TSH81IPT中文资料
- 格式:pdf
- 大小:671.24 KB
- 文档页数:18
tsh值偏高的原因有哪些?关于《tsh值偏高的原因有哪些? 》,是我们特意为大家整理的,希望对大家有所帮助。
TSH是促甲状腺素等含意,其功效十分大,假如查验全过程中发觉较高状况极有可能得了了甲状腺囊肿层面的病症。
研究发现,造成tsh值较高的原因有很多,在其中原发性甲状腺素减低、外源促甲状腺生长激素代谢肿瘤(肺、乳腺)等病症更为普遍,此外也可能处于急性甲状腺炎手术恢复期。
一、tsh值代表什么意思?TSH(thyrotropin,thyroid stimulating hormone,TSH)中文名字是促甲状腺生长激素。
促甲状腺生长激素是腺垂体代谢的推动甲状腺囊肿的生长发育和功能的生长激素。
人类的TSH为一种糖蛋白,含211个碳水化合物,糖原约占全部分子结构的15%。
全部分子结构由两根肽链——α链和β链构成。
TSH全方位推动甲状腺囊肿的功能,早些时候出現的是推动甲状腺素的释放出来,晚些出現的为推动T4、T3的生成,包含提升碘泵特异性,提高乳酸脱氢酶特异性,推动甲状腺囊肿血蛋白生成及色氨酸碘化等重要环节。
TSH推动甲状腺囊肿鳞状上皮细胞的新陈代谢及胞内核苷酸和蛋白质合成,使体细胞呈高柱型增生,进而使腺管扩大。
二、tsh偏高的原因有什么?TSH,别名“甲状腺素”,可推动甲状腺囊肿鳞状上皮细胞的新陈代谢及胞内核苷酸和蛋白质合成,使体细胞呈高柱型增生,进而使腺管扩大。
腺垂体代谢TSH,一方面受下丘脑垂体代谢的促甲状腺生长激素释放出来生长激素(TRH)的提升性能力影响,另层面又遭受T3、T4决策性的抑制型影响,二者相互之间拮抗,他们构成下丘脑垂体-腺垂体-甲状腺囊肿轴。
促甲状腺生长激素标准值:成年人:2~10MU/L。
tSH-700系列繁體中文使用手冊精簡型序列埠分享器 2020年6月 版本: 1.8:目錄檢查配件 (4)更多資訊 (4)1.產品介紹 (5)1.1選型指南 (7)1.2規格 (8)1.3配置圖 (9)1.4機構圖 (11)1.4.1tSH-700 系列模組 (11)1.4.2CA-002 DC 電源線 (12)1.5腳位定義 (13)2.啟動 TSH-700 模組 (14)步驟1:連接電源和電腦主機 (14)步驟2:連接M ASTER和S LAVE設備 (16)步驟3:安裝軟體到您的電腦 (17)步驟4:配置正確的網路設定 (17)步驟5:配置A PPLICATION M ODE (19)步驟6:配置序列埠設定 (20)步驟7:測試您的T SH-700模組 (21)3.配置網頁 (23)3.1登入 T SH-700網頁伺服器 (23)3.2H OME首頁 (25)3.3A PPLICATION M ODE (26)3.3.1Converter Application (tSH-72x 系列) (26)3.3.2Sharer Application (tSH-73x 系列) (29)3.4S ERIAL P ORT 配置 (32)3.4.1Port1 Settings (32)3.5N ETWORK S ETTING配置頁 (34)3.5.1IP Address Settings (34)3.5.2General Settings (36)3.5.3Restore Factory Defaults (38)3.5.4Firmware Update (40)3.6F ILTER配置頁 (41)3.6.1 Accessible IP (filter is disabled when all zero) .......................................................................................... 41 3.7 M ONITOR 配置頁 .............................................................................................................................................. 42 3.8 C HANGE P ASSWORD 配置頁 ............................................................................................................................... 43 3.9L OGOUT 配置頁 (43)附錄 A: 疑難排解 ....................................................................................................................................................... 