七年级数学第二学期期末考试
- 格式:doc
- 大小:256.00 KB
- 文档页数:6
宁德市2023-2024学年度第二学期期未七年级质量检测数学试题(满分:100分;考试时间:90分钟)友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效,一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. 如图,直线,AB CD 相交于点,35O BOC ∠=°,则AOD ∠的度数是( )A. 145°B. 55°C. 40°D. 35° 2. “北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度,20纳秒相当于0.000000020秒.数据0.000000020用科学记数法表示是( )A. 82.010−×B. 92.010−×C. 92010−×D. 102.010−× 3. 下列图形中,属于轴对称图形的是( )A B. C. D. 4. 如图,,∥AB CD CE 交AB 于点O ,若65C =°∠,则AOE ∠的度数是( )A. 65°B. 105°C. 115°D. 135° 5. 下列计算正确的是( )A. 235a a a ⋅=B. 623a a a ÷=C. ()325a a = D. ()33ab ab = 6. 随意掷一枚质地均匀的骰子,连续掷7次都是数字6朝上,则掷第8次时数字6朝上的概率是( ) A. 0 B. 1 C. 13 D. 16.7. 如图AC BD 、相交于点,O OA OD =,用“SAS ”证ABO DCO △≌△还需( )A. AB DC =B. A D ∠=∠C. OB OC =D. AOB DOC ∠=∠ 8. 如图,三条中线把三角形分成6个面积相等的区域,一个小球在三角形上自由地滚动,最后停留在阴影部分的概率是( )A. 23B. 12 C. 13 D. 169. 如图,①②是两根细直木棒,现需要将其中一根截成两段,首尾相接搭成一个三角形框架,则下列说法正确的是( )A. 截①②都可以B. 截①②都不可以C. 只有截①可以D. 只有截②可以 10. 用边长分别为,()a b a b >A 和B ,拼成如图所示的两个图形,若图中阴影部分面积分别记为12,S S ,下列关于12,S S 的大小关系表述正确的是( )A 12S S > B. 12S S < C. 12S S ≥ D. 12S S二、填空题(本大题共6小题,每小题3分,满分18分)11 计算:0(3)π−=_______.12. 如图所示,建筑工地上的塔吊机的框架设计成很多个三角形,这样做的数学依据是___________...13. “太阳每天从东边升起”是____事件.(填“随机”或“必然”或“不可能”)14. 如图,,30,80ABE FDC FCD A∠=°∠=°△≌△,则ABE ∠的度数是____°.15. 某小组做“油的沸点”实验(沸点是指液体沸腾时候的温度),研究一种食用油的温度随加热时间变化而变化,他们得到如下数据:小红发现,加热到105s 时油恰好沸腾,则油的沸点是______℃.16. 如图,在ABC 中,,=⊥AC BC CE AB 于点E ,将ABC 沿着AC 翻折得到ADC △,延长EC 交AD 于点F ,连接BD ,设()45BAC αα∠=<°,以下四个结论:(1)点E 是AB 的中点;(2)直线AC 是BD 的垂直平分线;(3)4BCD α∠=;(4)902DCF α∠=°−;其中一定正确的是______(填写序号).三、解答题(本大题共7题,满分52分)17. 求值:()()()2a b a b b a b ab +−++−,其中12,2a b =−=. 18. 某商场为了吸引顾客,设置了摸球有奖游戏,顾客消费满100元,就能获得一次摸球的机会. 游戏规则:一个不透明的盒子中装有除颜色外都相同的红、黄、白三种颜色的球,其中红球1个,黄球2个,白球5个.随机摸出一个球,摸到红球、黄球、白球分别可以获得一、二、三等奖.(1)顾客摸一次球,求获得一等奖的概率;(2)商场准备将获得二等奖的概率提高到310,同时适当降低获得一等奖的概率,那么应该往盒子里最少添加多少个何种颜色的球?19. (1)根据图形填空: ①若180ABC BCD∠+∠=°,则根据“同旁内角互补,两直线平行”,可得_______; ②若AD BC ∥,则根据“_________”,可得1∠=________.(2)已知:ABC .求作:DEF ,使DEF ABC ≌.(保留作图痕迹,不写作法)20. 周末,妈妈带小明兄弟俩去公园.到公园后,小明在亭子里看书,妈妈带着弟弟往小路走,几分钟后,小明发现弟弟的水杯忘记拿了,跑步去追妈妈和弟弟,小明跑步过程速度保持不变.如图,表示到公园后小明和弟弟行走的路程()m s 与弟弟行走的时间()min t 之间的关系.请结合图象,解答下列问题:(1)曲线刻画的变化关系中,自变量是________,因变量是________;(2)图中点A 表示的实际意义是什么?(3)小明的速度是多少米/分?直接写出小明的路程s 与时间t 的关系式.21. 课外实践活动活动主题:测量小河两岸,A M 两点之间的距离,如图1.使用工具:一把皮尺和一台测角仪,如图2.工具作用:皮尺的功能是直接测量可到达的任意两点间的距离;测角仪的功能是测量角的大小,即在任一点O 处,对其视线可及的,P Q 两点,可测得POQ ∠的大小,如图3.测量方案:①如图4,在河岸同侧取两个可以直接到达点A 的点C ,点N ,测得CAM ACN ∠=∠;②取AC 的中点B ;③在射线CN 上找到一点D ,使得点,,M B D 在同一条直线上,测得,C D 两点间的距离.则CD 的长即为,A M 两点之间的距离.完成下列问题:(1)说明上述测量方案的理由;(2)请你设计一种不同的测量方案.(要求:画出示意图,不必说明理由)22. 规定:一个两位数的十位上数字与个位上数字相同,就称这个数是叠数;一个两位数的十位上数字与个位上数字的和是10,就称这个数是互补数.下面研究“叠数乘互补数”的速算规律 问题:若aa 是叠数,bc 是互补数,研究aa bc ×的速算规律.(1)写出几个“叠数乘互补数”算式,并计算结果;(2)①将bc 表示成10b c +,则aa bc ×=__________; ②根据(1)的算式及计算结果,通过观察、归纳、猜想这种速算的规律,并用含,,a b c 的等式表示出来; (3)验证你的猜想的正确性.23. 如图,在ABC 中,AB 的垂直平分线DF 交BC 于点D ,连接,AD ACB ∠的平分线交AD于点的E .若2,4,5,6ADC DAC CD BD AC ∠=∠===.(1)求ACD 周长;(2)试说明AD 平分BAC ∠;(3)求AE 的长.的宁德市2023-2024学年度第二学期期未七年级质量检测数学试题(满分:100分;考试时间:90分钟)友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效,一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1. 如图,直线,AB CD 相交于点,35O BOC ∠=°,则AOD ∠的度数是( )A. 145°B. 55°C. 40°D. 35°【答案】D【解析】【分析】本题主要考查了对顶角.根据对顶角相等即可求解.【详解】解:∵35BOC ∠=°, ∴35AOD BOC ∠=∠=°, 故选:D .2. “北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度,20纳秒相当于0.000000020秒.数据0.000000020用科学记数法表示是( )A. 82.010−×B. 92.010−×C. 92010−×D. 102.010−×【答案】A【解析】 【分析】本题考查用科学记数法表示较小的数,一般形式为10n a −×,其中110a ≤<,绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a −×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000020用科学记数法表示为82.010−×,故A 正确.故选:A .3. 下列图形中,属于轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了轴对称图形的识别,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.根据轴对称图形的定义求解即可.【详解】解:根据轴对称图形的定义,只有选项B 符合轴对称图形的定义,故选:B .4. 如图,,∥AB CD CE 交AB 于点O ,若65C =°∠,则AOE ∠的度数是( )A. 65°B. 105°C. 115°D. 135°【答案】C【解析】 【分析】本题考查了平行线的性质,根据两直线平行同位角相等,得出65BOE C ∠=∠=°,进而根据邻补角互补,即可求解.【详解】解:∵AB CD ∥∴65BOE C ∠=∠=°,∴180115AOE BOE ∠=°−=°,故选:C .5. 下列计算正确的是( )A. 235a a a ⋅=B. 623a a a ÷=C. ()325a a =D. ()33ab ab = 【答案】A【解析】【分析】此题考查了整式的运算,涉及的知识有:同底数幂的乘法除法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.根据同底数幂的乘法和除法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. 235a a a ⋅=,选项计算正确,符合题意;B. 624a a a ÷=,选项计算错误,不符合题意;C .()326a a =,选项计算错误,不符合题意;D. 333()ab a b =,选项计算错误,不符合题意;故选:A .6. 随意掷一枚质地均匀的骰子,连续掷7次都是数字6朝上,则掷第8次时数字6朝上的概率是( )A. 0B. 1C. 13D. 16 【答案】D【解析】【分析】本题考查简单随机事件的概率,根据概率的意义进行解答即可.【详解】解:掷一枚质地均匀的骰子,前7次都是6点朝上,掷第8次时,不会受前7次的影响, 掷第8次时仍有6种等可能出现的结果,其中6点朝上的有1种,所以掷第8次时6点朝上的概率是16, 故选:D .7. 如图AC BD 、相交于点,O OA OD =,用“SAS ”证ABO DCO △≌△还需( )A. AB DC =B. A D ∠=∠C. OB OC =D. AOB DOC ∠=∠【答案】C【解析】 分析】利用对顶角相等得AOB DOC ∠=∠,则要根据“SAS ”证ABO DCO △≌△需添加对应边OB OC =相等.【详解】解:OA OD = ,AOB DOC ∠=∠,∴当OB OC =时,可利用“SAS ”判断ABO DCO △≌△.故选:C .【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对【边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边. 8. 如图,三条中线把三角形分成6个面积相等的区域,一个小球在三角形上自由地滚动,最后停留在阴影部分的概率是( )A. 23B. 12 C. 13 D. 16【答案】C【解析】【分析】本题考查的是根据概率公式计算概率,结合图形求解是解题关键.【详解】解:∵三条中线把三角形分成6个面积相等的区域,且阴影部分占2个相等的区域, ∴一个小球在三角形上自由地滚动,最后停留在阴影部分的概率是2163=, 故选:C .9. 如图,①②是两根细直木棒,现需要将其中一根截成两段,首尾相接搭成一个三角形框架,则下列说法正确的是( )A. 截①②都可以B. 截①②都不可以C. 只有截①可以D. 只有截②可以【答案】D【解析】 【分析】本题考查三角形的三边关系,根据三角形的任意两边之和大于第三边求解即可.【详解】解:∵32>,∴根据三角形的任意两边之和大于第三边,需要将②的直铁丝分为两段,即只有②可以,①不可以,故选:D .10. 用边长分别为,()a b a b >的两种正方形A 和B ,拼成如图所示的两个图形,若图中阴影部分面积分别记为12,S S ,下列关于12,S S 的大小关系表述正确的是( )A. 12S S >B. 12S S <C. 12S S ≥D. 12S S【答案】B【解析】 【分析】本题考查了整式的混合运算:利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差.【详解】解:()()22123S a b a b a b =++−− 2222323a ab b a b =++−−23ab b −;()2223233S a a b a b =+−−2223633a ab a b =+−−26ab b −∵()22216330S S ab b ab bab −=−−−>∴12S S <故选:B . 二、填空题(本大题共6小题,每小题3分,满分18分)11. 计算:0(3)π−=_______. 【答案】1.【解析】【分析】由01(0)a a =≠解题即可.【详解】0(3)1π−=故答案为:1.【点睛】本题考查零指数幂,是常见考点,难度容易,掌握相关知识是解题关键.12. 如图所示,建筑工地上的塔吊机的框架设计成很多个三角形,这样做的数学依据是___________.【答案】三角形具有稳定性【解析】【分析】本题主要考查了三角形稳定性的实际应用,理解三角形稳定性是解题的关键.从安全角度和三角形的稳定性质进行分析即可解答.【详解】解:从安全角度讲,塔吊机需要特别稳固,框架设计成很多个三角形是利用了三角形具有稳定性. 故答案为:三角形具有稳定性.13. “太阳每天从东边升起”是____事件.(填“随机”或“必然”或“不可能”)【答案】必然【解析】【分析】本题考查了随机事件的概念,掌握知识点是解题关键.根据必然事件的概念进行判断即可.【详解】解:太阳每天从东边升起是必然的,∴太阳每天从东边升起是必然事件,故答案:必然.14. 如图,,30,80ABE FDC FCD A∠=°∠=°△≌△,则ABE ∠的度数是____°.【答案】70【解析】【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD ∠=∠=°,然后求出18070ABE A E ∠=°−∠−∠=°即可.【详解】解:∵ABE FDC ≌,为∴30E FCD ∠=∠=°,∵80A ∠=°,∴18070ABE A E ∠=°−∠−∠=°.故答案为:70.15. 某小组做“油的沸点”实验(沸点是指液体沸腾时候的温度),研究一种食用油的温度随加热时间变化而变化,他们得到如下数据: 时间/s t 0 10 20 30 40 50油温y ℃ 20 40 60 80 100 120小红发现,加热到105s 时油恰好沸腾,则油的沸点是______℃.【答案】230【解析】【分析】本题主要考查了用关系式表示变量之间的关系,求自变量或函数值,先根据表格中的数据得出每秒油温升高2℃,从而得出油温y 与时间t 的关系式为:220yt =+,把105t =代入220y t =+得出210520230y =×+=,即可得出答案. 【详解】解:根据表格中的数据可知:每10s 油温升高20℃,∴每秒油温升高2℃,且当0=t 时,油温为20℃,∴油温y 与时间t 的关系式为:220yt =+, 把105t =代入220yt =+得: 210520230y =×+=, ∴油的沸点是230℃.故答案为:230.16. 如图,在ABC 中,,=⊥AC BC CE AB 于点E ,将ABC 沿着AC 翻折得到ADC △,延长EC 交AD 于点F ,连接BD ,设()45BAC αα∠=<°,以下四个结论:(1)点E 是AB 的中点;(2)直线AC 是BD 的垂直平分线;(3)4BCD α∠=;(4)902DCF α∠=°−;其中一定正确的是______(填写序号).【答案】①②③【解析】【分析】本题主要考查了等腰三角形三线合一的性质,翻折的性质,三角形内角和定理等知识,根据等腰三角形三线合一的性质以及翻折的性质可判断①②,根据三角形内角和定理和平角的定义可判定③④.【详解】解:∵AC BC =,CEAB ⊥,∴AE EB =,∠BBBBBB =∠BBBBBB 即点E 是AB 的中点,故①正确.∵将ABC 沿着AC 翻折得到ADC △,∴AB AD =,∠BBBBBB =∠DDBBBB ,∠BBBBBB =∠BBDDBB ,ACB ACD ∠=∠,∴AC BD ⊥,且AC 平分BD , 即直线AC 是BD 的垂直平分线;故②正确.∵()45BACαα∠=<°, ∴∠BBBBBB =∠BBDDBB =∠DDBBBB =∠BBBBBB =αα, ∴∠BBBBBB =∠BBBBDD =180°−2αα,∴∠BBBBDD =360°−∠BBBBBB −∠BBBBDD =360°−2(180°−2αα)=4αα,故③正确. ∵∠BBBBBB =180°−2αα, ∴∠EEBBBB =12∠BBBBBB =90°−αα,∴∠DDBBDD =180°−∠BBBBDD −∠EEBBBB =180°−4αα−(90°−αα)=90°−3αα,故④错误.综上①②③正确,故答案为:①②③三、解答题(本大题共7题,满分52分)17. 求值:()()()2a b a b b a b ab +−++−,其中12,2a b =−=. 【答案】2a ab +,3【解析】【分析】本题主要考查了整式的化简求值,先用平方差公式展开,计算单项式乘以多项式,再合并同类项,最后代入数值计算即可.【详解】解:原式2222a b ab b ab =−++−2a ab =+.当2a =−,12b =时, 原式()212(2)32=−+−×=. 18. 某商场为了吸引顾客,设置了摸球有奖游戏,顾客消费满100元,就能获得一次摸球的机会. 游戏规则:一个不透明的盒子中装有除颜色外都相同的红、黄、白三种颜色的球,其中红球1个,黄球2个,白球5个.随机摸出一个球,摸到红球、黄球、白球分别可以获得一、二、三等奖.(1)顾客摸一次球,求获得一等奖的概率;(2)商场准备将获得二等奖的概率提高到310,同时适当降低获得一等奖的概率,那么应该往盒子里最少添加多少个何种颜色的球?【答案】(1)18(2)应该加入1个黄球和1个白球【解析】【分析】本题主要考查了根据概率公式进行计算,解题的关键是熟练掌握概率公式.(1)根据概率公式进行计算即可;(2)根据获得二等奖的概率提高到310,同时适当降低获得一等奖的概率,进行解答即可. 【小问1详解】 解:顾客摸一次球,获得一等奖的概率为111258=++. 【小问2详解】解:∵获得二等奖的概率提高到310, ∴至少需要增加2个球,且其中1个是黄球,又∵要降低获得一等奖的概率,∴添加的另一个球是白球,此时球的总数为13610++=, 获得二等奖的概率为310, 获得一等奖的概率为:110, ∵11108<, ∴符合题意.综上所述:应该加入1个黄球和1个白球.19. (1)根据图形填空:①若180ABC BCD∠+∠=°,则根据“同旁内角互补,两直线平行”,可得_______; ②若AD BC ∥,则根据“_________”,可得1∠=________.(2)已知:ABC .求作:DEF ,使DEF ABC ≌.(保留作图痕迹,不写作法)【答案】(1)①AB CD ∥;②两直线平行,内错角相等;D ∠;(2)见解析【解析】【分析】本题考查了平行线的性质与判定,作三角形;(1)①根据“同旁内角互补,两直线平行”即可求解;②根据“两直线平行,内错角相等”,即可求解.(2)根据题意作DEF ABC ≌,即可求解.【详解】(1)①若180ABC BCD∠+∠=°,则根据“同旁内角互补,两直线平行”,可得AB CD ∥; ②若AD BC ∥,则根据“两直线平行,内错角相等”,可得1∠=D ∠. 故答案为:①AB CD ∥;②两直线平行,内错角相等;D ∠(2)如图所示,DEF 即为所求20. 周末,妈妈带小明兄弟俩去公园.到公园后,小明在亭子里看书,妈妈带着弟弟往小路走,几分钟后,小明发现弟弟的水杯忘记拿了,跑步去追妈妈和弟弟,小明跑步过程速度保持不变.如图,表示到公园后小明和弟弟行走的路程()m s 与弟弟行走的时间()min t 之间的关系.请结合图象,解答下列问题:(1)曲线刻画的变化关系中,自变量是________,因变量是________;(2)图中点A 表示的实际意义是什么?(3)小明的速度是多少米/分?直接写出小明的路程s 与时间t 的关系式.【答案】(1)弟弟行走的时间t s(2)弟弟行走5min ,行走的路程是240m 时,小明追上弟弟(3)240m/min ;240960s t =−【解析】【分析】本题主要考查了从函数图象中获得信息,解题的关键是理解题意.(1)根据题意得出自变量和因变量即可;(2)根据题意得出点A 表示的实际意义即可;(3)根据题意求出小明的速度,得出小明的路程s 与时间t 的关系式即可.