选出每小题的答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,再写上新答案;不准使用铅笔和涂改液。
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.已知集合{}220A x x x =->,{}1,2,3B =,则A B = ()A.{}1 B.{}2,3 C.{}3 D.{}1,2【答案】C 【解析】【分析】解出集合A ,再利用交集的含义即可得到答案.【详解】{}{2202A x x x x x =->=或}0x <,则{}3A B ⋂=,故选:C.2.函数()f x =的定义域为()A.(],3-∞ B.()1,+∞ C.(]1,3 D.()[),13,-∞⋃+∞【答案】C 【解析】【分析】由函数形式得到不等式组,解出即可.【详解】由题意得()()31010x x x ⎧--≥⎨-≠⎩,解得13x <≤,则定义域为(]1,3,故选:C.3.若函数()f x 和()g x 分别由下表给出,满足()()2g f x =的x 值是()x1234()f x 2341x1234()g x 2143A.1B.2C.3D.4【答案】D 【解析】【分析】从外到内逐步求值.【详解】由()()2g f x =,则()1f x =,则4x =.故选:D4.“1k >-”是“函数3y kx =+在R 上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】根据一次函数的性质与必要不充分条件的判定即可得到答案.【详解】当12k =-时,满足1k >-,但是函数3y kx =+在R 上为减函数,则正推无法推出;反之,若函数3y kx =+在R 上为增函数,则01k >>-,则反向可以推出,则“1k >-”是“函数3y kx =+在R 上为增函数”的必要不充分条件,故选:B .5.函数()241x f x x =+的图象大致为().A. B.C. D.【答案】A【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式得:()()241xf x f xx--==+,则函数()f x为偶函数,其图象关于坐标y轴对称,B、D错误;当1x=时,42011y==>+,D错误.故选:A.6.已知0m>,0n>,2ln2ln2ln2m n+=,则142m n+的最小值是().A.18B.9C.4615D.3【答案】B【解析】【分析】根据对数的运算得21m n+=,再利用乘“1”法即可得到最小值.【详解】2212ln2ln2ln2ln2ln2ln2m n m n m n++===+,所以21m n+=,且0m>,0n>,所以()141482559222n mm nm n m n m n⎛⎫+=++=++≥+⎪⎝⎭,当且仅当82n m m n =,即1623m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,故选:B.7.设m 为实数,若二次函数22y x x m =-+在区间()1,+∞上有且仅有一个零点,则m 的取值范围是()A.()1,+∞ B.[)1,+∞ C.(),1-∞ D.R【答案】C 【解析】【分析】根据二次函数的性质求得正确答案.【详解】二次函数22y x x m =-+的开口向上,对称轴为1x =,要使二次函数22y x x m =-+在区间()1,+∞上有且仅有一个零点,则需21210,1m m -⨯+<<,所以m 的取值范围是(),1-∞.故选:C8.已知定义在R 上的函数()f x 是单调递增函数,()()()22g x x f x =-+是偶函数,则()0g x ≤的解集是()A.(][),22,-∞-+∞U B.[]22-,C.(],2-∞- D.[)2,+∞【答案】B 【解析】【分析】综合单调性和奇偶性再分类讨论即可.【详解】因为()()()22g x x f x =-+是偶函数,且()20g =,(2)4(0)0g f ∴-=-=,又因为()f x 在R 上是单调递增函数,当0x >时,()0f x >;当0x <时,()0f x <,当2x <-时,2020x x +<⎧⎨-<⎩,则()20f x +<,此时()()2(2)0g x x f x =-+>,不成立,当22x -<<时,2020x x +>⎧⎨-<⎩,则()20f x +>,此时()()2(2)0g x x f x =-+<,成立,当2x >时,2020x x +>⎧⎨->⎩,则()20f x +>,此时()(2)()0g x x f x =->不成立,且2x =或2-时,()0g x =,成立,综上,()0g x ≤的解集为[]22-,,故选:B.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对的得2分,有选错的得0分.请把答案填涂在答题卡相应位置上.9.若“x M ∃∈,0x <”为真命题,“x M ∃∈,2x ≥”为假命题,则集合M 可以是()A.(),1-∞ B.[]1,3- C.[)0,2 D.()2,2-【答案】AD 【解析】【分析】依题意可知M 中存在小于0的元素且不存在大于或等于2的元素,即可判断.【详解】依题意可知M 中存在小于0的元素且不存在大于或等于2的元素,则(),1-∞和()2,2-符合题意.故选:AD10.以下结论正确的是()A.函数1y x x =+的最小值是2 B.若,R a b ∈且0ab >,则2b a a b+≥C.y =+2D.函数()102y x x x =+<-的最大值为0【答案】BC 【解析】【分析】根据基本不等式即可结合选项逐一求解.【详解】对于选项A ,对于函数1y x x=+,当0x <时,0y <,所以A 错误;对于选项B ,由于0ab >,所以0,0b aa b>>,所以2b a a b +≥=,当且仅当22,b a a b a b ==时等号成立,所以B 正确;对于选项C2+≥=即0x =,故C正确,对于选项D ,由于0x <,20x ->,所以111222220222y x x x x x x ⎛⎫=+=-++=--++≤- ⎪---⎝⎭,当且仅当12,2x x-=-即1x =时等号成立,这与0x <矛盾,故D 错误.故选:BC11.下列说法正确的是()A.若()y f x =是奇函数,则()00f =B.1y x =+和y =表示同一个函数C.函数()f x 在(],0-∞上单调递增,在()0,∞+上单调递增,则()f x 在R 上是增函数D.若()()R y f x x =∈满足()()12f f >,则()f x 不是单调递增函数【答案】BD 【解析】【分析】根据反例即可判断AC,根据函数的定义域和对应关系即可判断B ,由单调函数的定义即可判断D.【详解】当奇函数在0x =处有定义时,才有()00f =,例如()1f x x=为奇函数,但是不满足()00f =,故A 错误,1y x =+和1y x ==+的定义域均为R ,对应关系也一样,故表示同一个函数,B 正确,若函数的图象如下,满足()f x 在(],0-∞上单调递增,在()0,∞+上单调递增,但是()f x 在R 上不是单调递增函数,故C 错误,若()()R y f x x =∈满足()()12f f >,则()f x 不是单调递增函数,故D 正确,故选:BD12.关于x 的不等式210ax bx +-<,下列关于此不等式的解集结论正确的是()A.不等式210ax bx +-<的解集可以为()1,+∞B.不等式210ax bx +-<的解集可以为RC.不等式210ax bx +-<的解集可以为∅D.不等式210ax bx +-<的解集可以为{}11x x -<<【答案】BD 【解析】【分析】根据题意,由不等式的解集,对选项逐一判断,即可得到结果.【详解】假设结论成立,则0,0a b =<,则不等式为10bx -<,解得1x b >,因为0b <,所以11b≠,故结论不成立,所以A 错误;当2Δ40a b a <⎧⎨=+<⎩时,210ax bx +-<在R 上恒成立,故B 正确;当0x =时,不等式2110ax bx +-=-<,则解集不可能为∅,故C 错误;假设结论成立,则()011111a ba a⎧⎪>⎪⎪-=-+⎨⎪-⎪=-⨯⎪⎩,即10a b =⎧⎨=⎩,符合题意,故D 正确;故选:BD三、填空题:本大题共4小题,每小题5分,共20分.请把答案填涂在答题卡相应位置上.13.命题“[]1,3x ∀∈,()()2f x f ≤”的否定是____________.【答案】[]1,3x ∃∈,()()2f x f >【解析】【分析】根据全称命题的否定即可得到答案.【详解】根据全称命题的否定为存在命题,且范围不变,结论相反,则其否定为[]1,3x ∃∈,()()2f x f >,故答案为:[]1,3x ∃∈,()()2f x f >.14.设2log 93a =,则9a -=___________.【答案】18##0.125【解析】【分析】根据对数、指数的运算可得答案.【详解】因为22log 9log 93aa ==,所以3982a ==,即11988a--==.故答案为:18.15.