【小问1详解】解:曲线刻画的变化关系中,自变量是弟弟行走的时间t ,因变量是弟弟行走的路程s ;【小问2详解】解:图中点A 表示的实际意义是弟弟行走5min ,行走的路程是240m 时,小明追上弟弟;【小问3详解】解:小明的速度是:()()24054240m /min ÷−=, ∵小明的速度是240m /min ,小明在弟弟出发后4min 开始出发,∴小明行驶的路程()2404240960s t t =−=−.21. 课外实践活动活动主题:测量小河两岸,A M 两点之间距离,如图1.使用工具:一把皮尺和一台测角仪,如图2.工具作用:皮尺的功能是直接测量可到达的任意两点间的距离;测角仪的功能是测量角的大小,即在任一点O 处,对其视线可及的,P Q 两点,可测得POQ ∠的大小,如图3.测量方案:①如图4,在河岸同侧取两个可以直接到达点A 的点C ,点N ,测得CAM ACN ∠=∠;②取AC 中点B ;③在射线CN 上找到一点D ,使得点,,M B D 在同一条直线上,测得,C D 两点间的距离.则CD 的长即为,A M 两点之间的距离.完成下列问题:(1)说明上述测量方案的理由;(2)请你设计一种不同的测量方案.(要求:画出示意图,不必说明理由)【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,(1)证明ABM CBD ≌△△,根据全等三角形的性质,即可求解;(2)方案1:构造等腰三角形,使得90AEM EAM EAH ∠=°∠=∠,,则线段AF 的长就是A ,M 之间的距离.方案2:测得2AGM PAM αα∠=∠=,,则线段AG 的长就是A ,M 之间的距离.【小问1详解】解:理由如下:的的由测量,得CAM ACN AB BC ∠=∠=,, ∵ABM CBD ∠=∠,∴ABM CBD ≌△△.∴AM CD =.【小问2详解】方案1:①在河岸同侧取两个可以直接到达点A 的点E ,点H ,如图5,测得90AEM EAM EAH ∠=°∠=∠,;②在射线AH 上找到一点F ,使得点F ,E ,M 在同一条直线上,测得A ,F 两点间的距离.则线段AF 的长就是A ,M 之间的距离.方案2:①在河岸边选点P ,G ,如图6,测得2AGM PAM αα∠=∠=,; ②测得A ,G 两点间的距离.则线段AG 的长就是A ,M 之间的距离.22. 规定:一个两位数的十位上数字与个位上数字相同,就称这个数是叠数;一个两位数的十位上数字与个位上数字的和是10,就称这个数是互补数.下面研究“叠数乘互补数”的速算规律 问题:若aa 是叠数,bc 是互补数,研究aa bc ×的速算规律.(1)写出几个“叠数乘互补数”的算式,并计算结果;(2)①将bc 表示成10b c +,则aa bc ×=__________; ②根据(1)的算式及计算结果,通过观察、归纳、猜想这种速算的规律,并用含,,a b c 的等式表示出来; (3)验证你的猜想的正确性.【答案】(1)1128308×=,33461518×=(答案不唯一) (2)①()()1010a a b c ++②()()1010100(1)a a b c a b ac ++=++(3)见解析【解析】【分析】本题考查了新定义运算,整式的乘法的应用;(1)根据题意,写出几个“叠数乘互补数”的算式,并计算结果; (2)①根据多项式乘以多项式进行计算即可求解;②根据①中规律得出等式,即可求解;(3)根据多项式乘以多项式进行计算即可求解.【小问1详解】解:依题意1128308×=,33461518×=(答案不唯一) 【小问2详解】 解:①将bc 表示成10b c +,则aa bc ×=()()1010a a b c ++②()()1010100(1)a a b c a b ac ++=++ 【小问3详解】∵10b c +=,∴10c b =−.左边=()11101099110a b b ab a +−=+, 右边=()1001001099110ab a a b ab a ++−=+.∴左边=右边.∴()()1010100(1)a a b c a b ac ++=++ 23. 如图,在ABC 中,AB 的垂直平分线DF 交BC 于点D ,连接,AD ACB ∠的平分线交AD 于点E .若2,4,5,6ADC DAC CD BD AC ∠=∠===.(1)求ACD 的周长;(2)试说明AD 平分BAC ∠;(3)求AE 的长.【答案】(1)15 (2)见解析.(3)3【解析】【分析】(1)根据垂直平分线的性质得出AD BD =,根据ACD 的周长15CD AD AC CD BD AC =++=++=求出结果即可;(2)根据AD BD =,得出B BAD ∠=∠,根据三角形内角和定理得出2ADC B BAD BAD =+=∠∠∠∠.根据2ADC DAC ∠=∠,得出BAD DAC ∠=∠,即可证明结论; (3)作线段AE 的垂直平分线交AC 于点G ,证明2CGE DAC ∠=∠,得出2ADC DAC ∠=∠,得出ADC EGC ∠=∠,证明DCE GCE ≌ ,得出CD CG DE GE =,=.根据()3AE AD DE AD AC CD =−=−−=求出结果即可.【小问1详解】解:∵DF 是AB 的垂直平分线,∴AD BD =,∵456CD BD AC ===,,,∴ACD 的周长15CD AD AC CD BD AC =++=++=;【小问2详解】由(1),得AD BD =,∴B BAD ∠=∠,在ABD △中,180B BAD ADB ∠+∠+∠=°,又∵180ADC ADB ∠+∠=°,∴2ADC B BAD BAD =+=∠∠∠∠.∵2ADC DAC ∠=∠,∴BAD DAC ∠=∠.即AD 平分BAC ∠;【小问3详解】解:如图3,作线段AE 的垂直平分线交AC 于点G ,则EG AG =,∴EAG AEG =∠∠,∵180EAG AEG AGE ++=°∠∠∠,180CGE AGE +=°∠∠,∴2CGE DAC ∠=∠,∵2ADC DAC ∠=∠,∴ADC EGC ∠=∠,∵CE 平分ACD ∠,∴DCE GCE ∠=∠,∵CE CE =,∴DCE GCE ≌ ,∴CD CG DE GE =,=.∵EG AG =,∴DE AG =.∴()3AE AD DE AD AC CD =−=−−=.【点睛】本题主要考查了线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理的应用,三角形全等的判定和性质,补角的性质,角平分线的定义,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法.。
七年级第二学期期末考试数学试题一、选择题(请将唯一正确答案的代号填入括号内, 共12小题, 每小题3分, 共36分) 1. 如图, 给出了一周中每天的最高气温和最低气温, 则图中有( )天的温差是相等..的. A. 3 B. 4 C. 5 D. 62. 若21x y =⎧⎨=-⎩是方程mx +y =5的一组解, 则m 的值为( )A. -3B. 1C. 2D. 33. 如图是某机器零件的设计图纸, 在数轴上表 示该零件长度(L)合格尺寸, 正确的是( )A B C D4. 等腰三角形的一边长为3, 另一边长为7, 则它的周长为( ) A. 10 B. 13 C. 17 D. 13或175. 某校学生来自甲、乙、丙三个地区, 其人数比为2:7:3, 则在绘制扇形统计图时, 表示丙地区的扇形的圆心角的度数是( ) A. 60° B. 45° C. 90° D. 120°6. 如图在直角三角形△ADB 中, ∠D =90°, C 为AD 上一点, 则x 可能是( )A. 40°B. 20°C. 15°D. 10° 7. 下列几个问题中, 适合作全面调查的是( )A. 调查市场上某种食品的色素含量是否符合国家标准B. 鞋厂检测生产的鞋底能承受的弯折次数C. 了解武汉市某中学某班对“四城同创”有关知识的知晓情况D. 调查一批日光灯管的使用寿命8. 课间操时, 小华、小军、小刚的位置如图, 小华对小军说, 如果你的位置用(0, 0)表示, 小刚的位置用(2, 2)表示, 那么 我的位置可以表示成( )A. (2, -1)B. (-1, 2)C. (-2, -1)D. (-1, -2)L =10±0.10 9.9 0 9.9 10.1 0 9.9 10.1 6x DB9. 如图, AB ∥CD, ∠D =∠E, ∠B =110º, 则∠D 为( )A. 70ºB. 60ºC.55ºD. 45º10. 篮球比赛中, 每场比赛都要分出胜负, 胜一场得2分, 负一场 得1分, 下表是某队全部比赛结束后的统计结果:表中x 、y 满足的二元一次方程组是( ) A. 40222x y x y +=⎧⎨+=⎩B.22240x yx y =+⎧⎨+=⎩C. 22240x y x y +=⎧⎨+=⎩D. 22240x y x y +=⎧⎨+=⎩11. 平面直角坐标系中, P(-2a -6, a -5)在第三象限, 则a 的取值范围是( )A. a >5B. a <-3C. -3≤a ≤5D. -3<a <512. 小静准备到甲或乙商场购买一些商品, 两商场同种商品的标价相同, 而各自推出不同的优惠方案:在甲商场累计购买满一定数额a 元后, 再购买的商品按原价的90%收费; 在乙商场累计购买50元商品后, 再购买的商品按原价的95%收费. 若累计购物x 元, 当x >a 时, 在甲商场需付钱数y A =0.9x +10, 当x >50时, 在乙商场需付钱数为y B .下列说法:①y B =0.95x +2.5;②a =100;③当累计购物大于50元时, 选择乙商场一定优惠些;④当累计购物超过150元时, 选择甲商场一定优惠些. 其中正确的说法是( ) A. ①②③④ B. ①③④ C. ①②④ D. ①②③ 二、填空题(共4小题, 每小题3分, 共12分) 13. 如图, 是我国体育健儿在最近六届奥运会上获得奖牌的情况, 则其中奖牌数超过..50 枚的有__________次.14. △ABC 中, ∠B =40°, D 在BA 的延长线上, AE 平分∠CAD, 且AE ∥BC, 则∠BAC =__________.15. 如图所示, 第1个图中有1个三角形, 第2个图中共有5个三角形, 第3个图中共有9个三角形, 依次类推, 则第6个图中共有三角形 个.……16. 平面直角坐标系中, 点A(-1, 0), B(3, 0), C(0, m)是y 轴负半轴上一点, 若S △ABC >4, 则m 的取值范围是__________.三、解答题(本大题共9小题, 共72分) 17. (本题6分)解方程组:355215x y x y -=⎧⎨+=⎩胜 负 合计场数 x 22积分 y 40A BC DEFA A CB BC A BC A A C B BC A B C 图1 图2 图318. (本题6分)解不等式组:2311 25123x xxx +≤+⎧⎪+⎨->-⎪⎩19. (本题6分) 如图, AD、BC交于D点, 且∠A=∠B, ∠C=∠D. 求证:AB∥CD.C D20. (本题7分)△ABC 在如图所示的平面直角中, 将其平移后得△A’B’C’, 若B 的对应点B’的坐标是(4, 1).(1) 在图中画出△A’B’C’; (2分) (2) 此次平移可看作将△ABC 向_____平移了_____个单位长度, 再向_____平移了_____个单位长度得△A’B’C’; (2分)(3) △A’B’C’的面积为___________. (3分)21. (本题7分) 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况, 从中抽取了一部分同学进行了一次抽样调查, 利用所得数据绘制成下面的统计图:(1) 求出右图中a 、b 的值, 并补全条形图; (4分)(2) 若此次调查中喜欢体育节目的女同学有10人, 请估算该校喜欢体育节目的女同学有多少人? (3分)22. (本题8分) 一本英语书共98页, 张力读了一周(7天)还没读完, 而李永不到一周就已读完. 李永平均每天比张力多读3页, 求张力平均每天读多少页(答案取整数)?节目类别1020304050 新闻 体育 0 人数 30 动画 45 娱乐 戏曲 9 戏曲 6% 新闻8% 动画 30%娱乐 a % 体育 b %23. (本题10分) 下表是某店两天销售两种商品的帐目记录, 由于字迹潦草, 无法准确辨认第.(1)请求出A、B两种商品的销售价;(5分)(2)若一件A产品的进价为7元, 一件B产品的进价为6元, 某天共卖出两种产品40件, 且两者总利润不低于100元, 则至多...多少件? (5分)..销售乙商品24. (本题10分)如图, B 、D 、E 、F 是直线l 上四点, 在直线l 的同侧作△ABE 和△CDF, 且AB ∥CD, ∠A =40°. 作BG ⊥AE 于G , FH ⊥CD 于H, BG 与FH 交于P 点. (1) 如图1, B 、E 、D 、F 从左至右顺次排列, ∠ABD =90°, 求∠GPH ; (4分) (2) 如图2, B 、E 、D 、F 从左至右顺次排列, △ABE 与△CDF 均为锐角三角形, ∠ABD =α°(0<α<90), 求∠GPH ; (4分) (3) 如图3, F 、B 、E 、D 从左至右顺次排列, △ABE 为锐角三角形, △CDF 为钝角三角形, 则∠GPH 的度数为多少?请画出图形并直接写出结果, 不需证明. (2分)lA B C D E FG (H) (P)图1ABC D lEFGHP图2A B CDlF E 图325. (本题12分)如图, 平面直角坐标系中, 直线BD 分别交x 轴、y 轴于B 、D 两点, A 、C 是过D 点的直线上两点, 连结OA 、OC 、BD, ∠CBO =∠COB, 且OD 平分∠AOC. (1) 请判断AO 与CB 的位置关系, 并予以证明; (4分)(2) 沿OA 、AC 、BC 放置三面镜子, 从O 点发出的一条光线沿x 轴负方向射出, 经AC 、CB 、OA 反射后, 恰好由O 点沿y 轴负方向射出, 若AC ⊥BD, 求∠ODB ; (4分)(3) 在(2)的条件下, 沿垂直于DB 的方向放置一面镜子l , 从射线..OA ..上任意一点P 放出的光线经B 点反射, 反射光线与射线..OC ..交于Q 点, OQ 交BP 于M 点, 给出两个结论:①∠OMB 的度数不变;②∠OPB +∠OQB 的度数不变. 可以证明, 其中有且只有一个是正确的, 请你作出正确的判断并求值. (4分)参考答案一、选择题(请将唯一正确答案的代号填入括号内, 共12小题, 每小题3分, 共36分)x x二、填空题(共4小题, 每小题3分, 共12分)13. 3 14. 100° 15. 21 16. m <-2 三、解答题(本大题共9小题, 共72分) 17. (本题9分) 21x y =⎧⎨=⎩18. (本题9分)解集为485x <≤ 19. (本题10分) 证明略. 20. (本题10分) (1) (4分)图略(2) (3分) 向左平移2个单位长度, 向下平移1个单位长度. (平移的顺序可颠倒) (3) (3分)10 21. (本题10分)(1) (5分) a =36, b =20 ------------对一个1分, 对两个3分 图形2分 (2) (5分) 200人 22. (本题10分)解:设张力平均每天读x 页依题意7987(3)98x x <⎧⎨+>⎩--------------5分解得11<x <14 --------------8分 又x 为整数 故x =12或13答略. ---------------10分 23. (本题14分) (1) (5分)40° (2) (7分)提示:∠P =360°-∠M =360°-∠A=140°(3) (2分)∠GPH =40°, 图略附加题(共2小题, 共30分, 不计入总分) 1. (本题15分)(1) (7分)解:设A 、B 两种产品的单价分别为x 元、y 元 设第二天的总金额个位数字为a依题意20102801515270x y x y a +=⎧⎨+=+⎩当m =0时, 解得108x y =⎧⎨=⎩ 当m =6时, 解得485445x y ⎧=⎪⎪⎨⎪=⎪⎩由于两种单价均为整数, 故A 单价为10元, B 单价为8元.(2) (8分)设销售B 商品m 件, 则销售A 商品(40A B CD lE FG H P图2 M依题意(107)(40)(86)100x x-⨯-+-≥解得x≤20 故至多销售B商品20件.2. (本题15分)(1) (5分)平行, 下证之设∠AOD=∠COD=x∠BOC=∠OBC=y则∠BOD=x+y=90°故2x+2y=180°即∠AOB+∠OBC=180°得AO∥CB(2) (5分)依题意∠1=∠2设∠AOE=∠BPF=x, 则∠BOE=180°-2x由AO∥CB得∠BEO=∠AOE=x=∠CED则∠OED=180°-2x=∠BOE故DE∥OB得∠ODE=90°故∠1=∠2=45°(3) (5分) 选②, ∠OPB+∠OQB=90°, 下证之设∠AOD=∠DOQ=x∠PBD=∠QBD=y在△PGO和△QGB中∠OPB+x=45°+y 在△QHB和△DHO中∠OQB+y=45°+x 两式相加得∠OPB+∠OQB=90°.xx。
2022—2023年人教版七年级数学下册期末考试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4.一5的绝对值是()A.5 B.15C.15-D.-55.12-的倒数是()A.B.C.12-D.126.设x y z234==,则x2y3zx y z-+++的值为()A.27B.23C.89D.577.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个 D.111.210⨯个8.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120° B.130° C.60° D.150°9.观察等式(2a﹣1)a+2=1,其中a的取值可能是()A.﹣2 B.1或﹣2 C.0或1 D.1或﹣2或0 10.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.在关于x、y的方程组2728x y mx y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y>0,那么m的取值范围是_________________.4.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).5.因式分解:34a a-=_____________.6.化简:9=________.三、解答题(本大题共6小题,共72分)1.解方程组:12433313412 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩2.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣1 258.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE的等量关系?并说明理由.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、A6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、60°3、-2≤m <34、①②③5、(2)(2)a a a +-6、3三、解答题(本大题共6小题,共72分)1、178y 7x ⎧=⎪⎪⎨⎪=-⎪⎩2、5.3、(1)略;(2)DE=AD-BE ,理由略4、∠EDC =40°5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)当行程不超过3千米即x ≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
北京市朝阳区2023~2024学年度第二学期期末检测七年级数学试卷(选用) 2024.7(考试时间90分钟满分100分)学校_____________班级_____________姓名_____________考号_____________一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1.9的算术平方根为(A)-3 (B)±3 (D)81 (C)32.在平面直角坐标系中,点(-2,3)在(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是4.如图,三角形ABC中,∠ACB-90°,CD⊥AB于点D.在线段AC,AB,BC,CD中,长度最短的是(A)线段AB (B)线段AC (C)线段BC (D)线段CD5.若m>n,则下列结论正确的是6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放(厚度忽略不计),若∠α=20°,则∠β的度数为(A)45°(B)40°(C)25°(D)20°7.经调查,七年级某班学生上学所用的交通工具中,自行车占30%,公交车占25%,私家车占35%,其他占10%.如果用扇形图描述以上数据,下列说法正确的是(A)“自行车”对应扇形的圆心角为30°(B)“公交车”对应扇形的圆心角为90°(C)“私家车”对应扇形的圆心角为35°(D)“其他”对应扇形的圆心角为18°8.已知2x+y=12,x≥y≥0,M=3x+2y,给出下面3个结论:①当x=y时,M=20;②M的最小值是18;③M的最大值是24.上述结论中,所有正确结论的序号为(A)①②(B)①③(C)②③(D)①②③二、填空题(共24分,每题3分)13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛.以上调查,适宜抽样调查的是______.(填写序号)14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩(单位:分).例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分.这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有________人.15.如图,第一象限内有两个点A(x-3,y),B(x,y-2),将线段AB平移,使点A,B 平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为_______.(写出一个即可)16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.(1)在这次足球联赛中,若某队得13分,则该队可能_场;(写出一种情况即可)(2)在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜________场.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)20.完成下面的证明.已知:如图,AD//BC,∠D+∠F=180°.求证:DC//EF.证明:∵AD//BC,(已知)∴∠D+____=___.(____)∵∠D+∠F=180°,(已知)∴∠C=___.(同角的补角相等)∴DC//EF.(__)21.如图,在三角形ABO中,点A,B的坐标分别为(2,4),(4,1),将三角形ABO向左平移4个单位长度,再向上平移1个单位长度得到三角形A₁B₁O₁,点A,B,0的对应点分别为A₁,B₁,0₁.(1)画出三角形A₁B₁O₁,并写出点A₁,B₁,0₁的坐标;(2)直接写出三角形A₁B₁O₁的面积.22.某电商销售长征系列画册和红色经典故事两种图书,它们的进价和售价如下表:该电商销售6套长征系列画册和5套红色经典故事,盈利800元;销售10套长征系列画册和15套红色经典故事,盈利1600元.(利润=售价-进价)(1)求表中a,b的值;(2)该电商计划购进长征系列画册和红色经典故事两种图书共300套,据市场销售分析,购进红色经典故事的套数不低于长征系列画册套数的2倍.若电商把300套图书全部售出,则购进长征系列画册多少套能使利润最大?(直接写出即可)23.为了解某校七年级学生的气象知识竞赛成绩(百分制,单位:分),从中随机抽取了60名学生的成绩,该校甲、乙两个数学课外活动小组对数据进行了整理、描述,部分信息如下:a.甲小组将数据分为4组,频数分布表与频数分布直方图如下:b.乙小组将数据分为5组,频数分布表与频数分布直方图如下:(1)写出表1中m的值,表2中n的值;(2)补全图1;(3)如果学校准备根据样本的数据分布情况,对七年级竞赛成绩前20%的学生进行表彰,那么哪个数学课外活动小组对数据的整理、描述更合理,为什么?25.直线AB//CD,∠ABC与∠DCB的角平分线交于点E,BE的延长线交CD于点F,FG⊥BF,交直线BC于点G.(1)如图1,求证:EC//FG;(2)如图2,点M在线段BC上,点N在线段FG上,且∠BEM=∠MEN,连接EG.写出一个∠MEG的度数,使得∠NEG=∠NGE成立,并证明.26.在平面直角坐标系x0y中,已知点P(x,y),若点Q的坐标为(x+2y,y+2x),则称Q是点P的非常变换点.例如:点(2,1)的非常变换点为(4,5).(1)已知点P(x,x-1)的非常变换点为Q,当x=0时,点Q的坐标为________,当x=1时,点Q的坐标为_________;(2)在正方形ABCD中,点A(2,4),B(-4,4),C(-4,-2),D(2,-2),已知点M(x,x+a),N(x+1,x+a+1).①若点M的非常变换点为C,求a的值;②若线段MN上的所有点(含端点)和它们的非常变换点都在正方形ABCD 的边上或内部,直接写出a的最小值及此时x的值.北京市朝阳区2023~2024学年度第二学期期末检测七年级数学试卷参考答案2024.7一、选择题(共24分,每题3分二、填空题(共24分,每题3分)。
2023年人教版七年级数学下册期末考试题及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若方程:()2160x --=与3103a x --=的解互为相反数,则a 的值为( ) A .-13 B .13C .73D .-1 2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A.﹣2 B.0 C.1 D.46.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 10.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.51a -5b -=0,则(a ﹣b )2的平方根是________.6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m/min 的速度直接回家,两人离家的路程y (m )与各自离开出发地的时间x (min )之间的函数图象如图所示(1)家与图书馆之间的路程为多少m ,小玲步行的速度为多少m/min ;(2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.已知:在ABC 中,C 90∠=,AC 6cm =,BC 8cm =.()1如图1,若点B 关于直线DE 的对称点为点A ,连接AD ,试求ACD 的周长; ()2如图2,将直角边AC 沿直线AM 折叠,使点C 恰好落在斜边AB 上的点N ,且BN 4cm =,求CM 的长.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、B5、C6、B7、C8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、0.4、40或805、±4.6、±44三、解答题(本大题共6小题,共72分)1、612x y =⎧⎪⎨=-⎪⎩2、m=4,n=﹣1.3、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.4、()1ACD 的周长14cm =;()2CM 3cm =.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。
2023—2024学年第二学期期末考试试卷七年级数学一、选择题(每小题3分,共30分)1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A .1个 B.2个 C.3个D.4个2.如图,下列条件中,不能判断直线a b ∥的是()A.13∠=∠B.23∠∠=C.45∠=∠D.24180∠+∠=︒3.如图,在ABC 中,30A ∠=︒,点D 是AB 延长线上一点,过点D 作EF BC ∥.若70ADE ∠=︒,则C ∠的度数为()A.20° B.30° C.40° D.50°4.在实数3.1415926,1.010010001……,2π2,223,2.15 中,无理数的个数是()个A.1B.2C.3D.45.下列计算正确的是()A.5=±B.5=-C.5=±D.5=6.在平面直角坐标系中,若点()3,1P m m +-在第四象限,则m 的取值范围是()A.31m -<< B.1m > C.3m <- D.3m >-7.若a >b ,则下列不等式变形错误的是()A.a +2>b +2B.-3a <-3bC.3-a >3-bD.4a -1>4b -18.已知关于x,y 的方程组2529x y m x y m +=⎧⎨-=⎩的解满足方程3x+2y=19,则m 的值是()A.1 B.-1 C.19 D.-199.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为()A.1k > B.1k < C.1k ≥ D.1k ≤10.如图,在平面直角坐标系中,动点P 从原点O 出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点1(1,1)P --;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点2P ;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点3P ;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点4P ,…,按此作法进行下去,则点2023P 的坐标为()A.(1012,1012)--B.(2011,2011)--C.(2012,2012)--D.(1011,1011)--二、填空题(每小题3分,共30分)11.________.12.已知a 、b为两个连续的整数,且a b <<,则a b +=_____13.若x ,y 满足()220x ++=的值是______.14.已知 1.902==____________15.在一次课外知识竞赛中,共有22道题,答对一题得4分,不答或答错一题扣2分,如果得分要超过81分,那么至少要答对_______道题.16.关于x 的方程234x a x -=-的解是正数,则a 的取值范围是_______.17.有一个数值转换器,计算流程如图所示,当输入x 的值为8时,输出的值是______.18.如图①,将长方形纸带沿EF 折叠,70AEF ∠=︒,再沿GH 折叠成图②,则图②中EHB '∠=_______.19.为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是__________.20.已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是______.三、解答题(共60分)21.解方程组(1)257320x yx y-=⎧⎨-=⎩;(2)()()3416126x y x yx y x y⎧+--=⎪⎨+-+=⎪⎩.22.解不等式组311453x xx x->+⎧⎪⎨-≤⎪⎩①②,并写出它的最大正整数解.23.若关于x,y的方程组25342x y mx y m-=⎧⎨+=⎩的解,使不等式组52718x yx y+≤⎧⎨+<⎩成立,求m的取值范围.24.如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并进行证明.25.列方程组解应用题用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?26.某中学准备去采购A、B两种实验器材,下面是销售人员呈现的两次销售记录(每次销售这两种实验器材的单价都不变),如下表:(1)求A型实验器材与B型实验器材的单价分别为多少元?(2)若购买这两种实验器材共50件,其中A型实验器材的数量(单位:件)不多于B型实验器材的数量(单位:件)的2倍,总费用不超过2000元,请问共有几种采购方案?27.在平面直角坐标系中,O 为原点,点()0,2A ,()2,0B -,()4,0C .(1)如图①,则三角形ABC 的面积为______;(2)如图②,将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D 坐标为(______,______).①求ACD 的面积;②点(),3P m 是一动点,若PAO 的面积等于CAO △的面积,直接写出点P 坐标.。
七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。
B ′C ′D ′O ′A ′O DC BA (第8题图)初中七年级数学第二学期期末考试试卷(标准)班级 姓名 分数(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 78 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AAS D .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率(第16题图)为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n 正面朝上的次数m 正面朝上的频率nm 布丰4040 2048 0.5069德·摩根4092 2048 0.5005费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△CBA''';在图②中画出与△ABC全等且有一条公共边的格点△CBA''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)xx-3(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)OACPP′B(第16题图)能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④6.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-27.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场8.若使代数式312m -的值在-1和2之间,m 可以取的整数有( )(A )1个 (B )2个 (C )3个 (D )4个9.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( ).(A ) (B ) (C ) (D ) 10.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想 方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论二、填空题(每题3分,共30分)1.若∠1与∠2互余,∠2与∠3互补,若∠1=630,则∠3=2.已知P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则2005()a b +的值为 3.根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s .现机器人在直角坐标系的坐标原点,且面对x 轴正方向(1)若给机器人下了一个指令[4,60º],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(-5,5). 4.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是 .5.一个多边形的每一个外角都等于360,则该多边形的内角和等于 6. 已知2(234)370x y x y +-++-=,则x= ,y=7.已知方程组11235mx ny mx ny ⎧+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 8.若点(m-4,1-2m )在第三象限内,则m 的取值范围是 .9.绝对值小于100的所有的整数的和为a ,积为b ,则20042005a b +的值为 .-1 0 1-1 0 1 -1 0 1 -1 0 1 第10题图第4题图对54D3E 21C B A人都版七年级数学下学期末模拟试题(三)1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=3 7. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 8. 如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.4 9. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
L1 P X Y Y Y O O O O · · ·· PP 2 BCO2022~2023学年第二学期期末考试七年级(初一)数学试题一、选择题:(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请将正确选项的代号填在题后的括号内. 1、如图,直线L 1∥L 2,L 分别与L 1、L 2相交,如果∠2=100°, 那么∠1的度数是( ) A. 50°; B. 60°; C. 80°; D. 100°. 2、已知坐标平面内一点P (-1,-1),则P 点所在位置可能为( )3、把某不等式组( )中两个不等式的解集表示在数轴上,如图所示,4、若一个多边形的内角和是外角和的2倍,则这个多边形的边数是( ) A. 5 B. 6 C. 7 D. 85、下列调查工作需采用全面调查的是( )A. 环保部门对黄河某段水域的水污染情况的调查;B 、电视台对正在播出的某电视节目收视率的调查;C 、质检部门对各厂家生产的电池使用寿命的调查;D 、企业在给职工做工作服前进行的尺寸大小的调查.6、如图,BD 、CE 分别是△ABC 的BC 边的延长线,已知∠1=110°,∠2=50°,则∠3=( ) A. 50° B. 110° C. 120° D. 130°7、在平面直角坐标系中有A 、B 两个点,若以A 为原点,则B 点的坐标是(3,4);若以B 点为坐标原点,且保持原横、纵坐标轴方向均不变,则点A 的坐标是( ) A.(-3,-4) B. ( -3,4) C. (3,-4) D.(3,4) 8、如图,如果△OBC 的面积为12,点B 的坐标为(-6,0),那么点C 的纵坐标...为( ) A. 2 B. -2 C. 4 D. -49、学校运动会长跑比赛中,张华跑在最前面;离终点100m 时,在他 身后10m 的李明欲以4m/s 的速度超越;假定此时张华需以xm/s 的速 度冲刺,才能确保到达终点时处于绝对领先的位置,则下列满足题意 的不等式为( ) A.4110>x 100 B. 4110<x 100 C. 4110≥x 100 D.4110≤x10010.如图,△ABC 是等腰三角形,∠ABC=∠ACB ,将BC 边沿BD 折叠至B C ′,已知∠A=50°, ∠C ′BA 比∠C ′BD 大5°,设∠C ′BD=x ,∠C ′BA=y ,那么x 、y 所适合的一个方程组是( )座位号题号 得分一 二 三 四 五 六 总分 附加题 评卷人 得分 考号: 姓名: 县(市、区): 学校: 班级: 2 L 1 L 2第1题图 X X XYP A B CD 第2题图0 -1 。