函数()12x f x x -=-的单调递减区间是_____________【答案】(),1-∞和()2,+∞【解析】【分析】根据题意整理()f x 的解析式可得()()()[)11,,12,211,1,22x x f x x x ∞∞⎧+∈-⋃+⎪⎪-=⎨⎪--∈⎪-⎩,据此作出函数图像,利用图象分析函数的单调区间.【详解】由题意可知:()f x 的定义域为()(),22,-∞+∞ ,可得()()()[)111,,12,1221121,1,222x x x x x f x x x x xx ∞∞-⎧=+∈-⋃+⎪-⎪--==⎨--⎪=--∈⎪--⎩,作出()f x的图象,由图象可知函数()f x 的单调递减区间是(),1-∞和()2,+∞.故答案为:(),1-∞和()2,+∞.16.函数()()()22111f x k x k x =-+-+只有一个零点,则k 的取值集合为___________【答案】51,3⎧⎫--⎨⎬⎩⎭【解析】【分析】分1k =±和1k ≠±讨论即可.【详解】(1)若210k -=,即1k =±时,①当1k =时,此时()1f x =,此时没有零点,②当1k =-时,此时()21f x x =-+,令()210f x x =-+=,解得12x =,符合题意,(2)当1k ≠±时,令()()()221110f x k x k x =-+-+=,则()()221410k k ∆=---=,解得53k =-或1(舍去),综上53k =-或1-,则k 的取值集合为51,3⎧⎫--⎨⎬⎩⎭.故答案为:51,3⎧⎫--⎨⎬⎩⎭.四、解答题:本大题共6小题,其中第17题10分,18--22题每题12分,共70分.请把答案填涂在答题卡相应位置上.17.(1)求()122320131.52348π--⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值;(2)已知17x x -+=,求1122x x -+的值.【答案】(1)12;(2)3【解析】【分析】(1)利用幂的运算性质运算即可得解.(2)利用幂的运算性质及完全平方公式运算即可得解.【详解】解:(1)()2122223323320133272331.52π3114828322-----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+---+--⎢⎥ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⎢⎥⎣⎦=⎝⎭2232222321321321213223223232⎛⎫⨯-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+- ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎝⎭=⎭=.(2)由题意,17x x -+=,则0x >∴2112212729--⎛⎫=++=+= +⎪⎝⎭x x x x ,∵0x >,∴1122x x->+,∴11223x x-+=.18.设全集U =R ,集合{}2650A x x x =-+≤,集合{}212B x a x a =-≤≤+,其中a ∈R .(1)当3a =时,求()U A B ⋂ð;(2)若“x A ∈”是“x B ∈”的充分条件,求a 的取值范围.【答案】(1)[)(]1,15,7- (2)[)2,+∞【解析】【分析】(1)求出集合A 的等价条件,再求出U A ð,结合集合的基本运算进行求解.(2)根据充分条件和必要条件的定义转化为集合关系建立不等式关系进行求解即可.【小问1详解】集合{}[]26501,5A x x x =-+≤=,所以()(),15,U A ∞∞=-⋃+ð,当3a =时,{}[]171,7B x x =-≤≤=-;所以[)(]1,15,7U A B ⋂=-⋃ð.【小问2详解】由题意得到[]1,5A =,由“x A ∈”是“x B ∈”的充分条件可得A B ⊆,则21a -≤且125a +≥,解得2a ≥;所以a 的取值范围是[)2,+∞.19.已知二次函数()f x 满足()()246f x f x x +-=+,且()00f =.(1)求()f x 的解析式;(2)解关于x 的不等式()()21f x x m x ->-.【答案】(1)()2f x x x=+(2)答案见解析【解析】【分析】(1)根据待定系数法即可将条件代入求解,(2)分类讨论即可求解一元二次不等式的解.【小问1详解】设()2f x ax bx c =++,0a ≠由()00f =,得()20c f x ax bx =⇒=+又()()()()()22222f x f x a x b x ax bx +-=+++-+44246ax a b x =++=+,则44426a a b =⎧⎨+=⎩,解得11a b =⎧⎨=⎩,所以()2f x x x =+.【小问2详解】由已知,()()221x x x m x +->-即()210x m x m -++>,即()()10x m x -->,①当1m =时,原不等式即为:()210x ->,解得1x ≠;②当1m <时,解得x m <或1x >;③当1m >时,解得1x <或x >m综上,当1m =时,不等式的解集为:()(),11,-∞+∞ ,当1m <时,不等式的解集为:()(),1,m -∞+∞ ,当1m >时,不等式的解集为:()(),1,m -∞⋃+∞.20.已知21a b +=(1)求224a b +的最小值;(2)若a ,b 为正数,求41a a b++的最小值.【答案】(1)12(2)1+【解析】【分析】(1)法一,利用基本不等式求最值;法二,消元结合二次函数求最值;(2)灵活运用“1”求最值.【小问1详解】法一、()22221422a b a b ++≥=,当且仅当2a b =,即12a =,14b =时取等号;法二、()22222211141248418422a b b b b b b ⎛⎫+=-+=-+=-+≥ ⎪⎝⎭,当且仅当12a =,14b =取等号;【小问2详解】若,a b 为正数,则10a +>,0b >4412412111a b a b a b a b-+=+=+-+++()14218112262121221b a a b a b a b +⎛⎫⎛⎫=+⋅++-=+-≥+ ⎪⎪++⎝⎭⎝⎭,当且仅当811b a a b+=+时等号成立,∴当3a =-,1b =时,min 411a a b ⎛⎫+=+ ⎪+⎝⎭21.已知函数()21ax b f x x-=+是定义在[]1,1-上的奇函数,且()11f =-.(1)求函数()f x 的解析式;(2)判断()f x 在[]1,1-上的单调性,并用单调性定义证明;(3)解不等式()()()210f t f tf -+>.【答案】21.()221x f x x-=+,[]1,1x ∈-22.减函数;证明见解析;23.510,2⎡⎫⎪⎢⎪⎣⎭【解析】【分析】(1)根据奇函数的性质和()11f =求解即可.(2)利用函数单调性定义证明即可.(3)首先将题意转化为解不等式()()21f tf t >-,再结合()f x 的单调性求解即可.【小问1详解】函数()21ax b f x x-=+是定义在[]1,1-上的奇函数,()()f x f x -=-;2211ax b ax b x x ---=-++,解得0b =,∴()21ax f x x=+,而()11f =-,解得2a =-,∴()221x f x x-=+,[]1,1x ∈-.【小问2详解】函数()221x f x x-=+在[]1,1-上为减函数;证明如下:任意[]12,1,1x x ∈-且12x x <,则()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++因为12x x <,所以120x x -<,又因为[]12,1,1x x ∈-,所以1210x x ->,所以()()120f x f x ->,即()()12f x f x >,所以函数()()12f x f x >在[]1,1-上为减函数.【小问3详解】由题意,()()()210f t f tf -+>,又()00f =,所以()()210f t f t -+>,即解不等式()()21f t f t >--,所以()()21f t f t >-,所以22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩,解得102t ≤<,所以该不等式的解集为10,2⎡⎫⎪⎢⎪⎣⎭.22.已知()42f x x x m x =-+,R m ∈.(1)若()13f =,判断()f x 的奇偶性.(2)若()f x 是单调递增函数,求m 的取值范围.(3)若()f x 在[]1,3上的最小值是3,求m 的值.【答案】(1)当0m =时,()f x 是奇函数;当12m =时,()f x 既不是奇函数,也不是偶函数(2)1122m -≤≤(3)0m =或12m =【解析】【分析】(1)由()13f =,解出m ,代入结合函数的奇偶性进行判断;(2)即在4x m =的左右两侧都单调递增;(3)由(2)1122m -≤≤,()f x 在[]1,3上单调递增,进而对12m <-,12m >时进行分类讨论即可.【小问1详解】函数()f x 的定义域为R ,()13f =,则1423m -+=,解得0m =或者12m =当0m =时,()f x x x x =+,因为()()f x x x x x x x f x -=---=--=-,所以()f x 是奇函数.