七年级下学期期末考试数学试卷(带答案)一、选择题(本大题共8小题)1.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.如果a<b,下列各式中正确的是()A.ac2<bc2B.>C.﹣3a>﹣3b D.>3.不等式组的解集在数轴上可以表示为()A.B.C.D.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同角的余角相等6.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠A=∠EDF C.BC∥EF D.∠B=∠E7.如图,在长方形ABCD纸片中,AD∥BC,AB∥CD,把纸片沿EF折叠后,点C、D分别落在C'、D'的位置.若∠EFB=65°,则∠AED'等于()A.70°B.65°C.50°D.25°8.如图,在△ABC中,已知点D,E分别为BC,AD的中点,EF=2FC,且△ABC的面积12,则△BEF的面积为()A.5 B.C.4 D.二、填空题(本大题共8小题,请将下列各题正确的结果填写在答题卡相应的位置上)9、计算:a2•a3=.10、不等式3x﹣2>1的解集是.11、2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12、分解因式:a2﹣4=.13、买5kg苹果和3kg梨共需23元,分别求苹果和梨的单价.设苹果的单价x元/kg,梨的单价y元/kg,可列方程:.14、有一个多边形的每一个外角都等于45°,则这个多边形是边形.15、命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).16、阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.三、解答题(本大题共8小题,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)17.(10分)计算:(1)(﹣2)2﹣|﹣3|+(π﹣2021)0;(2)m•m5+(2m3)2.18.(10分)解方程组:(1);(2).19.(10分)解下列不等式(组):(1)x﹣3(x﹣2)>4;(2).20.(6分)先化简,再求值:(x﹣1)2﹣x(x+3),其中x=.21.(6分)请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD∴∠=∠(_),∵∠1=∠2.(已知)∴∠1=∠()∴AB∥CD()22.(8分)如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=ED,求证:CB=CD.23.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(12分)定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(1)如图1,OP是∠MON的平分线,请你在图1中画出一对以OP所在直线为对称轴的全等三角形.(2)请你仿照这个作全等三角形的方法,解答下列问题:①如图2,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.猜想FE和DF之间的数量关系,直接写出结论.②如图3,在△ABC中,如果∠ACB≠90°,而①中的其它条件不变,请问①中结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案一、选择题1.选:D. 2.选:A. 3.选:A. 4.选:B.5.选:A. 6.选:C. 7.选:D. 8.选:C.二、填空题9、a5.10、 x>1.11、2×10﹣8.12、(a+2)(a﹣2).13、5x+3y=23.14、八.15、真命题.16、7﹣i.三、解答题17.【解答】解:(1)原式=4﹣3+1=2;(2)原式=m6+4m6=5m6.18.【解答】解:(1),①+②得5x=20,解得x=4,将x=4代入②得2×4﹣2y=15,解得y=﹣3.5,∴原方程组的解为;(2)原方程组可化为,②﹣①×5得3y=6,解得y=2,将y=2代入①得x+2=6,解得x=4,∴原方程组的解为.19.【解答】解:(1)去括号,得:x﹣3x+6>4,移项,得:x﹣3x>4﹣6,合并同类项,得:﹣2x>﹣2,系数化为1,得:x<1;(2)解不等式3(x﹣1)<5x+1,得:x>﹣2,解不等式2x﹣4≤,得:x≤3,则不等式组的解集为﹣2<x≤3.20.【解答】解:原式=x2﹣2x+1﹣x2﹣3x=﹣5x+1,当x=时,原式=﹣5×+1=0.21.【解答】证明:∵CE平分∠ACD∴∠2=∠ECD(角平分线的定义),∵∠1=∠2.(已知)∴∠1=∠ECD(等量代换))∴AB∥CD(内错角相等两直线平行).故答案为:2,ECD,角平分线的定义,ECD,等量代换,内错角相等两直线平行.22.【解答】证明:∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴CB=CD.23.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.24.【解答】解:(1)如图1,在射线OP上取点A,作AB⊥OM于B,AC⊥ON于C,∵OP是∠MON的平分线,AB⊥OM,AC⊥ON,∴AB=AC,∴Rt△AOB≌Rt△AOC,则AOB和Rt△AOC是一对以OP所在直线为对称轴的全等三角形;(2)①FE=DF,理由如下:如图2,在AC上截取CH=CD,连接FH,∵AD是∠BAC的平分线,∠BAC=30°,∴∠BAD=∠CAD=15°,∴∠ADC=∠BAD+∠B=75°,∵CE是∠ACB的平分线,∠ACB=90°,∴∠ACE=∠BCE=45°,在△FCD和△FCH中,,∴△FCD≌△FCH(SAS),∴FH=FH,∠FHC=∠FDC=75°,∴∠AHF=105°,∵∠AEF是△BCE的外角,∴∠AEF=∠B+∠BCE=105°,∴∠AEF=∠AHF,∴△AEF≌△AHF(AAS),∴FE=FH,∴FE=DF;②、①中结论仍然成立,FE=DF,理由如下:如图3,在AC上截取CG=CD,连接FG,∵∠B=60°,∴∠BAC+∠BCA=120°∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC+∠FCA=(∠BAC+∠BCA)=60°,∴∠AFC=180°﹣60°=120°,∴∠CFD=60°,∵CE是∠ACB的平分线,∴∠ACE=∠BCE,在△FCD和△FCG中,∴△FCD≌△FCG(SAS),∴FD=FG,∠CFG=∠CFD=60°,∴∠AFE=∠AFG=60°,在△AFE和△AFG中,,∴△AFE≌△AFG(ASA),∴FG=FE,∴FE=DF.。
七年级数学下册期末考试卷(带答案解析)一、选择题(本大题共10小题,每小题3分,共30分.)1.下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C. D.2.下列各数中是无理数的是()A.B.πC.6.25 D.3.下列运算正确的是()A.=±5 B.|﹣3|=3 C.=3 D.=﹣4 4.下列事件中,最适合采用普查的是()A.对我校七年级一班学生出生日期的调查B.对全国中学生节水意识的调查C.对山东省初中学生每天阅读时间的调查D.对某批次灯泡使用寿命的调查5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.如图,a⊥c,b⊥c,若∠1=70°,则∠2等于()A.70°B.90°C.110°D.80°8.如图,下列条件:①∠1=∠5;②∠2=∠6;③∠3=∠7;④∠4=∠8.其中能判定AB∥CD的是()A.①②B.②③C.①④D.②④9.小亮的妈妈用28元钱买了甲乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果多买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<1二、填空题(本大题共6小题,每小题3分,共18分.)11.的平方根为.12.若+(a﹣1)2=0,则a+b的值为.13.已知点A(0,a)在y轴的负半轴上,则点B(a,a﹣1)在第象限.14.某校对七年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级,根据收集的评价结果绘制了如图所示的统计图,已知图中从左到右的五个长方形的高之比为2:3:3:1:1,评价结果为“A”的学生有68名,则该校七年级学生共有.15.如图,已知AB∥CD,∠BAC与∠ACD的平分线相交于点E,若∠ACE=31°,则∠BAE的度数是.16.关于x的不等式组无整数解,则a的取值范围为.三.解答题(共72分)17.计算:.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.19.解方程组:(1);(2).20.解不等式组,并把它的解集在数轴上表示出来.21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?25.同学们,我们已学习了角平分线的概念和性质,那么你会用它们解决有关问题吗?(1)如图(1),已知∠AOB,请你画出它的角平分线OC,并填空:因为OC是∠AOB的平分线(已知)所以∠=∠=∠AOB(2)如图(2),已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,请你画出射线OB,射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=∠所以射线是∠的角平分线.拓展应用(3)如图(3),将长方形纸片的一角折叠,使顶点A落在C处,折痕为OE,再将它的另一个角也折叠,顶点B落在D处并且使OD过点C,折痕为OF.直接利用(2)的结论;①若∠AOE=60°,求∠EOF的度数.②若∠AOE=m°,求∠EOF的度数,从计算中你发现了∠EOF的度数有什么规律?③∠DOF的补角为;∠DOF的余角为.参考答案与解析一.选择题(共10小题)1.解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.2.解:A.5.34是分数,属于有理数,故这个选项不符合题意;B.是无理数,故这个选项符合题意;C.6.25是分数,属于有理数,故这个选项不符合题意;D.是分数,属于有理数,故这个选项不符合题意;故选:B.3.解:A、=5,故本选项错误;B、|﹣3|=3,故本选项正确;C、∵=3,∴≠3,故本选项错误;D、=4,故本选项错误;故选:B.4.解:A、对我校七年级一班学生出生日期的调查适合采用普查;B、对全国中学生节水意识的调查适合采用抽样调查;C、对山东省初中学生每天阅读时间的调查适合采用抽样调查;D、对某批次灯泡使用寿命的调查适合采用抽样调查;故选:A.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:线段AD的长表示点A到直线BC距离的是图D,故选:D.7.解:∵a⊥c,b⊥c,∴a∥b,∴∠3=∠1=70°,∴∠2=∠3=70°.故选:A.8.解:①∵∠1=∠5,∴AB∥CD,能判定AB∥CD;②∵∠2=∠6,∴AD∥BC,不能判定AB∥CD;③∵∠3=∠7;∴AD∥BC,不能判定AB∥CD;④∵∠4=∠8,∴AB∥CD,能判定AB∥CD.故选:C.9.解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据题意得:,故选:C.10.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.二.填空题(共6小题)11.【答案】±【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.12.【答案】﹣1【分析】直接利用非负数的性质得出b,a的值,即可得出答案.【解答】解:∵+(a﹣1)2=0,∴3b+6=0,a﹣1=0,解得:b=﹣2,a=1,∴a+b=﹣2+1=﹣1.故答案为:﹣1.13.【答案】三【分析】根据点A(0,a)在y轴的负半轴上可得到a<0,再根据各象限内点的坐标特征解答.【解答】解:∵点A(0,a)在y轴的负半轴上,∴a<0,∴a﹣1<0,∴点B(a,a﹣1)在第三象限.故答案为:三.14.【答案】340名【分析】用A等级人数除以其对应权重,再乘以权重之和即可得出答案.【解答】解:该校七年级学生共有68÷2×(2+3+3+1+1)=340(名),故答案为:340名.15.【答案】59°【分析】根据平行线的性质得到∠BAC+∠ACD=180°,再根据角平分线的定义得到∠CAE+∠ACE=90°,根据题意即可得解.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠ACD的平分线相交于点E,∴∠BAE=∠CAE=∠BAC,∠ACE=∠ACD,∴∠CAE+∠ACE=×(∠BAC+∠ACD)=90°,∵∠ACE=31°,∴∠CAE=90°﹣∠ACE=59°,∴∠BAE=59°,故答案为:59°.16.【答案】a≥2【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据“无整数解”这个条件分析答案;另外需考虑不等式组无解的情况.【解答】解:不等式组整理得:不等式组的解集是:a<x<,或a≥时,不等式组无解,∵不等式组无整数解,∴a≥2故答案为:a≥2.三.解答题17.计算:.【分析】首先计算开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:=2﹣﹣3+(﹣4)=﹣2﹣4.18.如图,直线AB,CD相交于点O,∠BOC=130°,OE⊥AB于点O,求∠EOD的度数.【答案】40°.【分析】利用对顶角的性质可得∠AOD=130°,再利用垂直定义计算即可.【解答】解:∵∠BOC=130°,∠AOD与∠BOC是对顶角,∴∠AOD=130°,∵OE⊥AB,∴∠AOE=90°,∴∠EOD=130°﹣90°=40°,即∠EOD的度数是40°.19.解方程组:(1);(2).【答案】(1);(2).【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1),②代入①,可得:y﹣1+2y=8,解得y=3,把y=3代入②,解得x=2,∴原方程组的解是.(2),由②,可得:5x+5y=1③,①×5+③,可得20x=26,解得x=1.3,把x=1.3代入①,解得y=﹣1.1,∴原方程组的解是.20.解不等式组,并把它的解集在数轴上表示出来.【答案】x>2,解集在数轴上的表示见解答.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+2≥3x,得:x≥﹣1,解不等式2﹣<x,得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:21.已知线段AB两端点的坐标为A(2,0),B(0,4),将线段AB平移后得到线段A'B',AB上任意一点P(x,y)平移后的对应点为P'(x+2,y+2).(1)在平面直角坐标系中画出线段AB和A'B';(2)连接OA',OB',求三角形OA'B'的面积.【答案】(1)见解答;(2)10.【分析】(1)先利用P点和P′点的坐标特征确定平移的方向与距离,再利用此平移规律写出A′、B′的坐标,然后描点得到线段AB和A'B';(2)用一个矩形的面积分别减去三个直角三角形的面积去计算三角形OA'B'的面积.【解答】解:(1)如图,线段AB和A'B'为所作;(2)三角形OA'B'的面积=4×6﹣×4×2﹣×2×4﹣×6×2=10.22.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【答案】见试题解答内容【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.23.已知如图,△ABC过点A做∠DAE=∠BAC,且AD∥BC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠BAD的度数.【答案】见试题解答内容【分析】(1)根据平行线的性质得出∠DAE=∠2,求出∠BAC=∠1,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠BAE=∠CAE,根据∠DAE=∠BEA求出∠BAE=∠EAC=∠DAC,根据平行线的性质得出∠C=∠DAC,求出∠C=∠BAE=∠DAC=35°,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1,∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE;(2)解:∵∠DAE=∠BEA,∴∠BAE=∠EAC=∠DAC,∵AD∥BC,∴∠C=∠DAC,∴∠C=∠BAE=∠DAC=35°,∵AE平分∠BAC,∴∠BAC=2∠BAE=70°,∴∠BAD=∠BAC+∠CAD=105°.24.“地摊经济”已成为社会关注的热门话题,小明从市场得知如下信息:甲商品每件售价为90元,乙商品每件售价为10元,销售1件甲商品和4件乙商品可获得利润45元,销售2件甲商品和3件乙商品可获得利润65元.(1)求甲、乙商品的进货价格;(2)小明计划用不超过3500元的资金购进甲、乙商品共100件进行销售,设小明购进甲商品a件,求a的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于1450元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大,最大利润是多少?【答案】(1)甲商品的进货价格为65元,乙商品的进货价格为5元;(2)a的取值范围是0≤a≤50;(3)进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.【分析】(1)设甲、乙商品的进货价格分别是x元,y元,根据题意列方程组即可得到结论;(2)设小明购进甲商品a件,由题意列出不等式,即可求解;(3)由获得的利润不少于1450元,列出不等式可求a的范围,可求出答案.【解答】解:(1)设甲、乙商品的进货价格分别是x元,y元,由题意列方程组得:,解得,答:甲商品的进货价格为65元,乙商品的进货价格为5元;(2)设小明购进甲商品a件,由题意得,65a+5(100﹣a)≤3500,解得a≤50,∴a的取值范围是0≤a≤50;(3)由题意可得:(90﹣65)a+(10﹣5)(100﹣a)≥1450,解得:a≥47.5,∴47.5≤a≤50,又∵a为整数,∴a=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;若甲商品进48件,乙商品进52件,利润为(90﹣65)×48+(10﹣5)×52=1460(元),若甲商品进49件,乙商品进51件,利润为(90﹣65)×49+(10﹣5)×51=1480(元),若甲商品进50件,乙商品进50件,利润为(90﹣65)×50+(10﹣5)×50=1500(元),∴当甲商品进50件,乙商品进50件,利润有最大值.利润最大值为1500(元).答:进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;甲商品进50件,乙商品进50件利润最大,最大利润是1500元.25.解:(1)如图1所示:∵OC是∠AOB的平分线,∴∠AOC=∠BOC=∠AOB,故答案为:AOC,BOC,;(2)如图2所示:∵∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,∴∠BOC=∠AOC,∴射线OC是∠AOB的角平分线,故答案为:BOC,OC,AOB;(3))①∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=60°,∴∠AOE=∠EOC=60°,∠BOF=∠DOF=(180°﹣∠AOE﹣∠EOC)=×60°=30°,∴∠EOF=∠EOC+∠DOF=60°+30°=90°;②∵△COE由△AOE翻折而成,△DOF由△BOF翻折而成,∠AOE=m°∴∠AOE=∠EOC=m°,∠BOF=∠DOF=[180°﹣(∠AOE+∠EOC)]=×[18°﹣2m°]=90°﹣m°,∴∠EOF=∠EOC+∠DOF=m°+90°﹣m°=90°,发现∠EOF始终为90°;③∵由②知,∠DOF=∠BOF,∠BOF+∠AOF=180°,∴∠DOF的补角是∠AOF;∵∠DOF+∠EOC=90°,∴∠DOF的余角是∠EOC和∠AOE,故答案为:∠AOF,∠EOC和∠AOE.。
七年级数学下册期末考试卷(附有答案解析)一选择题(每个小题4分,共40分。
在每个小题给出的四个选项中,只有一个选项正确)1.(4分)4的平方根是()A.±2B.﹣2C.2D.162.(4分)以下调查中,适合用抽样调查的是()A.了解我校七年级(1)班学生的视力情况B.了解北斗导航卫星的设备零件的质量情况C.企业招聘时应聘人员进行面试D.检测某市的空气质量3.(4分)在平面直角坐标系中,点P(1,﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图.AB∥CD,∠1=115°,划∠2的度数是()A.65°B.75°C.115°D.85°5.(4分)已知是方程组的解,则a+b的值为()A.2B.1C.3D.﹣16.(4分)乙知a=﹣2,α介于两个连续自然数之间,则下列结论中正确的是()A.1<a<2B.3<a<4C.2<a<3D.4<a<57.(4分)在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣38.(4分)某校春季运动会比赛中,八年级(1)班(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.9.(4分)不等式组有两个整数解,则a的取值范围是()A.﹣5<a<﹣4B.﹣5<a≤﹣4C.﹣4<a≤﹣3D.﹣5≤a≤﹣410.(4分)如图,长方形ABCD四个顶点的坐标分别为A(2,1),B(﹣2,1),C(﹣2,﹣1),(2,﹣1)物体甲和物体乙分别由点P(2,0)同时出发,沿长方形ABCD的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣1,﹣1)D.(2,﹣1)二填空(每个小题4分,共32分)11.(4分)在﹣2 ﹣π中,无理数有个.12.(4分)把二元一次方程2x+y﹣3=0化成用x表示y的式子为.13.(4分)已知点P(3a﹣8,a﹣1),若点P在x轴上,则点P的坐标为.14.(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为度.15.(4分)为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是.16.(4分)一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了道题.17.(4分)如图,数轴上点A表示数﹣1,点B表示数1,过数轴上的点B作BC垂直于数轴,若AC=,以点A为圆心,AC为半径作圆交正半轴于点P,则点P所表示的数是.18.(4分)一副三角尺按如图所示叠放在一起,其中点B,D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有次出现三角形ACD的一边与三角形AOB的某一边平行.三解答题(共78分)19.(12分)(1)计算﹣|﹣2|﹣4+8;(2)解方程组.20.(8分)解不等式组,并将其解集表示在如图所示的数轴上.21.(12分)如图,△ABC各顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)将△ABC向上平移5个单位,再向右平移2个单位,得到△A1B1C1,画出平移后的图形△A1B1C1,并写出平移后△A1B1C1对应顶点的坐标.(2)求出△ABC的面积S△ABC.(3)在y轴上是否存在点P,使以A B P三点为顶点的三角形满足:S△ABP=3S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.22.(12分)某学校为了解《大中小学劳动教育指导纲要(试行)》落实情况,就假期“平均每大期助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分,根据上述信息,回答下列问题:(1)在本次陆机抽取的样本中,调查的学生人数是多少?(2)求m,n的值;(3)补全频数分布直方图;(4)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有多少人?23.(10分)如图.∠1+∠2=180°,∠3=∠B,试说明:∠CED=∠CAB.24.(12分)“新冠疫情”对全球经济造成了严重冲击,英雄的武汉人民为抗击“疫情”付出了巨大的努力并取得了伟大的胜利.为了加快复工复产,武汉市某企业需要运输一批生产物资.根据调查得知,2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资.(1)求1辆大货车和1辆小货车一次分别可以运输多少箱生产物资?(2)现计划用这样的两种货车共12辆运输这批生产物资,已知每辆大货车一次需要运输费用5000元,每辆小货车一次需要运输费用3000元.若运输物资不少于1500箱,并且运输总费用小于54000元.请你列出所有运输方案,并指出哪种运输方案所需费用最少,最少费用是多少元?25.(12分)如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D.(1)若∠A=70°,则∠CBD=:(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生改变?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当∠A=3∠ABC,∠BCM=2∠BDC,求∠A的度数.参考答案与解析一选择题1.(4分)4的平方根是()A.±2B.﹣2C.2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4;∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(4分)以下调查中,适合用抽样调查的是()A.了解我校七年级(1)班学生的视力情况B.了解北斗导航卫星的设备零件的质量情况C.企业招聘时应聘人员进行面试D.检测某市的空气质量【分析】根据普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.了解我校七年级(1)班学生的视力情况,适合全面调查,故本选项不符合题意;B.了解北斗导航卫星的设备零件的质量情况,适合全面调查,故本选项不符合题意;C.企业招聘时应聘人员进行面试,适合全面调查,故本选项不符合题意;D.检测某市的空气质量,适合抽样调查,故本选项符合题意.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查无法进行普查普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(4分)在平面直角坐标系中,点P(1,﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点的横纵坐标的符号可得所在象限.【解答】解:∵点P的横坐标是正数,纵坐标是负数;∴点P(1,﹣1)在第四象限;故选:D.【点评】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一二三四象限内的点的坐标符号分别是(+,+)(﹣,+)(﹣,﹣)(+,﹣).4.(4分)如图.AB∥CD,∠1=115°,划∠2的度数是()A.65°B.75°C.115°D.85°【分析】根据AB∥CD,可知∠3=∠1=115°,再根据邻补角可求∠2.【解答】解:如图:∵AB∥CD;∴∠3=∠1=115°;∴∠2=180°﹣∠3=65°.故选:A.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的计算.5.(4分)已知是方程组的解,则a+b的值为()A.2B.1C.3D.﹣1【分析】根据二元一次方程组的解的定义解决此题.【解答】解:由题意得,.∴.∴a+b=5+(﹣4)=1.故选:B.【点评】本题主要考查解二元一次方程组,熟练掌握二元一次方程的解的定义是解决本题的关键.6.(4分)乙知a=﹣2,α介于两个连续自然数之间,则下列结论中正确的是()A.1<a<2B.3<a<4C.2<a<3D.4<a<5【分析】先估算的范围,4,然后估算﹣2即可.【解答】解:∵4;∴2.故选:C.【点评】本题考查了估算无理数的大小,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.7.(4分)在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴;∴2a≠4+b,6=3﹣b;解得b=﹣3,a≠.故选:B.【点评】本题考查了坐标与图形,熟记平行于x轴的直线上点的纵坐标相等是解题的关键.8.(4分)某校春季运动会比赛中,八年级(1)班(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.【分析】此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40.【解答】根据(1)班与(5)班得分比为6:5,有:x:y=6:5,得5x=6y;根据(1)班得分比(5)班得分的2倍少40分,得x=2y﹣40.可列方程组为.故选:D.【点评】列方程组的关键是找准等量关系.同时能够根据比例的基本性质对等量关系①把比例式转化为等积式.9.(4分)不等式组有两个整数解,则a的取值范围是()A.﹣5<a<﹣4B.﹣5<a≤﹣4C.﹣4<a≤﹣3D.﹣5≤a≤﹣4【分析】先根据不等式的性质求出第一个不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,根据不等式组有两个整数解得6≤2﹣x<7,再求出a的范围即可.【解答】解:;解不等式①,得x>4;所以不等式组的解集是4<x≤2﹣a;∵不等式组有两个整数解(是5,6);∴6≤2﹣a<7;∴4≤﹣a<5;∴﹣4≥a>﹣5;即﹣5<a≤﹣4;故选:B.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据求不等式组的解集得出关于a的不等式组6≤2﹣a<7是解此题的关键.10.(4分)如图,长方形ABCD四个顶点的坐标分别为A(2,1),B(﹣2,1),C(﹣2,﹣1),(2,﹣1)物体甲和物体乙分别由点P(2,0)同时出发,沿长方形ABCD的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇地点的坐标是()A.(2,0)B.(﹣1,1)C.(﹣1,﹣1)D.(2,﹣1)【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在AB边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在CD边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在P点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点;∵2022÷3=674;故两个物体运动后的第2022次相遇地点的是:第三次相遇地点;即物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在点A相遇;此时相遇点的坐标为:(2,0).故选:A.【点评】本题考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.二填空(每个小题4分,共32分)11.(4分)在﹣2 ﹣π中,无理数有3个.【分析】无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.【解答】解:在﹣2 ﹣π中,无理数有﹣π,共3个.故答案为:3.【点评】本题主要考查了无理数,判断一个数是否为无理数,不能只看形式,要看化简结果.12.(4分)把二元一次方程2x+y﹣3=0化成用x表示y的式子为y=﹣2x+3.【分析】把含y的项放到方程左边,移项,求y即可.【解答】解:2x+y﹣3=0;移项,得y=﹣2x+3.故答案为:y=﹣2x+3.【点评】本题考查的是方程的基本运算技能:移项合并同类项系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项系数化1就可用含y的式子表示x的形式.13.(4分)已知点P(3a﹣8,a﹣1),若点P在x轴上,则点P的坐标为(﹣5,0).【分析】根据x轴上点的纵坐标为0列式求出a,再求解即可.【解答】解:∵点P(3a﹣8,a﹣1)在x轴上;∴a﹣1=0;解得a=1;∴3a﹣8=3×1﹣8=﹣5;所以,P(﹣5,0).故答案为:(﹣5,0).【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.14.(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为48度.【分析】根据平行线的性质得∠BFD=∠B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∠D=∠BFD﹣∠E,由此即可求∠D.【解答】解:∵AB∥CD,∠B=68°;∴∠BFD=∠B=68°;而∠D=∠BFD﹣∠E=68°﹣20°=48°.故答案为:48.【点评】此题主要运用了平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和.15.(4分)为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是400.【分析】根据样本容量是指一个样本中所包含的单位数判断即可.【解答】解:为了解某地区七年级8460名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,样本容量是400.故答案为:400.【点评】本题主要考查样本容量的概念,熟练掌握样本容量的概念是解题的关键.16.(4分)一次数学基础知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,某同学获得优秀(90分或90分以上),则这位同学至少答对了24道题.【分析】根据题意,设至少答对了x题,则答对获得的分数为4x,而答错损失的分数为30﹣x,由这次竞赛中,某同学获得优秀(90分或90分以上),列出不等式求解即可.【解答】解:设至少答对了x题,那么答错或者不答的有(30﹣x)题4x﹣(30﹣x)≥90解得x≥24答:至少答对了24题.故答案为:24.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题尤其要注意所得的分数是答对题数所得的分数减去打错或不答所扣的分数.17.(4分)如图,数轴上点A表示数﹣1,点B表示数1,过数轴上的点B作BC垂直于数轴,若AC=,以点A为圆心,AC为半径作圆交正半轴于点P,则点P所表示的数是﹣1+.【分析】根据圆的半径相等得到AP=AC=即可得出点P表示的点.【解答】解:∵AP=AC=;∴点P所表示的数是﹣1+.故答案为:﹣1+.【点评】本题考查了实数与数轴,根据圆的半径相等得到AP=AC=是解题的关键.18.(4分)一副三角尺按如图所示叠放在一起,其中点B,D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有8次出现三角形ACD的一边与三角形AOB的某一边平行.【分析】分8种情况讨论,即可求解.【解答】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°;(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°;(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°;(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:共有8次出现三角形ACD的一边与三角形AOB的某一边平行.故答案为:8.【点评】本题考查旋转的性质,利用分类讨论思想和数形结合思想解决问题是解题的关键.三解答题(共78分)19.(12分)(1)计算﹣|﹣2|﹣4+8;(2)解方程组.【分析】(1)先化简,去绝对值符号,再算加减即可;(2)利用加减消元法进行求解即可.【解答】解:(1)﹣|﹣2|﹣4+8=4﹣(2﹣)﹣4+8=4﹣2+﹣4+8=6+;(2);①×2得:8x+2y=30③;②+③得:11x=33;解得:x=3;把x=3代入①得:12+y=15;解得:y=3;所以这个方程组的解是.【点评】本题主要考查二次根式的加减法,解二元一次方程组,解答的关键是对相应的知识的掌握.20.(8分)解不等式组,并将其解集表示在如图所示的数轴上.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:;由①得x≤1;由②解得x>﹣2;所以不等式组的解集为﹣2<x≤1;解集在数轴上表示如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(12分)如图,△ABC各顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)将△ABC向上平移5个单位,再向右平移2个单位,得到△A1B1C1,画出平移后的图形△A1B1C1,并写出平移后△A1B1C1对应顶点的坐标.(2)求出△ABC的面积S△ABC.(3)在y轴上是否存在点P,使以A B P三点为顶点的三角形满足:S△ABP=3S△ABC,若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用点平移的坐标特征得到A1B1C1的坐标,然后描点即可;(2)利用三角形面积公式计算;(3)设点P的坐标为(0,t),根据三角形面积公式得到×2×|t+4|=3×3,然后解方程求出t,从而得到P点坐标.【解答】解:(1)如图,△A1B1C1为所作;A1(0,1 )B1(2,1 )C1(3,4);(2)S△ABC=×2×3=3;(3)存在.设点P的坐标为(0,t);∵S△ABP=3S△ABC;∴×2×|t+4|=3×3;解得t=5或t=﹣13;∴P点坐标为(0,5)或(0,﹣13).【点评】本题考查了作图﹣平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.(12分)某学校为了解《大中小学劳动教育指导纲要(试行)》落实情况,就假期“平均每大期助父母干家务所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分,根据上述信息,回答下列问题:(1)在本次陆机抽取的样本中,调查的学生人数是多少?(2)求m,n的值;(3)补全频数分布直方图;(4)如果该校共有学生3000人,请你估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有多少人?【分析】(1)由0~10分钟的人数及其所占百分比可得总人数;(2)先根据5个分组的人数之和等于总人数求出20﹣30的人数,再分别用20﹣30 30﹣40分钟的人数除以被调查的总人数即可求出m n的值;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中30﹣40 40﹣50分钟人数和占被调查人数的比例即可.【解答】解:(1)在本次随机抽取的样本中,调查的学生人数是60÷30%=200(人);(2)∵20﹣30分钟的人数为200﹣(60+40+50+10)=40(人);∴m%=×100%=20%,n%=×100%=25%;∴m=20 n=25;(3)补全频数分布直方图如下:(4)3000×=900(人).答:该校共有学生3000人,估计“平均每天帮助父母干家务所用时长不少于30分钟”的学生大约有900人.【点评】本题考查频数分布直方图扇形统计图用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(10分)如图.∠1+∠2=180°,∠3=∠B,试说明:∠CED=∠CAB.【分析】由图可得∠2+∠ADC=180°,从而可得∠1=∠ADC,可得EF∥CD,从而可得∠3=∠CDE,可得∠B=∠CDE,可推出AB∥DE,可得∠CED=∠CAB.【解答】证明:∵∠1+∠2=180°,∠2+∠ADC=180°;∴∠1=∠ADC;∴FE∥DC;∴∠3=∠EDC;∵∠3=∠B;∴∠B=∠EDC;∴AB∥DE;∴∠CED=∠CAB.【点评】本题考查平行线的判定与性质,解题的关键是熟练掌握平行线的性质与判定.24.(12分)“新冠疫情”对全球经济造成了严重冲击,英雄的武汉人民为抗击“疫情”付出了巨大的努力并取得了伟大的胜利.为了加快复工复产,武汉市某企业需要运输一批生产物资.根据调查得知,2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资.(1)求1辆大货车和1辆小货车一次分别可以运输多少箱生产物资?(2)现计划用这样的两种货车共12辆运输这批生产物资,已知每辆大货车一次需要运输费用5000元,每辆小货车一次需要运输费用3000元.若运输物资不少于1500箱,并且运输总费用小于54000元.请你列出所有运输方案,并指出哪种运输方案所需费用最少,最少费用是多少元?【分析】(1)设1辆大货车可以运输x箱生产物资,1辆小货车可以运输y箱生产物资,根据2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资列出方程组,解之得出结果即可.(2)设大货车m辆,则小货车(12﹣m)辆,根据运输物资不少于1500箱,并且运输总费用小于54000元列出不等式组解出结果,计算最少费用.【解答】解:(1)设1辆大货车可以运输x箱生产物资,1辆小货车可以运输y箱生产物资.由题意得.解方程组得.答:1辆大货车可以运输150箱生产物资,1辆小货车可以运输100箱生产物资.(2)设大货车m辆,则小货车(12﹣m)辆.由题意得.解不等式组得6≤m<9.∵m取正整数6,7,8.∴运输方案有三种.大货车6辆,小货车6辆,费用为5000×6+3000×6=48000(元);大货车7辆,小货车5辆,费用为5000×7+3000×5=50000(元);大货车8辆,小货车4辆,费用为5000×8+3000×4=52000(元);48000<50000<52000.共计三种方案,当大货车6辆,小货车6辆时,费用最少,最少费用为48000元.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用.解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.(12分)如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP 和∠PBN,分别交射线AM于点C,D.(1)若∠A=70°,则∠CBD=55°:(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生改变?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当∠A=3∠ABC,∠BCM=2∠BDC,求∠A的度数.【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;(2)不变,∠APB:∠ADB=2:1,由AM∥BN得∠APB=∠PBN,∠ADB=∠DBN,根据BD平分∠PBN得∠PBN=2∠DBN,即可推出结论;(3)先根据∠A=3∠ABC和角平分线的定义可得∠ABP=2∠ABC=∠A,再根据∠BCM=2∠BDC和(2)中的∠APB=∠PBN=2∠DBN=2∠BDC可得,最后根据平行线的性质可求出∠A的度数.【解答】解:(1)∵AM∥BN;∴∠ABN+∠A=180°;∵∠A=70°;∴∠ABN=110°∴∠ABP+∠PBN=110°;∵BC平分∠ABP,BD平分∠PBN;∴∠ABP=2∠CBP∠PBN=2∠PBD(角平分线的定义);∴2∠CBP+2∠DBP=110°;∴∠CBD=∠CBP+∠DBP=55°;故答案为:55°;(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动而变化.理由是:∵AM∥BN;∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等);∵BD平分∠PBN(已知);∴∠PBN=2∠DBN(角平分线的定义);∴∠APB=∠PBN=2∠DBN=2∠ADB(等量代换);即∠APB=2∠ADB.(3)∵∠A=3∠ABC;∴;∵BC平分∠ABP;∴∠ABP=2∠ABC=∠A;∵∠BCM=∠A+∠ABC;∴;∵∠BCM=2∠BDC;由(2)可知:∠APB=∠PBN=2∠DBN=2∠BDC;∴∠PBN=∠BCM=∠A;∴;∵AM∥BN;∴∠A+∠ABN=180°;即:∠A+2∠A=180°;∴∠A=60°.【点评】本题考查平行线的性质,角平分线的定义,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型。