当12m =时,()22f x x x x =-+,R m ∈()15f -=-,()()11f f ≠-,()()11f f ≠--,所以()f x 既不是奇函数,也不是偶函数.【小问2详解】由题意得()()()2242,4,42,4,x m x x m f x x m x x m ⎧--≥⎪=⎨-++<⎪⎩当21421m m m -≤≤+,即1122m -≤≤时,()f x 在R 上是增函数.【小问3详解】①1122m -≤≤,()f x 在[]1,3上单调递增,()f x 在1x =处取得最小值,()13f =,解得0m =或者12m =;②12m <-时,()f x 在[)21,m -+∞单调递增,因为212m -<-,[][)1,321,m ⊂-+∞,()f x 在[]1,3上单调递增,所以()f x 在1x =处取得最小值,()13f =,无解;③12m >,()f x 在(],21m -∞+单调递增,在[]21,4m m +单调递减,在[)4,m +∞单调递增.若213m +≥,即m 1≥时,函数()f x 在[]1,3上单调递增,所以()f x 在1x =处取得最小值,()13f =,无解;若2134m m +<≤,即314m ≤<时,()f x 在[]1,21m +单调递增,在[]21,3m +上单调减,因为()36f >,所以()f x 在1x =处取得最小值,()13f =,无解;若43m <,即1324m <<,()f x 在[]1,21m +单调递增,在[]21,4m m +单调递减,在[]4,3m 单调增,()13f =,。
雨花区2013年下学期期末质量检测卷高三化学满分100分 时量90分钟可能用到的相对原子质量H-1 O-16 S-32 C-12 N-14 Na-23 Cl-35.5 Mg-24 Cu-64 Mn-55 Ag-108 一、单项选择题:(每小题3分,共51分。
请将各题唯一正确答案填入答题卡的相应方框内)1.2013年下半年,长沙雾霾天气特别多,空气污染严重。
湖南省决定在“十二五”期间,将大力实施“清水蓝天”工程。
下列不利..于.“清水蓝天”工程实施的是 A .加强城市生活污水脱氮除磷处理,遏制水体富营养化 B .加大稀土、煤等资源的开采和出口,促进经济快速发展 C .积极推广太阳能、风能、地热能及水能等的使用,减少化石燃料的使用D .大力实施矿物燃料“脱硫、脱硝技术”,减少硫的氧化物和氮的氧化物污染2.化学与环境、材料、能源关系密切,下列说法错误的是 A .水泥冶金厂常用高压电除去工厂烟尘,利用了胶体的性质 B .煤的气化和煤的液化都可以使煤变为清洁能源,煤的气化和煤的液化都属于物理变化C .我国首艘航母“辽宁舰”上用于舰载机降落的拦阻索是特种钢缆,属于金属材料D .页岩气是从页岩层中开采出来的天然气。
由于产气的页岩分布广、厚度大,且普遍含气,故可以成为新的化石燃料来源3.设阿伏加德罗常数为N A ,下列说法中不正确的是 A .15.6g Na 2O 2中含阴、阳离子总数为0.6N A B .标准状况下,11.2L CO 2和O 2的混合气体中含氧原子数为N A C .8.7g MnO 2和足量的浓盐酸反应,被氧化的Cl -为0.2N A D .分子数为N A 的CO 、C 2H 4混合气体其体积是22.4 L ,质量为28 g 4.同温同压下,甲、乙两容器分别盛有甲烷气体和氨气,已知它们所含原子个数相同,则甲、乙两容器的体积比为 A .4∶3 B .5∶4 C .4∶5 D .1∶15.下列推断正确的是A .SiO 2是酸性氧化物,不能与任何酸反应B .Na 2CO 3、NaHCO 3都是盐,都能与CaCl 2溶液反应C .CO 、NO 都是大气污染气体,在空气中都能稳定存在D .将SO 2通入Ba(ClO)2的溶液中,生成BaSO 4沉淀6.下列反应离子方程式正确的是 A . 溴化亚铁溶液中通入过量氯气:Fe 2++2Br -+2Cl 2=Fe 3+ + Br 2 + 4Cl - B .氯气通入冷的氢氧化钠溶液中:2Cl 2 + 2OH - = 3Cl - + ClO -+ H 2OC .向澄清石灰水中加入少量小苏打溶液:Ca 2+ + OH -+ HCO 3- =CaCO 3↓+ H 2OD .氨水中通入过量二氧化硫:2NH 3·H 2O + SO 2=2NH 4+ + SO 32-+ 2H 2O7.在下列溶液中,能大量共存的一组离子是 A . pH =1的溶液中:NH 4+、 Fe 2+、SO 42-、ClO- B . 通入过量SO 2气体的溶液中:Fe 3+、NO 3-、Ba 2+、H +C . c (Al 3+)=0.1 mol/L 的溶液中 :Na +、K +、AlO 2-、SO 42-D .通入过量CO 2气体的溶液中:Na +、Ba 2+、HCO 3-、Cl -、Br -8.下列实验现象的描述错误的是 A .氢气在氯气中燃烧产生苍白色火焰B .红热的铁丝在氯气中燃烧,火星四射,生成黑色固体颗粒C .红热的铜丝在氯气中燃烧,产生棕黄色烟D .钠在空气中燃烧,发出黄色的火焰,生成淡黄色固体9. 由于具有超低耗电量、寿命长的特点,LED 产品越来越受人欢迎。
南京市第一中学2022-2023学年高一上学期期末考试数学卷一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( )R A B ⋃= A.B.C.D .2.函数的定义域为.( )()lg(2)f x x =+-A .B .C .D .1[,)3+∞1[,2]31[,2)3[2,)+∞3.设,,,则a ,b ,c 的大小关系为.( )0.73a =0.81(3b -=0.7log 0.8c =A .B .a b c <<b a c <<C .D .b c a<<c a b<<4.圆心在原点,半径为10的圆上的两个动点M ,N 同时从点出发,沿圆周运动,点M 按(10,0)P 逆时针方向旋转,速度为弧度/秒,点N 按顺时针方向旋转,速度为弧度/秒,则它们第三次相6π3π遇时点M 转过的弧度数为( )A .B .C .D .2ππ2π3π5.设,则( )0.311531log 3,log 5,()5a b c ===A .B .C .D .a b c<<a c b<<b c a<<b a c<<6.设函数,则( )()ln |21|ln |21|f x x x =+--()f x A .是偶函数,且在单调递增B .是奇函数,且在单调递减1(,)2+∞11(,)22-C .是偶函数,且在单调递增D .是奇函数,且在单调递减1(,2-∞-1(,2-∞-7.中国早在八千多年前就有了玉器,古人视玉为宝,佩玉不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分如图,经测量知,,(2)4AB CD ==3BC =,则该玉佩的面积为( )7AD =A .B .C .D .496π-493π-496π493π8.已知函数的表达式为,若且,则的取值()y f x =2()|log |f x x =0m n <<()()f m f n =2m n +范围为( )A .B .C .D .二、多项选择题:本题共4小题,每小题5分,共20分。
南京市2025届高三年级学情调研数学2024.09注意事项:1.本试卷考试时间为120分钟,试卷满分150分.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.{x x -3>01.已知集合A =}{2x -5x +4>,B x =0)A.(-∞,1)},则A B =(C.(3,+∞B.(-∞,3))D.(4,+∞)2.已知a x=4,log a 3=y ,则a x +y=()A.5B.6C.7D.12|3.已知|a = ,|b |=1.若(a +2b )⊥a,则cos a ,b =()3A.2-3B.3-C.3D 3.32{a }n 为等差数列,前n 项和为S n .若S 3=6,S 6=3,则S 9=(4.已知数列A.-18B.-9)D.1C.985.若α是第二象限角,4sin 2α=tan α,则tan α=(A.7B.7-C.)7D 76.甲、乙、丙、丁共4名同学参加某知识竞赛,已决出了第1名到第4名(没有并列名次).甲、乙、丙三人向老师询问成绩,老师对甲和乙说:“你俩名次相邻”,对丙说:“很遗憾,你没有得到第1名”.从这个回答分析,4人的名次排列情况种数为()A.4B.6C.8D.127.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为()A.24B.32C.96D.1288.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,点P 在C 上,点Q 在l 上.若PF =2QF ,PF ⊥QF ,则△PFQ 的面积为()A.25 B.245 C.55D.525二、选择题:本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上,全部选对得6分,部分选对得部分分,不选或有错选的得0分.9.已知复数z ,下列命题正确的是(A.若z +1∈R ,则z ∈R C.若|z |=1,则z =±)1B.