七年级数学下册期末考试题(附答案解析)一、单选题1.目前代表华为手机最强芯片的麒麟990处理器采用7nm工艺制程,1nm=0.0000001cm,则7nm用科学记数法表示为()A.0.7×10﹣6cm B.0.7×10﹣7cm C.7×10﹣6cm D.7×10﹣7cm2.下列各式,计算结果为a6的是()A.a2+a4B.a7÷a C.a2•a3D.(a2)43.若a<b,则下列不等式中正确的是()A.a﹣3<b﹣3 B.a﹣b>0 C.b D.﹣2a<﹣2b4.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.5.下列命题中,可判断为假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.两条直线被第三条直线所截,同位角相等C.同旁内角互补,两直线平行D.直角三角形两个锐角互余6.如图,在四边形ABCD中,连接BD,下列判断正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AB∥CDD.若∠A=∠C,∠ABC=∠ADC,则AB∥CD7.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打出来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.8.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF =4,则下列结论中错误的是()A.DF=7 B.∠F=30°C.AB∥DE D.BE=49.已知a是任何实数,若M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,则M、N的大小关系是()A.M≥NB.M>NC.M<ND.M,N的大小由a的取值范围10.如图,四边形ABCD中,AD∥BC,AB⊥BC,AD=6,BC=10,DC=DE,∠CDE=90°,则△ADE的面积是()A.4 B.8 C.12 D.1611.若x、y满足2134x yx y=-⎧⎨+≥⎩,则x的最小整数值为()A.-1 B.1 C.0 D.212.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少( )A .160°B .150°C .120°D .110°二、填空题 13.已知112x y =⎧⎪⎨=⎪⎩是方程42ax y +=的一个解,那么a =___________. 14.如图,将△ABC 向左平移3cm 得到△DEF ,AB 、DF 交于点G ,如果△ABC 的周长是12cm ,那么△ADG 与△BGF 的周长之和是__.15.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.16.对于实数a ,b ,定义运算“*”:a *b =22()()a ab a b ab b a b ⎧-≥⎨-<⎩,例如:4*2,因为4>2,所以4*2=42﹣4×2=8.若x ,y 是二元一次方程组521x y x y +=⎧⎨-=⎩的解,则x *y =_____. 17.为了加强学生课外阅读,开阔视野,某学校开展了“书香校园,从我做起”的主题活动学校随机抽取50名学生,对他们一周的课外阅读时间进行调查,结果如图所示,学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,若学校共有2000人,则获得“阅读之星”的有 ___人.18.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n个正方形(实线)四条边上的整点个数共有_______________个.19.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 ________.20.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是_______________.三、解答题21.计算下列各题:(13;(2)若(2x ﹣1)2=9,试求x 的值.22.解不等式组()2532113x x +≥⎧⎪+⎨<⎪⎩,并把它的解集在数轴上表示出来.23.为庆祝中国共产党成立100周年,让红色基因、革命薪火代代传承,某校开展以学习“四史”(党史、新中国史、改革开放史、社会主义发展史)为主题的书画展,为了解作品主题分布情况,在学生上交的作品中,随机抽取了若干份进行统计,并根据调查统计结果绘制了统计图表:请结合上述信息完成下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)在扇形统计图中,“新中国史”主题作品份数对应的圆心角是度;(4)若该校共上交书画作品1800份,估计以“党史”为主题的作品有多少份?24.如图,AD∥BE,AB∥CD,点C在直线BE上,连接AC、AE,∠3=∠4,求证:∠1=∠225.甲、乙两同学在商店购买中性笔和笔记本,甲要买3支中性笔,2本笔记本需花费19元;乙要买7支中性笔,1本笔记本需花费26元,(1)求中性笔和笔记本的单价;(2)商店新进一种单价为3元的小装饰品,甲、乙两同学非常喜欢,都想购买,但各自付款后,只有甲还剩2元钱,他们看到商店的优惠条件“中性笔每盒10支,整盒买每支可优惠0.5元”后,经商讨两人找到了一种购买方法,如愿以偿,他们是怎样买的?请通过计算说明.26.在综合与实践课上,老师计同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.°(1)如图(1),若三角尺的60°角的顶点G放在CD上,若∠2 = 2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC间的数量关系;(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表示.参考答案与解析:1.【解答】解:7nm=7×0.0000001cm=7×10﹣7cm,故选:D.2.【解答】解:A、a2+a4,无法计算,故此选项错误;B、a7÷a=a6,故此选项正确;C、a2•a3=a5,故此选项错误;D、(a2)4=a8,故此选项错误.故选:B.3.【解答】解:A、不等式的两边都减3,不等式的方向不变,故A正确;B、不等式的两边都减b,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:A.4.【解答】解:2x>1﹣3,2x>﹣2,x>﹣1,故选:D.5.【解答】解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;B、两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;C、同旁内角互补,两直线平行,正确,是真命题;D、直角三角形两个锐角互余,正确,是真命题,故选:B.6.【解答】解:A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能不能推出AB∥CD,故本选项不符合题意;D、根据∠A=∠C,∠ABC=∠ADC,可得∠A+∠ADC=180°,能推出AB∥CD,故本选项符合题意.故选:D.7.【解答】解:设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为:.故选:C.8.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.9.【解答】解:∵M=(2a﹣3)(3a﹣1),N=2a(a﹣)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选:A.10.【解答】解:过D点作DH⊥BC于H,过E点作EF⊥AD于F,如图,∵AB⊥BC,AD∥BC,∴∠DAB=∠B=90°,∵DH⊥BC,∴四边形ABHD为矩形,∴BH=AD=6,∴CH=BC﹣BH=10﹣6=4,∵∠ADH=90°,∴∠FDC +∠CDH =90°,∵∠CDE =90°,即∠EDF +∠FDC =90°,∴∠EDF =∠CDH ,在△DEF 和△DCH 中,,∴△DEF ≌△DCH (AAS ),∴EF =CH =4,∴S △ADE =•AD •EF =×6×4=12.故选:C .11.B【解析】∵2134x y x y =-⎧⎨+≥⎩, ∴1234x y x y +⎧=⎪⎨⎪+≥⎩, ∴3342x x ++≥, 解得1≥x ,∴x 的最小整数为1,故选B .12.B【解析】∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE =∠DEF =10°.由翻折的性质可知:图2中,∠EFC =180°﹣∠BFE =170°,∠BFC =∠EFC ﹣∠BFE =160°, ∴图3中,∠CFE =∠BFC ﹣∠BFE =150°.故选B .13.0【解析】∵112xy=⎧⎪⎨=⎪⎩是方程42ax y+=的一个解,∴1422a+⨯=,即:a=0.故答案是:0.14.12【解析】∵△ABC向左平移3cm得到∆DEF,∴AD=FC,∴△ADG与△BGE的周长之和=AD+BF+DF+AB=BC+AC+AB=12,故答案为12;15.70°##70度【解析】连接AB.∵C岛在A岛的北偏东45°方向,在B岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC)=180°-110°=70°.故答案为:70°.16.-3【解析】=52=1x yx y+⎧⎨-⎩①②,①+②得:3=6x,∴=2x,代入①得:=3y,∵2<3,∴原式2=233=69=3⨯---.故答案为:﹣3.17.200【解析】2000×550=200(人),即若学校共有2000人,则获得“阅读之星”的有200人,故答案为:200.18.4n【解析】第1个正方形的整点个数为4=41⨯,第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.19.(6,3)【解析】∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为15,点A的坐标为(1,3),∴3AC=15,∴AC=5,∴C(6,3),故答案为:(6,3).20.(45,43)【解析】由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)21.(1;(2)2或﹣1.【解析】(1)原式=4﹣1﹣(3=4﹣1﹣;(2)根据平方根的意义可得:2x ﹣1=3或2x ﹣1=﹣3,解得:x =2或x =﹣1,即x 的值为2或﹣1.22.10.5x -≤<,图见解析【解析】:解不等式253x +≥,得1x ≥-,解不等式()2113x +<,得0.5x <, 则不等式组的解集为10.5x -≤<,将其解集表示在数轴上如下:同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)10;28;(2)见解析;(3)144°;(4)216份【解析】(1)由题意得:样本总数=6÷12%=50人,∴m =50×20%=10,∴n %=14÷50=28%,∴n =28,故答案为:10,28;(2)如图(3)由题意得:“新中国史”主题作品份数对应的圆心角=360°×20÷50=144°;(4)由题意得:以“党史”为主题的作品=1800×12%=216(份)答:以“党史”为主题的作品大约有216份.24.见解析【解析】证明:∵AD∥BE,∴∠3=∠DAC,又∵AB∥CD,∴∠4=∠BAE,又∵∠3=∠4,∴∠DAC =∠BAE,∴∠DAC-∠5=∠BAE-∠5,∴∠1=∠2.25.(1)笔记本的单价为5元,单独购买一支笔芯的价格为3元;(2)他们合买笔芯即可如愿以偿,见解析【解析】(1)设笔记本的单价为x元,中性笔单价为y元,依题意,得:2319726x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)他们合买笔芯即可如愿以偿.甲、乙带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为:5×(2+1)+(30.5-)×10=40(元).∵4740-=7(元),3×2=6(元),7>6,∴他们合在一起购买笔芯,即可如愿以偿.进行解题.26.(1)∠1=40°;(2)∠AEF+∠FGC=90°,理由见详解;(3)α+β=300°,理由见详解【解析】:(1)∵AB∥CD,∴∠1=∠EGD,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)∠AEF+∠FGC=90°,理由如下:如图,过点F作FP∥AB,∵CD∥AB,∴FP∥AB∥CD,∴∠AEF=∠EFP,∠FGC=∠GFP,∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3)α+β=300°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∴∠AEG−∠FEG+∠CFG−∠EFG=180°,∵∠FEG=30°,∠EFG=90°,∴∠AEG−30°+∠CFG−90°=180°,∴∠AEG+∠CFG=300°,即:α+β=300°.。
2022-2023学年七年级(下)期末数学试卷一.选择题(共10小题)1.在平面直角坐标系中,点(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.若a<b,则下列不等式中成立的是()A.a﹣b>0B.a﹣2<b﹣2C.a>b D.﹣2a<﹣2b 3.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面右侧的四个图中,能由图经过平移得到的是()A.B.C.D.4.81的算术平方根是()A.9B.±9C.3D.±35.下列调查中,调查方式选择合理的是()A.为了了解某一批灯泡的寿命,选择全面调查B.为了了解某年北京的空气质量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查6.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°7.下列各数中无理数有()3.141,,π,﹣,0,4.2,0.1010010001A.5个B.4个C.3个D.2个8.如果点P(2m,3﹣6m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>9.如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为()A.70°B.75°C.80°D.85°10.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()个球.A.5B.6C.7D.8二.填空题(共8小题)11.﹣的相反数是.12.在平面直角坐标系内,把点P(6,3)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是.13.若x,y为实数,且|x+2|+=0,则(x+y)2020的值为.14.一副三角板如图放置,若∠1=90°,则∠2的度数为.15.若是方程ax+2y=5的一个解,则a的值为.16.已知且y﹣x<2,则k的取值范围是.17.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b,已知不等式x△k≥2的解集在数轴上如图表示,则k的值是.18.阅读下面求(m>0)近似值的方法,回答问题:①任取正数a1<;②令a2=(a1+),则<<a2;③a3=(a2+),则<<a3;…以此类推n次,得到<<a n.其中a n称为的n阶过剩近似值,称为的n阶不足近似值.仿照上述方法,求的近似值.①取正数a1=2<.②于是a2=;③的3阶过剩近似值a3是.三.解答题(共10小题)19.计算:×++|﹣3|.20.解方程组:.21.解不等式:2x+2≥3x﹣1,并把它的解集在数轴上表示出来.22.解不等式组:并求整数解.23.如图,∠A=∠CEF,∠l=∠B,求证:DE∥BC.24.某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如图两幅不完整的统计图请你根据以上信息解答下列问题:(1)本次调查活动的样本容量是.(2)图2中E的圆心角度数为度,并补全图1的频数分布直方图.(3)该校有800名学生,估计该校学生平均每天的课外阅读时间不少于70min的人数.25.如图,在直角坐标平面内,点A的坐标是(0,3),点B的坐标是(﹣3,﹣2).(1)图中点C关于x轴对称的点D的坐标是.(2)如果将点B沿着与y轴平行的方向向上平移5个单位得到点B1,那么A、B1两点之间的距离是.(3)求三角形ACD的面积.26.某学校为了丰富学生的大课间活动,准备购进一批跳绳,已知2根短绳和1根长绳共需35元,1根短绳和2根长绳共需40元.(1)求每根短绳和每根长绳的售价各是多少元?(2)学校准备购进这两种跳绳共40根,并且短绳的数量不超过长绳数量的2倍,总费用不超过500元,请设计出最省钱的购买方案,并说明理由.27.如图①,已知任意三角形ABC,过点C作DE∥AB.(1)如图①,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,AB∥CD,∠CDE=110°,GF交∠DEB的平分线EF 于点F,且∠AGF=145°,结合(1)中的结论,求∠F的度数.28.在平面直角坐标系中,若P、Q两点的坐标分别为P(x1,y1)和Q(x2,y2),则定义|x1﹣x2|和|y1﹣y2|中较小的一个(若它们相等,则取其中任意一个)为P、Q两点的“最佳距离”,记为d (P,Q)例如:P(﹣2,3),Q(0,2).因为|x1﹣x2|=|﹣2﹣0|=2;|y1﹣y2|=|3﹣2|=1,而2>1,所以d(P,Q)=|3﹣2|=1.(1)请直接写出A(﹣1,1),B(3,﹣4)的“最佳距离”d(A,B)=;(2)点D是坐标轴上的一点,它与点C(1,﹣3)的“最佳距离”d(C,D)=2,请写出点D的坐标;(3)若点M(m+1,m﹣10)同时满足以下条件:a)点M在第四象限;b)点M与点N(5,0)的“最佳距离”d(M,N)<2;c)∠MON>45°(O为坐标原点);请写出满足条件的整点(横纵坐标都为整数的点)M的坐标.四.附加题29.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10 30.已知x﹣y=3,xy=1,则x2+y2=()A.5B.7C.9D.1131.