若z +i ∈R ,则z 的虚部为-1D.若z 2∈R ,则z ∈R210.对于随机事件A ,B ,若P (A )=53,P (B )=51(,4P B A )=,则()3A.P (AB )=21(B.6P A B )=9C.P (A +B )=11D.P (2AB )=18x |11.设函数f (x )=|si s x |n +|co ,则()A.f (x )的定义域为π2k x ⎧x ≠⎨⎬⎩,k ∈Z ⎭⎫πB.f (x )的图象关于x 4=对称C.f (x )的最小值为D.方程f (x )=12在(0,2π)上所有根的和为8π三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上112.x ⎛⎫+ ⎪⎝展开式中的常数项是___________⎭.13.与圆柱底面成45°角的平面截圆柱得到如图所示的几何体,截面上的点到圆柱底面距离的最大值为4,最小值为2,则该几何体的体积为___________.14.已知椭圆C 的左、右焦点分别为F 1,F 2,上顶点为B ,直线BF 2与C 相交于另一点A .当cos ∠F 1AB 最小时,C 的离心率为___________.四、解答题:本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)小王早晨7:30从家出发上班,有A ,B 两个出行方案供其选择,他统计了最近100天分别选择A ,B 两个出行方案到达单位的时间,制成如下表格:8点前到(天数)8点或8点后到(天数)2A 方案8123B 方案30(1)判断并说明理由:是否有95%的把握认为在8点前到单位与方案选择有关;(2)小王准备下周一选择A 方案上班,下周二至下周五选择B 方案上班,记小王下周一至下周五这五天中,(X =3)8点前到单位的天数为随机变量X .若用频率估计概率,求P .n (ad -bc )2附:χ2=,其中n =a +b +c +d (a +b )(c +d )(a +c )(b +d ),)(χ≥x P 00.100.050.0250.0100.011x 02.7063.8415.0246.63510.82816.(本小题满分15分)如图,在四面体ABCD 中,△ACD 是边长为3的正三角形,△ABC是以AB 为斜边的等腰直角三角形,E ,F 分别为线段AB ,BC 的中点,AM =2MD ,CN =2ND .(1)求证:EF //平面MNB ;(2)若平面ACD ⊥平面ABC ,求直线BD 与平面MNB 所成角的正弦值.17.(本小题满分15分){a 已知数列}n {b ,}n {b ,a n =(-1)n +2n ,b n =a n +1-λa n (λ>0),且}n 为等比数列.(1)求λ的值;{b (2)记数列n }的前n 项和为T ⋅n 2n (i ∈N .若T i ⋅T i +2=15T i +1*),求i 的值.18.(本小题满分17分)2222x y ab-=1(a >0,b >0)的左、右焦点,F 1F 2=点T (已知F 1,F 2是双曲线C :(1)求C 的方在C 上.程(2)设直线l 过点D (1,0),且与C 交于A ,B 两点.①若DA =3DB ,求△F 1F 2A 的面积;②以线段AB为直径的圆交x轴于P,Q两点,若|PQ|=2,求直线l的方程.19.(本小题满分17分)已知函数f(x)=e x-a+ax2-3ax+1,a∈R.(1)当a=1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>1时,试判断f(x)在[1,+∞)上零点的个数,并说明理由;(3)当x≥0时,f(x)≥0恒成立,求a的取值范围.南京市2025届高三年级学情调研数学参考答案2024.09一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.12345678DDABACCB二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得6分,部分选对得部分分,不选或有错选的得0分.91011ABBCDACD三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.13.312.240π14.33四、解答题:本大题共5小题,共77分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)解:(1)假设H 0:8点前到单位与方案选择无关,100⨯(28⨯30-12⨯30)2则χ2=40⨯60⨯42⨯58.800≈3.94>3.841203=,所以有95%的把握认为8点前到单位与路线选择有关.(2)选择A 方案上班,8点前到单位的概率为0.7,选择B 方案上班,8点前到单位的概率为0.5.当X =3时,则分两种情况:1①若周一8点前到单位,则P 1=0.7⨯C 24(1-0.5)2⨯0.52=802.6(2)若周一8点前没有到单位,则P 2=(1-0.7)⨯C 43(1-0.5)⨯0.53=8.27综上,P (X =3)=P 1+P 2=08.16.(本小题满分15分)解:(1)因为E ,F 分别为线段AB ,BC 中点,所以EF //AC .因为AM =2MD ,CN =2ND ,即1D 3M DN DA DC =,所以MN //AC ,所以EF //MN =.又MN ⊂平面MNB ,EF ⊄平面MNB ,所以EF //平面MNB .(2)取AC 中点O ,连接DO ,OE 因为△ACD 为正三角形,所以DO ⊥AC .因为平面ACD ⊥平面ABC ,平面ACD 平面ABC =AC ,DO ⊂平面ACD ,所以DO ⊥平面ABC .因为O ,E 分别为AC ,AB 中点,则OE //BC .又因为AC ⊥BC ,所以OE ⊥AC .以O 为坐标原点,OE ,OC ,OD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,330,0,2⎛⎫则D ⎪⎪⎝⎭33,,B 2⎛,0⎫ ⎪⎝⎭1,M 2⎛0,- ⎝10,,N 2⎛ ⎝, 故BM =(-3,-2 333,22⎫,MN =(0,1,0),BD =-3,- ⎪ ⎪⎝⎭⎛.=(x ,y ,z ),直线BD 与平面MNB 所成角为θ设平面MNB 的法向量为n ,BM ⎧=0,则⎪⎨ ⎩⎪n n ⋅ ⋅MN =0,即30.x ⎧-y 2y -+=0,⎪⎨=⎪⎩ =取n 0,3).33cos BD ,n BD nBD ⋅n 则sin θ===82,所以BD 与平面MNB 所成角的正弦值为28.17.(本小题满分15分)解:(1)因为a n =(-1)n+2n,则a 1=1,a 2=5,a 3=7,a 4=17.又b n =a n +1-λa n ,则b 1=a 2-λa 1=5-λ,b 2=a 3-λa 2=7-5λ,b 3=a 4-λa 3=17-7λ.{b 因为}n 为等比数列,则b 22=b 1⋅b 3,所以(7-5λ)2=(5-λ)(17-7λ),整理得λ2-λ-2=0,解得λ=-1或2.因为λ>0,故λ=2.当λ=2时,b n =a n +1-2a n =(-1)n +1+2n +1-2⎡⎣(-1)n +2n⎤⎦=(-1)⨯(-1)n +2n +1-2⨯(-1)n -2n +1=-3⨯(-1)n .n b -3⨯(-1)n +b 1则n +1={b =-1,-3⨯(-1)n故}n 为等比数列,所以λ=2符合题意.(2)b ⋅n 2=-3⨯(-1)n ⋅n n 2当n 为偶数时,T n =-3⨯⎡⎣-12+22-32+42-52+62- -(n -1)2+n 2⎦⎤3=-3⨯(1+2+ +n )=n (n +12)-332当n 为奇数时T n =T n +1-b n +1(n +1)2=2-(n +1)(n +2)+3(n +1)2=n (n +1). ,3⎧.3⎪⎪⎨综上,T n =2⎪-n (n +1),n ⎪n (n +1),n ⎩2为奇数为偶数因为T i ⋅T i +2>0,又T i ⋅T i +2=15T i +1,故T i +1>0,所以i 为偶数.33322所以2⎡⎡i (i +1)-⎤⋅(i +2)(i +3)-⎤=15⨯⎢⎥⎢⎥⎣⎦⎣(i +1)(i +2)⎦,整理得i 2+3i -10=0,解得i =2或i =-5(舍),所以i =2.18.(本小题满分17分),点T 在C 上,根据双曲线的定义可解:(1)由题意可知c =知TF 1TF 2=2a -,即2a =-则b 2=c 2-a 2=2,所以C 的方程为2242x y =4,所以a =2,=1-.)(x (2)①设B 0,y 0(x ,DB 0 -1,y 0=).(3x )0因为DA =3DB ,所以DA = -3,3y 0,(3x 所以A 点坐标为)0-2,3y 0,())02224221,4⎧x 02(3y 2y -=⎪因为A ,B 在双曲线C 上,所以⎪⎨3x 0-1,⎪-=⎪⎩10解得x 0=3,y 0=2±,所以A点坐标为2⎛7,± ⎝⎭,121122y 2A F 1F 2⨯=⨯⨯=所以S △F F A =②当直线l 与y 轴垂直时,此时PQ =4不满足条件.)(x 设直线l 的方程为x =ty +1,A 1,y 1)(x ,B 2,y 2),0(x ,P P ,0(x ,Q Q ).242x ⎧y 2=1-,直线l 与C 联立⎪⎨⎪(t 消去x ,⎩x =ty +1,得2)y 2-2+2ty -3=0,2t 所以y 1+y 2=-2t -3,y 1y 2=-t 2-2.21222(t 0.t 2⎧=∆42-+2由⎪⎨≠⎩t ⎪-3)>0,,得t 22且t 2≠2>.(x -x 以AB 为直径的圆方程为1)(x -x 2)+(y -y 1)(y -y 2)=0,(x 1令y =0,可得x 2-)x +x +x 21x 2+y 1y 2=0,则x P ,x Q 为方程的两个根,所以x P +x Q =x 1+x 2,x P x Q =x 1x 2+y 1y 2,所以PQ =x P -x Q ========2.5解得t 2=-2(舍)或t 23=15,即t =3±,所以直线l 的方程为:3x ±19.(本小题满分17分-3=0.)解:(1)当a =1时,f (x )=ex -1+x 2-3x +1,则f (x )=e x -1+2x -3,所以曲线y =f (x )在x =1处切线的斜率k =f '(1)=0.又因为f (1)=0,所以曲线y =f (x )在x =1处切线的方程为y =0.(x )=e x -(2)f (1)=e1-a-2a +1,f 'a +2ax -3a ,则f '(1)=e 1-a -a ,(x )=e x -当a >1时,f ''a(x )+2a >0,则f '在(1,+∞)上单调递增.因为f '(1)=e1-a-a <e 1-1-1=0,f '(a )=1+2a 2-3a =(2a -1)(a -1)>0,(x 0)=0所以存在唯一的x 0∈(1,a ),使得f '.(1,x )0(x )<0,所以f (x )时,f '在[1,x )0上单调递减;当x ∈当x (x )0∈(x )>0,所以f (x )时,f ,+∞'在(x )0,+∞上单调递增.(x 又因为f (1)=e1-a-2a +1<e 0-2+1=0,所以f 0)<f (1)<0.又因为f (3)=e3-a+1>0,所以当a >1时,f (x )在[1,+∞)上有且只有一个零点.(3)①当a >1时,f (1)=e 1-a-2a +1<e 0-2+1=0,与当x ≥0时,f (x )≥0矛盾,所以a >1不满足题意.②当a ≤1时,f (0)=e-a+1>0,(x )=e x -f 'a (x )=e x -+2ax -3a ,f ''a +2a ,f ''(0)=e -a +2a .记函数q (x )=e -x+2x ,x ≤1,则q '(x )=-e-x+2,当x ∈(-ln 2,1)时,q '(x )>0,所以q (x )在(-ln 2,1)单调递增;当x ∈(-∞,-ln 2)时,q '(x )<0,所以q (x )在(-∞,-ln 2)单调递减,所以q (x )≥q (-ln 2)=2-2ln 2>0,所以f ''(0)>0.(x )又因为f ''在[0,+∞)上单调递增,(x )≥f ''(0)>0,所以f (x 所以f '')'在[0,+∞)上单调递增.(i )若f '(0)=e-a-3a ≥0,(x )≥f '(0)≥0,所以f (x )在[0,+∞)上单调递增则f ',则f (x )≥f (0)>0,符合题意;(ii )若f '(0)=e-a-3a <0,可得a >0,则0<a ≤1.(x -)因为f '(1)=e 1a-a ≥0,且f '在[0,+∞)上单调递增,(x 1)=0所以存在唯一的x 1∈(0,1],使得f '.(0,x )1(x )<0,所以f (x )时,f '在(0,x )1上单调递减,当x ∈当x (x )1∈(x )>0,所以f (x )时,f ,+∞'在(x )1,+∞上单调递增,其中x 1∈(0,1],且e x 1-a +2ax 1-3a =0.(x 1)=e x 1-所以f (x )≥f a+ax 12-3ax 1+1(x 12)+1-5x 1+3,=3a -2ax 1+ax 12-3ax 1+1=ax 12-5ax 1+3a +1=a 因为x 1∈(0,1],所以x 12-5x 1+3∈[-1,3).(x 1又因为a ∈(0,1],所以a 2)≥-1-5x 1+3,所以f (x )≥0,满足题意.结合①②可知,当a ≤1时,满足题意.综上,a 的取值范围为(-∞,1].。
南京市2023-2024学年度第一学期期中调研测试高二数学2023.11注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置,在其他位置作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某工厂生产A,B,C三种不同型号的产品,它们的产量之比为2:3:5,用分层抽样的方法抽取一个容量为n的样本.若样本中A型号的产品有20件,则样本容量n为A.50B.80C.100D.2002.已知复数z0=3+i,其中i为虚数单位,复数z满足zz0=3z+z0,则z=A.1-3i B.1+3i C.3+i D.3-i 3.已知圆C1:x2+y2-x-ay=0与圆C2:x2+y2-2x-4y+2=0的公共弦所在直线与x轴垂直,则实数a的值为A.-4 B.-2 C.2 D.4 4.《数书九章》天池测雨:今州郡都有天池盆,以测雨水.但知以盆中之水为得雨之数.不知器形不同,则受雨多少亦异,未可以所测,便为平地得雨之数,即平地降雨量等于盆中积水体积除以盆口面积.假令器形为圆台,盆口径(直径)一尺四寸,底径(直径)六寸、深一尺二寸,接雨水深六寸(一尺等于十寸),则平地降雨量为A.1 B.2 C.3 D.45.已知cos x+sin x=23,则sin2xcos(x-\f(π,4))=A.-716B.-726C.-76D.-736.在平面直角坐标系xOy中,已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F 2,A 为双曲线右支上一点,连接AF 1交y 轴于点B .若△ABF 2为等边三角形,则双曲线C 的离心率为A .23B .32C .3D .3327.在平面直角坐标系xOy 中,P 为直线3x +4y +1=0上一点.若向量a =(3,4),则向量OP→在向量a 上的投影向量为A .-15B .(-35,-45)C .(-325,-425)D .无法确定8.已知函数f (x )=sin(ωx +φ)(ω>0).若 x ∈R ,f (x )≤f (π3),且f (x )在(0,π)上恰有1个零点,则实数ω的取值范围为A .(0,32]B .(34,32]C .(34,94]D .(32,94]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某研究小组依次记录下10天的观测值:26,28,22,24,22,78,32,26,20,22,则A .众数是22B .80百分位数是28C .平均数是30D .前4个数据的方差比最后4个数据的方差小10.声音是由物体的振动产生的声波,一个声音可以是纯音或复合音,复合音由纯音合成,纯音的函数解析式为y =A sin ωx .设声音的函数为φ(x ),音的响度与φ(x )的最大值有关,最大值越大,响度越大;音调与φ(x )的最小正周期有关,最小正周期越大声音越低沉.假设复合音甲的函数解析式是f (x )=sin x +12sin2x ,纯音乙的函数解析式是g (x )=32sin ωx (ω>0),则下列说法正确的有A .纯音乙的响度与ω无关B .纯音乙的音调与ω无关C .若复合音甲的音调比纯音乙的音调低沉,则ω>1D .复合音甲的响度与纯音乙的响度一样大11.在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)为抛物线C 上的任意三点(异于O 点),FA → +FB → +FD →=0,则下列说法正确的有A .设A ,B 到直线x =-1的距离分别为d 1,d 2,则d 1+d 2<AB B .FA +FB +FD =6C .若FA ⊥FB ,则FD =ABD .若直线AB ,AD ,BD 的斜率分别为k AB ,k AD ,k BD ,则1k AB +1k AD +1k BD =012.在长方体ABCD −A 1B 1C 1D 1中,AB =8,AD =6,点E 是正方形BCC 1B 1内部或边界上异于点C 的一点,则下列说法正确的有A .若D 1E ∥平面ABB 1A 1,则E ∈C 1CB .设直线D 1E 与平面BCC 1B 1所成角的最小值为θ,则tan θ=223C .存在E ∈BB 1,使得∠D 1EC >π2D .若∠D 1EC =π2,则EB 的最小值为35-3三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知点M (2,3)和N (4,0),点Q 在x 轴上.若直线MQ 与直线MN 的夹角为90°,则点Q 的坐标为▲________.14.在△ABC 中,AB =36,∠ABC =45°,∠BAC =75°,D 是射线BC 上一点,且CD =10,则AD =▲________.15.某商场为了促销,每天会在上午和下午各举办一场演出活动,两场演出活动相互独立.