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a+b)=a2+ab32.使分式有意义的x的取值范围是.33.分解因式:2a2﹣2=.参考答案与试题解析一.选择题(共10小题)1.在平面直角坐标系中,点(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点(3,﹣2)所在象限是第四象限.故选:D.2.若a<b,则下列不等式中成立的是()A.a﹣b>0B.a﹣2<b﹣2C.a>b D.﹣2a<﹣2b【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a<b,∴a﹣b<0,故本选项错误;B、∵a<b,∴a﹣2<b﹣2,故本选项正确;C、∵a<b,∴a<b,故本选项错误;D、∵a<b,∴﹣2a>﹣2b,故本选项错误.故选:B.3.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面右侧的四个图中,能由图经过平移得到的是()A.B.C.D.【分析】根据平移的意义“平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移”.【解答】解:根据“平移”的定义可知,由题图经过平移得到的图形是:.故选:A.4.81的算术平方根是()A.9B.±9C.3D.±3【分析】依据算术平方根的定义求解即可.【解答】解:∵92=81,∴81的算术平方根是9.故选:A.5.下列调查中,调查方式选择合理的是()A.为了了解某一批灯泡的寿命,选择全面调查B.为了了解某年北京的空气质量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.为了了解某一批灯泡的寿命,应该选择抽样调查,不合题意;B.为了了解某年北京的空气质量,选择抽样调查,符合题意;C.为了了解神舟飞船的设备零件的质量情况,应该选择全面调查,不合题意;D.为了了解一批袋装食品是否含有防腐剂,应该选择抽样调查故选:B.6.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°【分析】利用平行线的性质求出∠A,再利用三角形内角和定理求出∠B即可.【解答】解:∵AB∥CD,∴∠A=∠ACD=36°,∵∠ACB=90°,∴∠B=90°﹣36°=54°,故选:B.7.下列各数中无理数有()3.141,,π,﹣,0,4.2,0.1010010001A.5个B.4个C.3个D.2个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:3.141是有限小数,属于有理数;,是整数,属于有理数;4.2是循环小数,属于有理数;0.1010010001是有限小数,属于有理数;0是整数,属于有理数;无理数有π,﹣共2个.故选:D.8.如果点P(2m,3﹣6m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>【分析】先根据第四象限内点的坐标符号特点列出关于m的不等式组,再求解可得.【解答】解:根据题意,得:,解不等式①,得:m>0,解不等式②,得:m>,∴不等式组的解集为m>,故选:D.9.如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为()A.70°B.75°C.80°D.85°【分析】先根据翻折变换的性质得出∠1=∠D′MN,∠2=∠D′NM,再由平行线的性质求出∠1+∠=∠D′MN及∠2+∠D′NM的度数,进而可得出结论.【解答】解:∵△MND′由△MND翻折而成,∴∠1=∠D′MN,∠2=∠D′NM,∵MD′∥AB,ND′∥BC,∠A=50°,∠C=150°∴∠1+∠D′MN=∠A=50°,∠2+∠D′NM=∠C=150°,∴∠1=∠D′MN===25°,∠2=∠D′NM===75°,∴∠D=180°﹣∠1﹣∠2=180°﹣25°﹣75°=80°.故选:C.10.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()个球.A.5B.6C.7D.8【分析】图①②所示的两个天平处于平衡状态,说明了两个相等关系.设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据两个个天平得到方程组,解这个关于y,z的方程组,将y 和z用x表示出来,再图③中左边用x表示出来,则问题得解.【解答】解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得:,解得:;图③中左边是:x+2y+z=x+2×x+3x=7x,因而需在它的右盘中放置7个球.故选:C.二.填空题(共8小题)11.﹣的相反数是.【分析】直接利用相反数的定义得出答案.【解答】解:﹣的相反数是:.故答案为:.12.在平面直角坐标系内,把点P(6,3)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(4,7).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:把点P(6,3)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(6﹣2,3+4),即(4,7),故答案为:(4,7)13.若x,y为实数,且|x+2|+=0,则(x+y)2020的值为 1 .【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵|x+2|+=0,∴x+2=0且y﹣3=0,解得:x=﹣2、y=3,则(x+y)2020=(﹣2+3)2020=12020=1,故答案为:1.14.一副三角板如图放置,若∠1=90°,则∠2的度数为75°.【分析】首先根据三角板可得∠B=30°,∠A=45°,再根据三角形内角和可得∠3=45°,然后再根据三角形内角与外角的关系可得∠2=∠B+∠4,进而得到答案.【解答】解:由题意得:∠B=30°,∠A=45°,∵∠1=90°,∴∠A+∠3=90°,∴∠3=45°,∴∠4=45°,∵∠B=30°,∴∠2=45°+30°=75°,故答案为:75°.15.若是方程ax+2y=5的一个解,则a的值为 1 .【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:a+4=5,解得:a=1,故答案为:1.16.已知且y﹣x<2,则k的取值范围是k<1 .【分析】将方程组中两个方程相减可得y﹣x=3k﹣1,结合y﹣x <2得出关于k的不等式,解之可得答案.【解答】解:,①﹣②,得:﹣x+y=3k﹣1,即y﹣x=3k﹣1,∵y﹣x<2,∴3k﹣1<2,解得k<1,故答案为:k<1.17.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b,已知不等式x△k≥2的解集在数轴上如图表示,则k的值是﹣4 .【分析】根据新运算法则得到不等式2x﹣k≥2,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【解答】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥2,∴2x﹣1≥k+1且2x﹣1≥﹣3,∴k=﹣4.故答案是:﹣4.18.阅读下面求(m>0)近似值的方法,回答问题:①任取正数a1<;②令a2=(a1+),则<<a2;③a3=(a2+),则<<a3;…以此类推n次,得到<<a n.其中a n称为的n阶过剩近似值,称为的n阶不足近似值.仿照上述方法,求的近似值.①取正数a1=2<.②于是a2= 3 ;③的3阶过剩近似值a3是.【分析】根据材料中的公式,将a1的值代入求出a2,a3即可解答.【解答】解:a2=(a1+)=,,a3=(a2+)==,.故答案为:②3;③.三.解答题(共10小题)19.计算:×++|﹣3|.【分析】先计算算术平方根和立方根、去绝对值符号,再计算乘法,最后计算加减可得.【解答】解:原式=6×﹣1+3﹣=2﹣1+3﹣=4﹣.20.解方程组:.【分析】①×2+②得出11x=22,求出x,把x=2代入①求出y 即可.【解答】解:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:6﹣y=10,解得:y=﹣4,所以方程组的解是:.21.解不等式:2x+2≥3x﹣1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x﹣3x≥﹣1﹣2,合并同类项,得:﹣x≥﹣3,系数化为1,得:x≤3,解集在数轴上表示如下:22.解不等式组:并求整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣3)≤x﹣4,得:x≤2,解不等式,得:x>﹣2,则不等式组的解集为﹣2<x≤2,所以不等式组的整数解为﹣1,0,1,2.23.如图,∠A=∠CEF,∠l=∠B,求证:DE∥BC.【分析】根据平行线的判定定理可得EF∥AB,根据平行线的性质可得∠EFC=∠B,根据等量关系可得∠EFC=∠1,即可证得DE∥BC.【解答】证明:∵∠A=∠CEF,∴EF∥AB,∴∠EFC=∠B,∵∠l=∠B,∴∠EFC=∠1,∴DE∥BC.24.某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如图两幅不完整的统计图请你根据以上信息解答下列问题:(1)本次调查活动的样本容量是50 .(2)图2中E的圆心角度数为14.4 度,并补全图1的频数分布直方图.(3)该校有800名学生,估计该校学生平均每天的课外阅读时间不少于70min的人数.【分析】(1)根据A组的频数和所占的百分比,可以求得本次调查活动的样本容量;(2)根据E组的人数和(1)中的结果,可以计算出图2中E的圆心角度数,再计算出C组的频数,即可补全图1的频数分布直方图;(3)根据频数分布表中的数据,可以计算出该校学生平均每天的课外阅读时间不少于70min的人数.【解答】解:(1)本次调查活动的样本容量是4÷8%=50,故答案为:50;(2)图2中E的圆心角度数为:360°×=14.4°,阅读时间为C的学生有:50﹣4﹣8﹣16﹣2=20,补全的频数分布直方图如右图所示,故答案为:14.4;(3)800×=288(人),答:该校学生平均每天的课外阅读时间不少于70min的有288人.25.如图,在直角坐标平面内,点A的坐标是(0,3),点B的坐标是(﹣3,﹣2).(1)图中点C关于x轴对称的点D的坐标是(3,2).(2)如果将点B沿着与y轴平行的方向向上平移5个单位得到点B1,那么A、B1两点之间的距离是 3 .(3)求三角形ACD的面积.【分析】(1)关于x轴的对称点的坐标特点可得答案;(2)利用坐标系确定B1点位置,然后可得答案;(3)首先确定高和底,然后再计算面积即可.【解答】解:(1)点C的坐标为(3,﹣2),则关于x轴对称的点D的坐标是(3,2),故答案为:(3,2);(2)∵点B的坐标是(﹣3,﹣2),∴将点B沿着与y轴平行的方向向上平移5个单位得到点B1(﹣3,3),∵点A的坐标是(0,3),∴A、B1两点之间的距离是:3,故答案为:3;(3)三角形ACD的面积:×4×3=6.26.某学校为了丰富学生的大课间活动,准备购进一批跳绳,已知2根短绳和1根长绳共需35元,1根短绳和2根长绳共需40元.(1)求每根短绳和每根长绳的售价各是多少元?(2)学校准备购进这两种跳绳共40根,并且短绳的数量不超过长绳数量的2倍,总费用不超过500元,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据2根短绳和1根长绳共需35元,1根短绳和2根长绳共需40元,可以得到相应的二元一次方程组,从而可以求得每根短绳和每根长绳的售价各是多少元;(2)根据题意和一次函数的性质,可以得到最省钱的购买方案.【解答】解:(1)设每根短绳和每根长绳的售价分别为x元、y元,,解得,,答:每根短绳和每根长绳的售价分别为10元、15元;(2)设购进短绳a根,则购进长绳(40﹣a)根,费用为w元,w=10a+15(40﹣a)=﹣5a+600,∵短绳的数量不超过长绳数量的2倍,总费用不超过500元,∴,解得,20≤a≤26,∵k=﹣5,∴w随a的增大而减小,∴当a=26时,w取得最小值,此时w=470,40﹣a=14,答:最省钱的购买方案是购买短绳26根,长绳14根.27.如图①,已知任意三角形ABC,过点C作DE∥AB.(1)如图①,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,AB∥CD,∠CDE=110°,GF交∠DEB的平分线EF 于点F,且∠AGF=145°,结合(1)中的结论,求∠F的度数.【分析】(1)利用平行线的性质,根据平角为180°证明三角形内角和定理;(2)根据∠BEF=∠F+∠EGF,想办法求出∠EGF,∠BEF即可解决问题.【解答】(1)证明:∵DE∥AB,∴∠A=∠DCE,∠B=∠ECB,∵∠DCE=180°,∴∠DCA+∠ACB+∠ECB=180°,∴∠A+∠ACB+∠B=180°.(2)∵AB∥CD,∴∠CDE=∠BED=110°,∵EF平分∠BED,∴∠BEF=∠BED=55°,∵∠AGF=145°,∴∠FGE=35°,∵∠BEF=∠F+∠EGF,∴∠F=55°﹣35°=20°.28.在平面直角坐标系中,若P、Q两点的坐标分别为P(x1,y1)和Q(x2,y2),则定义|x1﹣x2|和|y1﹣y2|中较小的一个(若它们相等,则取其中任意一个)为P、Q两点的“最佳距离”,记为d (P,Q)例如:P(﹣2,3),Q(0,2).因为|x1﹣x2|=|﹣2﹣0|=2;|y1﹣y2|=|3﹣2|=1,而2>1,所以d(P,Q)=|3﹣2|=1.(1)请直接写出A(﹣1,1),B(3,﹣4)的“最佳距离”d(A,B)=|﹣1﹣3|=4 ;(2)点D是坐标轴上的一点,它与点C(1,﹣3)的“最佳距离”d(C,D)=2,请写出点D的坐标(3,0)或(﹣1,0);(3)若点M(m+1,m﹣10)同时满足以下条件:a)点M在第四象限;b)点M与点N(5,0)的“最佳距离”d(M,N)<2;c)∠MON>45°(O为坐标原点);请写出满足条件的整点(横纵坐标都为整数的点)M的坐标(4,﹣7)或(5,﹣6).【分析】(1)根据新概念求得即可;(2)分两种情况,根据“最佳距离”的定义得出即可;(3)根据题意得出,解不等式即可求得.【解答】解:(1)∵A(﹣1,1),B(3,﹣4),∴|﹣1﹣3|=4,|1+4|=5,∴d(A,B)=|﹣1﹣3|=4;故答案为|﹣1﹣3|=4;(2)∵点C(1,﹣3),d(C,D)=2,当点D在x轴上时,设D(m,0),|﹣3﹣0|>2,∴|m﹣1|=2,∴m=3或m=﹣1当点D在y轴上时,设D(0,n),则|1﹣0|<2,不合题意,点D的坐标为(3,0)或(﹣1,0),故答案为(3,0)或(﹣1,0);(3)由题意得:,解得2<m<4.5,∵横纵坐标都为整数,∴m=3和4,∴M(4,﹣7)或(5,﹣6),故答案为(4,﹣7)或(5,﹣6).四.附加题29.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.30.已知x﹣y=3,xy=1,则x2+y2=()A.5B.7C.9D.11【考点】4C:完全平方公式.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.【解答】解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故选:D.31.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2 C.(a+b)(a﹣b)=a2﹣b2D.a(a+b)=a2+ab【考点】4A:单项式乘多项式;4D:完全平方公式的几何背景.【专题】31:数形结合;4A:面积法;512:整式.【分析】长方形ABCD的面积可以表示为a(a+b),也可表示为两个长方形的面积和,即a2+ab,所以a(a+b)=a2+ab【解答】解:∵长方形ABCD面积=两个小长方形面积的和,∴可得a(a+b)=a2+ab故选:D.32.使分式有意义的x的取值范围是x≠1 .【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.33.分解因式:2a2﹣2=2(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).。
七年级第二学期期末数学试卷一、选择题1.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.2.将数5.01×10﹣5用小数表示,正确的是()A.0.0000501 B.0.00000501 C.0.000501 D.﹣0.00005013.下列方程中,属于二元一次方程的是()A.x2+y=1 B.x﹣=1 C.﹣y=1 D.xy﹣1=0 4.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重5.如图,点E在BC的延长线上,对于给出的四个条件:①∠1=∠3;②∠2+∠5=180°;③∠4=∠B;④∠D+∠BCD=180°.其中能判断AD∥BC的是()A.①②B.①④C.①③D.②④6.下列计算正确的是()A.a3﹣a2=a B.a6÷a2=a3C.(﹣a2)3=a6 D.(﹣ab)3=﹣a3b37.关于图形平移的特征叙述,有下列两种说法:①一个图形和它经过平移所得的图形中,两组对应点的连线一定平行;②一个图形和它经过平移所得的图形中,两组对应点的连线一定相等.其中判断正确的是()A.①错②对B.①对②错C.①②都错D.①②都对8.下列多项式的乘法可以运用平方差公式计算的是()A.(2x+3y)(2y﹣3x)B.(2x﹣3y)(﹣2x﹣3y)C.(﹣2x+3y)(2x﹣3y)D.(﹣2x﹣3y)(2x+3y)9.已知关于x的分式方程﹣1=无解,则m的值是()A.﹣2或﹣3 B.0或3 C.﹣3或3 D.﹣3或0 10.我们知道:若am=an(a>0且a≠1),则m=n.设5m=3,5n=15,5p=75.现给出m,n,p三者之间的三个关系式:①m+p=2n;②m+n=2p﹣1;③n2﹣mp=1.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题:本大题有6个小题,每小题4分,共24分.11.当a=时,分式的值为零.12.如图,若l1∥l2,∠1=66°,则∠2=.13.计算:20222﹣4040×2019+20192=.14.一组数据的最大值为110,最小值为45.若选取组距为10,则这组数据可分成组.15.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.16.若m,n均为正整数,且3m﹣1•9n=243,则m+n的值是.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.因式分解:(1)ma﹣mb+mc;(2)(x﹣y)2﹣6(x﹣y)+9.18.某学校为了解同学们对“垃圾分类知识”的知晓情况,某班数学兴趣小组随机调查了学校的部分同学,根据调查情况制作的统计图表的一部分如图所示:“垃圾分类知识”知晓情况统计表知晓情况频数频率A.非常了解m 0.40B.比较了解70 0.35C.基本了解40 nD.不太了解10 0.05(1)本次调查取样的样本容量是,表中n的值是.(2)根据以上信息补全条形统计图.(3)若基本了解和不太了解都属于“不达标”等级,根据调查结果,请估计该校1600名同学中“不达标”的学生还有多少人?19.解下列方程(组):(1);(2)=﹣2.20.先化简,再求值:(1)(a+3)(a﹣3)﹣(a﹣1)2,其中a=()﹣1+(﹣2022)0;(2)(1﹣)÷,并从1,2,3中选取一个合适的数作为x的值代入求值.21.如图,已知BC∥DF,∠B=∠D,A、F、B三点共线,连接AC 交DF于点E.(1)求证:∠A=∠ACD.(2)若FG∥AC,∠A+∠B=108°,求∠EFG的度数.22.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=.(x﹣1)(xn+xn﹣1+…+x+1)=.(2)22022+22019+22018+…+22+2+1.(3)32022﹣32019+32018﹣32017+…+32﹣3+1.23.商店常用以下方法来确定两种糖混合而成的什锦糖的价格:设甲种糖的单价为a元/千克,乙种糖的单价为b元/千克(a≠b),则m千克甲种糖和n千克乙种糖混合而成的什锦糖单价为元/千克.(1)当a=25,b=30时,求20千克的甲种糖和30千克的乙种糖混合而成的什锦糖单价.(2)在(1)的基础上,要把什锦糖单价降低2元,则需减少乙种糖多少千克?