每个时段演出的概率分别如下:若某顾客打算第二天11:00抵达商场并逛3.5小时后离开,则他当天能观看到演出的概率为▲________.16.已知向量a =(1,3),b =(1,0),|a -c |=12,则向量b ,c 最大夹角的余弦值为▲________.上午演出时段9:00-9:3010:00-10:3011:00-11:30下午演出时段14:00-14:3015:00-15:3016:00-16:30相应的概率161213四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin x cos x-sin2x+t(x∈R)的最大值为2 2.(1)求f(x)的解析式;(2)若 x∈[π12,π2],f(x)-m≤0,求实数m的最小值.18.(本小题满分12分)在平面直角坐标系xOy中,已知圆C的圆心在l:x-2y=0上,且圆C与x轴相切,直线l1:x-ay=0(a∈R),D(6,0).(1)若直线l1与圆C相切,求a的值;(2)若直线l1与圆C相交于A,B两点,将圆C分成的两段弧的弧长之比为1∶3,且DA=DB,求圆C的方程.19.(本小题满分12分)如图,一个质地均匀的正二十面体骰子的各面上标有数字0~9这10个数字(相对的两个面上的数字相同),抛掷这个骰子,并记录下朝上一面(与地面或桌面平行)的数字.记事件A1为“抛两次,两次记录的数字之和大于16”,记事件A2为“抛两次,两次记录的数字之和为奇数”,事件A3为“抛两次,第一次记录的数字为奇数”.(1)求P(A1),P(A2);(2)判断事件A1A2与事件A3是否相互独立,并说明理由.20.(本小题满分12分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,AB → ·AC →=b 2-12ab .(1)求角C 的大小;(2)若△ABC 的面积为32,且CM → =2MB → ,AN → =3NM → ,求|CN →|的最小值.21.(本小题满分12分)如图,在所有棱长都等于1的三棱柱ABC -A 1B 1C 1中,∠ABB 1=π2,∠B 1BC =π3.(1)证明:A 1C 1⊥B 1C ;(2)求直线BC 与平面ABB 1A 1所成角的大小.22.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且焦距为23,椭圆C 的上顶点为B ,且BF 1→ ·BF 2→=-2.(1)求椭圆C 的方程;(2)若直线l 过点A (2,-1),且与椭圆C 交于M ,N 两点(不与B 重合),直线BM 与直线BN 分别交直线x =4于P ,Q 两点.判断是否存在定点G ,使得点P ,Q 关于点G 对称,并说明理由.(第21题图)南京市2023-2024学年度第一学期期中学情调研测试高二数学参考答案 2023.11一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上. 1.C2.A 3.D 4.B 5.D6.C7.C 8.B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分. 9.ACD10.AC11.BCD12.ABD三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上. 13.(12,0)14.1415.4916.15-38四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)解:(1)f (x )=sin x cos x -sin 2x +t =12sin2x -1-cos2x2+t ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分=12sin2x +12cos2x -12+t =22sin(2x +π4)-12+t .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为f (x )的最大值为22,所以22-12+t =22,解得t =12,所以f (x )=22sin(2x +π4).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)由(1)可知f (x )=22sin(2x +π4),当x ∈[π12,π2]时,5π12≤2x +π4≤5π4,当2x +π4=π2时,即x =π8时,f (x )max =22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为f (x )-m ≤0恒成立,所以m ≥f (x )max 恒成立,即m ≥22恒成立,因此m 的最小值为22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分18.(本小题满分12分)解:(1)因为圆心C 在直线l 上,可设C (2m ,m ),m ≠0.因为圆C 与x 轴相切,所以r =|m |.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为直线l 1与圆C 相切,所以|m |=|2m -am |a 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为m ≠0,解得a =34.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为A ,B 把圆C 分成的两段弧长之比为1∶3,所以弦AB 所对劣弧圆心角为2π×14=π2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分所以圆心C 到l 1的距离d 等于圆C 半径的22倍,即22|m |=|2m -am |a 2+1,由(1)得m ≠0,解得a =1或a =7. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为DA =DB ,所以AB 的垂直平分线经过D (6,0)和圆心C (2m ,m ),所以m2m -6=-a ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分所以,当a =1时,m =2,圆C 方程为(x -4)2+(y -2)2=4,当a =7时,m =145,圆C 方程为(x -285)2+(y -145)2=19625.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.(本小题满分12分)解:若用(i ,j )表示第一次抛掷骰子数字为i ,用j 表示第二次抛掷骰子数字为j ,则样本空间Ω={(i ,j )|0≤i ≤9,0≤j ≤9,i ,j ∈Z },共有100种等可能的样本点. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分(1)A 1={(8,9),(9,8),(9,9)},∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分所以P (A 1)=3100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为 A 2={(0,1),(0,3)…(9,8)}共有50个样本点,所以P (A 2)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)因为A 1A 2={(8,9),(9,8)},所以P (A 1A 2)=2100=150.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为A 3={(1,0),(1,1)…(9,9)},共有50个样本点,所以P (A 3)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分因为A 1A 2A 3={(9,8)},所以P (A 1A 2A 3)=1100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分因为P (A 1A 2)P (A 3)=150×12=P (A 1A 2A 3),所以事件A 1A 2与事件A 3独立.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分20.(本小题满分12分)解:(1)方法1因为AB → ·AC → =b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由余弦定理得bc ×b 2+c 2-a 22bc =b 2-12ab ,化简得b 2+a 2-c 22ab =12,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分方法2因为AB → ·AC →=b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由正弦定理得sin B sin C cos A =sin 2B -12sin A sin B .因为B 为△ABC 内角,所以sin B ≠0,所以sin C cos A =sin B -12sin A .因为A +B +C =π,所以sin C cos A =sin(A +C )-12sin A ,即sin C cos A =sin A cos C +cos A sin C -12sin A ,化简得sin A cos C =12sin A .因为A 为△ABC 内角,所以sin A ≠0,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为S △ABC =12ab sin C =32,所以ab =2.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为CM → =2MB → ,AN → =3NM → ,所以CN → =CA → +AN → =CA → +34AM → =CA → +34(CM →-CA → )=14CA → +34CM → =14CA → +12CB →,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分从而|C N → |2=(14CA → +12CB → )2=116b 2+14a 2+14CA → ·CB→=116b 2+14a 2+14∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分≥2116b 2×14a 2+14=34.当且仅当116b 2=14a 2,即a =1,b =2时取等号.所以|C N →|的最小值为32.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分21.(本小题满分12分)(1)证明:连接AB 1,在△ABB 1中,∠ABB 1=π2,AB =BB 1=1,所以AB 1=2,在△BCB 1中,∠B 1BC =π3,BC =BB 1=1,所以B 1C =1,所以在△ACB 1中,AB 1=2,B 1C =1,AC =1,所以AB 12=AC 2+B 1C 2,所以AC ⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,所以A 1C 1⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)方法1解:连接AB 1,A 1B ,交于点O ,连接BC 1,连接CO .在边长都为1的正方形A 1ABB 1中,O 是AB 1的中点,又因为B 1C =AC =1,所以CO ⊥AB 1. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为四边形B 1BCC 1边长都为1,所以B 1C ⊥BC 1.由(1)知B 1C ⊥A 1C 1.又因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1BC 1,所以B 1C ⊥平面A 1BC 1.因为A 1B ⊂平面A 1BC 1,所以B 1C ⊥A 1B .因为在边长都为1的四边形A 1ABB 1中,A 1B ⊥AB 1.又因为AB 1∩B 1C =B 1,AB 1,B 1C ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C .因为CO ⊂平面AB 1C ,所以CO ⊥A 1B . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为A 1B ∩AB 1=O ,A 1B ,AB 1⊂平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分方法2解:取AB 1中点O ,连接BO ,CO .在△ACB 1中,AC =B 1C =1,所以CO ⊥AB 1, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分在边长都为1的正方形A 1ABB 1中,BO =22,A 1B =2.又因为AC 2+B 1C 2=A 1B 2,所以△ACB 1为直角三角形,所以CO =22.在△ACB 1中,CO 2+BO 2=BC 2,所以CO ⊥BO .…………………………………………8分又因为AB 1∩BO =O ,AB 1,BO 平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分22.(本小题满分12分)解:(1)因为BF 1→ =(-3,-b ),BF 2→=(3,-b ),所以BF 1→ ·BF 2→=b 2-3=-2,所以b 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分因为c =3,所以a 2=4,所以椭圆C 的方程为x 24+y 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)设直线MN 的方程为y =k (x -2)-1,M (x 1,y 1),N (x 2,y 2),联立{x 2+4y 2=4,y =k (x -2)-1,消去y 得,(1+4k 2)x 2-8k (1+2k )x +16k 2+16k =0,所以x 1+x 2=8k (1+2k )1+4k 2,x 1x 2=16k 2+16k 1+4k 2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分直线BM 的方程为y =y 1-1x 1x +1,直线BN 的方程为y =y 2-1x 2x +1,设P ,Q 两点的纵坐标分别为y P ,y Q ,所以y P =4×y 1-1x 1+1,y Q =4×y 2-1x 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为y P +y Q =4×(y 2-1x 2+y 1-1x 1)+2=4×[k (x 2-2)-2x 2+k (x 1-2)-2x 1]+2=4×(2k -2k +2x 2-2k +2x 1)+2=4×[2k -(2k +2)x 1+x 2x 1x 2]+2∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分=4×[2k -(2k +2)8k (1+2k )16(k +k 2)]+2=4×[2k -(2k +1)]+2=-2,所以y P +y Q 2=-1,所以存在G (4,-1),使得点P ,Q 关于点G 对称.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分。
南京第二十九中学2014-2015学年度 第一学期高一期末考试化学试题 出卷人:耿道林审核人:杨学萍本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分,共100分,考试时间75分钟。
(范围:1-4.1) 注意:将第Ⅰ卷答案用2B 铅笔填涂在答题卡上,第Ⅱ卷在答卷纸上作答,在试卷上答题无效。
本卷可能用到的相对原子质量:O 16- Na 23- Mg 24-Al 27- Fe 56-第Ⅰ卷(选择题 共69分)一、单项选择题:每题的4个选项中,只有1个选项是符合要求的(共23题,每题3分,69分)1.在自然界中以游离态存在的元素是( ) A .钠B .硅C .金D .铝 2.容量瓶是用来配制物质的量尝试的溶液的定量仪器,其上标有:①温度、②浓度、③容量、④压强、⑤刻度线、⑥酸式或碱式这六项中的( ) A .②④⑥B .①③⑤C .①②④D .③④⑥3.用生石灰中和法阻止海水酸化是人们的一种设想。
生石灰()CaO 属于( ) A .酸B .碱C .盐D .氧化物4.能用带磨砂玻璃塞的试剂瓶盛放的物质是( ) ①浓盐酸②过氧化钠 ③烧碱④纯碱 ⑤水玻璃⑥4KMnO 溶液 A .①和⑥B .②和④C .④和⑤D .③和⑤5.我国“蛟龙”号载人潜水器已成功下潜至海中7062.68米处。