(3)现有A、B两种混合方案,A方案是由x千克甲种糖和x千克乙种糖混合而成,B方案是由y元甲种糖和y元乙种糖混合而成,你认为哪一种方案的单价低?请说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,据此解答.解:根据同位角的定义可知答案是选项C.故选:C.2.将数5.01×10﹣5用小数表示,正确的是()A.0.0000501 B.0.00000501 C.0.000501 D.﹣0.0000501【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n 位得到原数.解:将数5.01×10﹣5用小数表示,正确的是0.0000501.故选:A.3.下列方程中,属于二元一次方程的是()A.x2+y=1 B.x﹣=1 C.﹣y=1 D.xy﹣1=0【分析】根据二元一次方程的定义的内容逐个判断即可.解:A、是二元二次方程,不是二元一次方程,故本选项不符合题意;B、是分式方程,不是整式方程,不是二元一次方程,故本选项不符合题意;C、是二元一次方程,故本选项符合题意;D、是二元二次方程,不是二元一次方程,故本选项不符合题意;故选:C.4.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重【分析】利用抽样调查的中样本的代表性即可作出判断.解:某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.5.如图,点E在BC的延长线上,对于给出的四个条件:①∠1=∠3;②∠2+∠5=180°;③∠4=∠B;④∠D+∠BCD=180°.其中能判断AD∥BC的是()A.①②B.①④C.①③D.②④【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.解:①∵∠1=∠3,∴AD∥BC;②∵∠2+∠5=180°,∵∠5=∠AGC,∴∠2+∠AGC=180°,∴AB∥DC;③∵∠4=∠B,∴AB∥DC;④∵∠D+∠BCD=180°,∴AD∥BC.故选:B.6.下列计算正确的是()A.a3﹣a2=a B.a6÷a2=a3C.(﹣a2)3=a6 D.(﹣ab)3=﹣a3b3【分析】直接利用同底数幂的除法运算法则以及积的乘方运算法则分别计算得出答案.解:A、a3和a2不是同类项,无法合并,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣a2)3=﹣a6,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.7.关于图形平移的特征叙述,有下列两种说法:①一个图形和它经过平移所得的图形中,两组对应点的连线一定平行;②一个图形和它经过平移所得的图形中,两组对应点的连线一定相等.其中判断正确的是()A.①错②对B.①对②错C.①②都错D.①②都对【分析】利用平移的性质对两种说法进行判断.解:一个图形和它经过平移所得的图形中,两组对应点的连线平行或共线;所以①的说法错误;一个图形和它经过平移所得的图形中,两组对应点的连线一定相等,所以②的说法正确.故选:A.8.下列多项式的乘法可以运用平方差公式计算的是()A.(2x+3y)(2y﹣3x)B.(2x﹣3y)(﹣2x﹣3y)C.(﹣2x+3y)(2x﹣3y)D.(﹣2x﹣3y)(2x+3y)【分析】能利用平方差公式的条件:这是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).解:能利用平方差公式计算的多项式的特点是:两个两项式相乘,有一项相同,另一项互为相反数.A、不能用平方差公式进行计算,故本选项不符合题意;B、能用平方差公式进行计算,故本选项符合题意;C、不能用平方差公式进行计算,故本选项不符合题意;D、不能用平方差公式进行计算,故本选项不符合题意.故选:B.9.已知关于x的分式方程﹣1=无解,则m的值是()A.﹣2或﹣3 B.0或3 C.﹣3或3 D.﹣3或0【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解:两边都乘以x(x﹣3),得:x(x+m)﹣x(x﹣3)=x﹣3,整理,得:(m+2)x=﹣3,解得,①当m+2=0,即m=﹣2时整数方程无解,即分式方程无解,②∵关于x的分式方程﹣1=无解,∴或,即m+2=0或3(m+2)=﹣3,解得m=﹣2或﹣3.∴m的值是﹣2或﹣3.故选:A.10.我们知道:若am=an(a>0且a≠1),则m=n.设5m=3,5n=15,5p=75.现给出m,n,p三者之间的三个关系式:①m+p=2n;②m+n=2p﹣1;③n2﹣mp=1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据同底数幂的乘除法公式即可求出m、n、p的关系.解:∵5m=3,∴5n=15=5×3=5×5m=51+m,∴n=1+m,∵5p=75=52×3=52+m,∴p=2+m,∴p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;②m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;③n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①③.故选:B.二、填空题:本大题有6个小题,每小题4分,共24分.11.当a= 1 时,分式的值为零.【分析】根据分式值为零的条件可得a﹣1=0,且a+1≠0,再解即可.解:由题意得:a﹣1=0,且a+1≠0,解得:a=1,故答案为:1.12.如图,若l1∥l2,∠1=66°,则∠2=114°.【分析】由l1∥l2,利用“两直线平行,同旁内角互补”可求出∠2的度数.解:∵l1∥l2,∴∠2=180°﹣∠1=180°﹣66°=114°.故答案为:114°.13.计算:20222﹣4040×2019+20192= 1 .【分析】根据完全平方公式,可得答案.解:20222﹣4040×2019+20192=20222﹣2×2022×2019+20192=(2022﹣2019)2=12=1.故答案为:1.14.一组数据的最大值为110,最小值为45.若选取组距为10,则这组数据可分成7 组.【分析】根据题意,可以计算出需要分成几组,本题得以解决.解:110﹣45=65,65÷10=6.5,故这组数据可分成7组,故答案为:7.15.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.【分析】设这一年弟弟x岁,哥哥y岁,根据题意列出方程组解答即可.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.16.若m,n均为正整数,且3m﹣1•9n=243,则m+n的值是4或5 .【分析】根据同底数幂的乘法法则以及幂的乘法运算法则解答即可.解:∵3m﹣1•9n=3m﹣1•32n=243=35,∴m﹣1+2n=5,即m+2n=6,∵m,n均为正整数,∴或,∴m+n=4或5.故答案为:4或5.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.因式分解:(1)ma﹣mb+mc;(2)(x﹣y)2﹣6(x﹣y)+9.【分析】(1)原式提取公因式即可;(2)原式利用完全平方公式分解即可.解:(1)原式=m(a﹣b+c);(2)原式=(x﹣y﹣3)2.18.某学校为了解同学们对“垃圾分类知识”的知晓情况,某班数学兴趣小组随机调查了学校的部分同学,根据调查情况制作的统计图表的一部分如图所示:“垃圾分类知识”知晓情况统计表知晓情况频数频率A.非常了解m 0.40B.比较了解70 0.35C.基本了解40 nD.不太了解10 0.05 (1)本次调查取样的样本容量是200 ,表中n的值是0.20 .(2)根据以上信息补全条形统计图.(3)若基本了解和不太了解都属于“不达标”等级,根据调查结果,请估计该校1600名同学中“不达标”的学生还有多少人?【分析】(1)根据B等级的频数和频率,可以求得本次调查的学生人数,然后即可计算出n的值;(2)根据(1)中的结果,可以得到m的值,然后即可将条形统计图补充完整;(3)根据频数分布表中的数据,可以计算出该校1600名同学中“不达标”的学生还有多少人.解:(1)本次调查取样的样本容量是70÷0.35=200,n=40÷200=0.20,故答案为:200,0.20;(2)m=200×0.40=80,补全的条形统计图如右图所示;(3)1600×(0.20+0.05)=400(人),答:该校1600名同学中“不达标”的学生还有400人.19.解下列方程(组):(1);(2)=﹣2.【分析】(1)利用加减消元法求解可得;(2)先两边都乘以最简公分母y﹣1,化分式方程为整式方程,再解整式方程求出y的值,最后检验可得答案.解:(1),①+②,得:5x=10,解得x=2,将x=2代入②,得:6+y=7,解得y=1,所以方程组的解为.(2)去分母,得:﹣3=y﹣2(y﹣1),解得y=5,检验:y=5时,y﹣1=4≠0,所以分式方程的解为y=5.20.先化简,再求值:(1)(a+3)(a﹣3)﹣(a﹣1)2,其中a=()﹣1+(﹣2022)0;(2)(1﹣)÷,并从1,2,3中选取一个合适的数作为x的值代入求值.【分析】(1)首先利用平方差和完全平方公式进行计算,再合并同类项,化简后,再代入a的值即可;(2)首先计算括号里面的减法,再算括号外的除法,化简后,再选择x的值求值即可.解:(1)原式=a2﹣9﹣(a2﹣2a+1)=a2﹣9﹣a2+2a﹣1=2a ﹣10,当a=5+1=6时,原式=12﹣10=2;(2)原式=•=•=,当x=2时,原式==﹣3.21.如图,已知BC∥DF,∠B=∠D,A、F、B三点共线,连接AC 交DF于点E.(1)求证:∠A=∠ACD.(2)若FG∥AC,∠A+∠B=108°,求∠EFG的度数.【分析】(1)根据平行线的性质得到∠B+∠BCD=180°,由等量关系得到∠D+∠BCD=180°,根据平行线的判定可得AB∥CD,再根据平行线的性质即可求解;(2)根据三角形内角和定理可得∠ACB=72°,再根据平行线的性质可求∠BGF,进一步根据平行线的性质求得∠EFG.【解答】(1)证明:∵BC∥DF,∴∠B+∠BCD=180°,∵∠B=∠D,∴∠D+∠BCD=180°,∴AB∥CD,∴∠A=∠ACD;(2)解:∵∠A+∠B=108°,∴∠ACB=72°,∵FG∥AC,∴∠BGF=72°,∵BC∥DF,∴∠EFG=72°.22.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=x5﹣1 .(x﹣1)(xn+xn ﹣1+…+x+1)=xn+1﹣1 .(2)22022+22019+22018+…+22+2+1.(3)32022﹣32019+32018﹣32017+…+32﹣3+1.【分析】(1)根据代数式的规律可得答案;(2)根据规律(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x =2,n=2022代入计算即可,(3)根据规律(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x =﹣3,n=2022代入计算即可,解:(1)根据规律可得,x5﹣1,xn+1﹣1;故答案为:x5﹣1,xn+1﹣1;(2)(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=2,n=2022代入得,22022+22019+22018+…+22+2+1=(2﹣1)(22022+22019+22018+…+22+2+1),=22021﹣1;(3)(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1,把x=﹣3,n=2022代入得,(﹣3﹣1)(32022﹣32019+32018﹣32017+…+32﹣3+1)=(﹣3)2021﹣1,所以.32022﹣32019+32018﹣32017+…+32﹣3+1,=,=.23.商店常用以下方法来确定两种糖混合而成的什锦糖的价格:设甲种糖的单价为a元/千克,乙种糖的单价为b元/千克(a≠b),则m千克甲种糖和n千克乙种糖混合而成的什锦糖单价为元/千克.(1)当a=25,b=30时,求20千克的甲种糖和30千克的乙种糖混合而成的什锦糖单价.(2)在(1)的基础上,要把什锦糖单价降低2元,则需减少乙种糖多少千克?(3)现有A、B两种混合方案,A方案是由x千克甲种糖和x千克乙种糖混合而成,B方案是由y元甲种糖和y元乙种糖混合而成,你认为哪一种方案的单价低?请说明理由.【分析】(1)将a=25,b=30,m=20,n=30,代入中即可求出结论;(2)设需减少乙种糖z千克,根据什锦糖单价降低2元,即可得出关于z的分式方程,解之经检验后即可得出结论;(3)分别用含a,b的代数式表示出两种混合方案的单价,做差后即可得出结论.解:(1)当a=25,b=30,m=20,n=30时,==28.答:当a=25,b=30时,用20千克的甲种糖和30千克的乙种糖混合而成的什锦糖单价为28元/千克.(2)设需减少乙种糖z千克,依题意,得:=28﹣2,解得:z=25,经检验,z=25是原方程的解,且符合题意.答:需减少乙种糖25千克.(3)混合方案B的单价低,理由如下:混合方案A的单价==,混合方案B的单价==.∵﹣==>0,∴混合方案B的单价低.。
封 线
密
学校
姓
年 班
学
七年级数学试卷(共8页) 第1页
七年级数学第二学期期末考试
七 年 级 数 学 试 卷
( 时间:120分钟 总分:120分 )
(每小题2分,共20分)
1、“a 是负数”用不等式可表示为 .
2、若直线a ⊥b ,a ∥c ,则c b .
3、如图,小手盖住的点的坐标可能为 (写出一个即可).
4、如图,将三角板的直角顶点放在直尺的一边上,∠1=300,∠2=500,∠3等于 度.
5、如图,一扇窗户打开后,用窗钩BC 可将其固定,•这里所运用的几何原理是__________.
6、已知a 、b 互为相反数,并且523=-b a ,则=+2
2
b a . 7、关于x 的不等式23x a -≤-的解集如图所示,则a 的值是 .
8、一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。
那么这条轮船在静 水中每小时行 千米.
9、一个正多边形,它的一个外角等于与它相邻的内角的5
1
,则这个多边形是 边形.
10、如图,从左到右,在每个小格子中都填入一个整数..
,使得其中任意三个相邻..
格子中所 填整数之和都相等,可求得c 等于3,那么第2009个格子中的数为_________.
二、选择题 (每小题3分,共18分)
11、通过平移,可将图1中的福娃“欢欢”移动到图 ( )
12、如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE
=125°, 则∠DBC 的度数为 ( ) A .55° B .65° C .75° D .125°
七年级数学试卷(共8页) 第2页
13、下列调查工作需采用的普查方式的是 ( )
A .环保部门对淮河某段水域的水污染情况的调查 B.电视台对正在播出的某电视节目收视率的调查 C .质检部门对各厂家生产的电池使用寿命的调查
14右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值
范围,在数轴上可表示为 ( )
15、在“伯都讷”广场修建的工程中,计划采用同一种..
正多边形地板砖铺设地面,在下面的地板砖:①正方形 ②正五边形 ③正六边形 ④正八边形中能够铺满地面的地板砖的种数有
( )
A 、1种
B 、2种
C 、3种
D 、4种
16、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你
的3
1
给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组正确的是 ( )
A .⎩⎨⎧=+=+303202y x y x
B .⎩⎨⎧=+=+103102y x y x
C .⎩⎨⎧=+=+103202y x y x
D .⎩
⎨⎧=+=+303102y x y x
三、解答题(每小题5分,共20分)
17、解方程组
18、解不等式组⎩⎪⎨⎪⎧x -32+3≥x ①
1-3(x -1)<8-x ②
并把它的解集在数轴上表示出来.
19、将一副直角三角尺如图放置,已知AE BC ∥,求AFD ∠的度数.
图2
B
A
C
D
⎪⎩
⎪
⎨⎧=+=+=+③②
①
361a c c b b a
七年级数学试卷(共8页) 第3页
20、某商店在一次促销活
动中规定:消费者消费超过..200
元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?
四、解答题(每小题6分,共18分)
21、如图,是一个正方体的展开图,标注字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,试
求代数式
y
x y
x 222+-的值.
22、如图,方格中有一条美丽可爱的小金鱼.
(1)若方格的边长为1,则小鱼的面积为 .
(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).
23、如图,将纸片△ABC 沿DE 折叠,点A 落在点P 处,已知∠1+∠2=124°,求∠A 的度.
封
线
密
学校
姓
年 班
学
七年级数学试卷(共8页) 第4页
七年级数学试卷(共8页) 第5页
五、解答题(每小题8分,共24分)
24、下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中 的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n .
(1)将方程组1的解填入图中;
(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中;
(3)若方程组⎩⎨
⎧=-=+161my x ny x 的解是⎩⎨⎧-==9
y 10
x ,求m 、n 的值,并判断该方程组是否符合 (2)
中的规律?
25、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5
万元;每件乙
种商品进价8万元,售价lO 万元,且它们的进价和售价始终不变.现准备购进甲、
乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?
(2)该公司王经理说:“若按(1)中的几种进货方案,销售后最多可获利润44.5万元.”他的说法正确吗?试计算后说
明.
26、某校学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.
⑴ 确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是 (填“甲”或“乙”或“丙”);
⑵ 他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将两幅统计图补充完整;
⑶ 若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情
七年级数学试卷(共8页) 第7页
七年级数学试卷(共8页) 第6页
(注:图2中相邻两虚线形成的圆心角为30°)
六、解答题(27、28
每小题10分,29
小题5分,共25分)
27
有同一旅行社的甲、乙两个旅行团共60人(甲团人数多于乙团)准备去该景点旅游,如果甲、乙两团各自购票,那么一共要支付98元.
(1) 如果两团联合起来购票,那么比各自购票要节约多少钱? (2) 甲乙两团各有多少人?
(3)如果甲团有12人因故不能前往旅游,那么旅行社该如何购票才能最省钱?
28、已知如图1,
线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形
如图1的图形称之为“8字形”.如图2,在
图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题: (1) 在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ; (2)仔细观察,在图2中“8字形”的个数: 个; (3)在图2中,若∠D=400,∠B=360,试求∠P 的度数; (4)如果图2中∠D 和∠B 为任意角时,其他条件不变,试
问∠P 与∠D 、∠B 之间存在
着怎样的数量关系.(直接写出结论即可)
七年级数学试卷(共8页)第8页
附加题:(5分)
29、小刚沿街匀速行走,发现每隔6分钟从背后驶过一辆2路公交车,每隔3分钟从迎面驶来一辆2路公交车.假设每辆2
路公交车行驶速度相同,而且2路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是多少分钟.。