“蛟龙”号载人潜水器的外壳是耐超高的钛合金,下面有关合金的说法正确的是( )A .钛合金是一咱新型金属单质B .钛合金熔点比钛金属高C .钛合金的硬度与钛单质相同D .青铜、合金钢和硬铝都是合金6.下列有关实验的描述中错误的是( )A .用蒸发方法使NaCl 从溶液中析出时,应将蒸发皿中溶液全部加热蒸干B .蒸馏操作时,应将温度计水银球置于蒸馏烧瓶的支管口附近C .分液操作时,分液漏斗中下层液体从下口放出,上民支液体从上口倒出D .使用容量瓶和分液漏斗前,要先检查是否漏水 7.关于钠原子与钠离子,下列叙述错误的是( )A .它们相差1个电子层B .它们的化学性质相似C .钠离子比钠原子稳定D .钠原子、钠离子均为钠元素8.以下说法错误的是( )A .钠在常温下就容易被氧化B .过氧化钠是淡黄色固体C .铁粉与水在常温下生成34Fe OD .铝与盐酸、烧碱溶液均能反应放出2H9.下列图示实验操作,符合规范的是( )A .检验K +的存在B .干燥二氧化碳C .分离酒精与水D .蒸发食盐水10.下列各组中的离子,在溶液中能大量共存的是( ) A .H + Na +3HCO -Cl - B .2Ba + Na + Cl -24SO -C .2Mg + H + 24SO -OH -D .Ag + 3Al +3NO -H +11.物质的分类取决于标准的选择,下列分类标准描述不正确...的是( ) A .化学反应分为:离子反应、非离子反应(标准:是否在水溶液中进行) B .分散系分为:溶液、胶体、浊液(标准:分散质粒子的大小)C .化学反应分为:氧化还原反应、非氧化还原反应(标准:元素化合价是否发生变化)D .化合物分为:电解质、非电解质(标准:溶于水或熔融状态能否导电) 12.下列各组物质与用途的关系正确..的是( ) A .氧化钠:呼吸面具的供氧剂 B .纯碱:治疗胃酸过多 C .氯化钠:用作调味品D .氧化铁:制造耐火坩埚13.将3Al C l 、2FeCl 、3FeCl 、2MgCl 四种溶液,只用一种试剂就能加以区别,这种试剂是( )A .NaOHB .2BaClC .KSCND .HCl14.下列各组物质,按混合物、单质、化合物顺序排列的是( ) A .烧碱、液态氧、碘酒 B .水玻璃、氮气、冰水混合物 C .生石灰、硅、熟石灰D .干冰、铁合金、氯化氢15.将0.2mol 钠、镁、铝分别放入100mL 11mol L -⋅的盐酸中,产的气体体积比是(同温同压下)( ) A .123∶∶ B .632∶∶ C .111∶∶ D .211∶∶16.下列说法不正确的是( )A .做完钠的性质实验后,剩余的钠可以直接放回原试剂瓶中B .铝箔在酒精灯上加热后会燃烧发出明亮的火焰C .制备氢氧化亚铁时,所用滴管需要插入液面以下D .铝、铁等单质映遇浓硫酸、浓硝酸钝化属于化学变化17.下列物质中既能跟稀盐酸反应,又能跟氢氧化钠溶液反应的是( ) ①3NaHCO ②23Al O ③A l④()3Al OH ⑤23Na CO ⑤23Fe OA .全部B .①②③④C .②③④⑤D .①②③④⑥18.工业上制造金刚砂()SiC 的化学方程式为:2SiO 3C SiC 2CO +===+↑高温。
江苏省2014届一轮复习数学试题选编32:导数在切线上的应用填空题错误!未指定书签。
.(江苏省南京市四校2013届高三上学期期中联考数学试题)已知函数()y f x =在点(2,(2))f 处的切线为由y =2x -1,则函数2()()g x x f x =+在点(2,(2))g 处的切线方程为__________.【答案】6x -y -5=0 ;错误!未指定书签。
.(江苏省徐州市2013届高三上学期模底考试数学试题)在曲线331y x x =-+的所有切线中,斜率最小的切线的方程为________.【答案】y=3x+1错误!未指定书签。
.(江苏省南京市四校2013届高三上学期期中联考数学试题)在平面直角坐标系xOy 中,点P 是第一象限内曲线y = x 31上的一个动点,以点P 为切点作切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值为______. 【答案】4233 ; 错误!未指定书签。
.(江苏省海门市四校2013届高三11月联考数学试卷 )曲线12++=x xe y x在点(0,1)处的切线方程为_____________..【答案】错误!未指定书签。
.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)过点()1,0-.与函数()x f x e =(e 是自然对数的底数)图像相切的直线方程是__________.【答案】1+=x y错误!未指定书签。
.(江苏省2013届高三高考压轴数学试题)已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______.【答案】3错误!未指定书签。
.(江苏省姜堰市2012—2013学年度第一学期高三数学期中调研(附答案) )若函数))(2()(2c x x x f +-=在2=x 处有极值,则函数)(x f 的图象在1=x 处的切线的斜率为_________.【答案】5-;错误!未指定书签。
.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)过坐标原点作函数ln y x=图像的切线,则切线斜率为_____.【答案】1e错误!未指定书签。
江苏省12市2015届高三上学期期末考试数学试题分类汇编统计与概率一、填空题 1、(常州市2015届高三)现有5道试题,其中甲类试题2道,乙类试题3道,现从中随机取2道试题,则至少有1道试题是乙类试题的概率为 ▲ . 2、(连云港、徐州、淮安、宿迁四市2015届高三)如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为 ▲3、(南京市、盐城市2015届高三)在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ .4、(南通市2015届高三)某中学共有学生2800人,其中高一年级970人,高二年级930人,高三年级900人,现采用分层抽样的方法,抽取280人进行体育达标检测,则抽取高二年级学生人数为5、(苏州市2015届高三上期末)某课题组进行城市空气质量监测,按地域将24个城市分成甲、乙、丙三组,对应区域城市数分别为4、12、8.若用分层抽样抽取6个城市,则乙组中应该抽取的城市数为6、(泰州市2015届高三上期末)袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为 ▲7、(无锡市2015届高三上期末)若一组样本数据8,,10,11,9x 的平均数为10,则该组样本数据的方差为 8、(扬州市2015届高三上期末)知样本6,7,8,9,m 的平均数是8,则标准差是____9、(连云港、徐州、淮安、宿迁四市2015届高三)某用人单位从甲、乙、丙、丁共4名应聘者中招聘2人,若每个应聘者被录用的机会均等,则甲、乙2人中至少有1人被录用的概率为 ▲ . 10、(南京市、盐城市2015届高三)甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 11、(南通市2015届高三)同时抛掷两枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),观察向上的点数,则两个点数之积不小于4的概率为 12、(苏州市2015届高三上期末)设{1,1},{2,0,2}x y ∈-∈-,则以(,)x y 为坐标 的点落在不等式21x y +≥所表示的平面区域内的概率为13、(无锡市2015届高三上期末)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 14、(扬州市2015届高三上期末)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为__二、解答题1、(常州市2015届高三)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的,,,,A B C D E 五种商品有购买意向.已知该网民购买,A B 两种商品的概率均为34,购买,C D 两种商品的概率均为23,购买E 种商品的概率为12.假设该网民是否购买这五种商品相互独立. (1)求该网民至少购买4种商品的概率;(2)用随机变量h 表示该网民购买商品的种数,求h 的概率分布和数学期望.2、(连云港、徐州、淮安、宿迁四市2015届高三)某校现有8门选修课程,其中4门人文社会类课程,4门自然科学类课程,学校要求学生在高中3年内从中任选3门课程选修,假设学生选修每门课程的机会均等.(1)求某同学至少选修1门自然科学类课程的概率;(2)已知某同学所选修的3门课程中有1门人文社会类课程,2门自然科学类课程,若该同学通过人文社会类课程的概率都是45,自然科学类课程的概率都是34,且各门课程通过与否相互独立.用ξ表示该同学所选的3门课程通过的门数,求随机变量ξ的概率分布列和数学期望.3、(苏州市2015届高三上期末)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不陪不赚,这三种情况发生的概率分别为111,,244;如果投资乙项目,一年后可能获利20%,可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X 表示投资收益(收益=回收资金-投资资金),求X 的概率分布列及数学期望E (X ).(2)若10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.4、(泰州市2015届高三上期末)记r i C 为从i 个不同的元素中取出r 个元素的所有组合的个数.随机变量ξ表示满足212ri C i ≤的二元数组(,)r i 中的r ,其中}{2,3,4,5,6,7,8,9,10i ∈,每一个r i C (=r 0,1,2,…,i )都等可能出现.求E ξ.5、(扬州市2015届高三上期末))射击测试有两种方案,方案1:先在甲靶射击一次,以后都在乙靶射击;方案2:始终在乙靶射击,某射手命中甲靶的概率为23,命中一次得3分;命中乙靶的概率为34,命中一次得2分,若没有命中则得0分,用随机变量ξ表示该射手一次测试累计得分,如果ξ的值不低于3分就认为通过测试,立即停止射击;否则继续射击,但一次测试最多打靶3次,每次射击的结果相互独立。