44 如何恢復模組原廠預設的網頁伺服器登入密碼? ...................................................................................................... 44 附錄 B: 應用注意 ....................................................................................................................................................... 46 如何設定 T IMEOUT 值? ................................................................................................................................................... 46 附錄 C: 手冊修訂記錄 (48)檢查配件產品包裝內應包含下列配件:更多資訊相關文件位置 :https:///en/download/index.php?nation=US&kind1=&model=&kw=tSHFirmware位置 :/en/download/show.php?num=1519&nation=US&kind1=&model=&k w=tSH相關軟體位置 :https:///en/download/index.php?nation=US&kind1=&model=&kw=eSearch1.產品介紹泓格推出一系列tGW-700/tDS-700精簡型模組後,受到熱烈回響,因此繼續以研發、創新的精神,來擴展模組新功能以滿足使用者的各項應用需求。
M05-0906-v1.01促甲状腺素(TSH )【试剂名称】 通用名称:促甲状腺素(TSH )测定试剂盒(化学发光法) 1. 用途本试剂用于定量测定人血清或血浆内促甲状腺激素(TSH )的含量。
本方法适用标本的浓度范围为0-100 μIU/ml 。
该测试必须在Maglumi ® 1000 分析仪上进行。
2. 概述与说明促甲状腺激素是一种分子量范围在28000-30000 道尔顿的糖蛋白激素,由两个非共价连接的亚单位hTSH α及hTSH β组成。
TSH 、促黄体生成素(LH )、促卵泡激素(FSH ),以及人绒毛膜促性腺激素(HCG )的共同特征在于,它们的糖类含量相当高,且它们的α亚单位序列具有同源相似性。
而这四种激素的β亚单位的氨基酸序列各不相同。
腺垂体内TSH 的释放与合成受到下丘脑促甲状腺素释放激素的刺激。
所释放的TSH 刺激甲状腺释放甲状腺素(T4)和三碘甲状腺原氨酸(T3),这两者分别以99.9% 及99.7%的比例与血液中的转运蛋白结合。
仅游离的FT3 与FT4没有与结合蛋白相结合,在外周组织具有生理活性,通过垂体反馈机制控制甲状腺的功能。
TSH 的测定能够对抑制及替代疗法进行监测。
3. 测试原理利用免疫发光夹心法的原理检测TSH ;采用针对TSH 的一株单克隆抗体标记ABEI ,另外一株单克隆抗体标记FITC 。
标本、定标液、(质控液)与ABEI 标记的单抗,FITC 标记的单抗,包被有羊抗FITC 抗体的纳米免疫磁性微珠混匀置37℃ 孵育形成“夹心三明治”,然后外加磁场沉淀,去掉上清液,用洗液循环清洗沉淀复合物1次,直接进入样品测量室,仪器自动泵入发光底物1和2,自动监测3秒钟内发出的相对光强度(RLU )。
TSH 浓度与RLU 成一定的比例关系,仪器自动拟合计算TSH 浓度。
4. 试剂4.1试剂组成此外试剂盒中不包含以下材料,需另行准备4.2试剂的准备在揭开密封纸之前,先轻轻地水平摇晃试剂盒(为了防止泡沫形成!)。
甲状腺功能亢进症
概述
甲状腺毒症和甲亢的定义
甲状腺的三个基本组成
甲状腺滤泡(合成分泌甲状腺激素)
胶质(由甲状腺球蛋白组成)滤泡旁细胞(分泌降钙素)
甲状腺的三个作用促进生长发育(呆小症)
调节机体新陈代谢
促进代谢
双向调节物质代谢
调节器官系统的功能活动
机制
相关物质
促甲状腺激素释放激素TRH(下丘脑合成,作用于垂体)
促甲状腺激素TSH(垂体合成,作用于甲状腺)
甲状腺激素TH(甲状腺合成)
甲状腺球蛋白TG
Graves病的特征性自身抗体是TRAb(TSH受体抗体)
TSH与TSAb结构相似,TSAb可与TSH竞争性的与TSH-R结合,且这种结合不受负反馈的调节,使甲状腺激素大量合成
临床表现
一般表现高代谢症候群+甲状腺肿大+心血管系统+水肿+突眼
特殊表现
Graves眼病+胫前粘液性水肿+甲状腺危象+甲状腺毒症心脏病+淡漠型甲亢+T3甲状腺毒症+妊娠期一过性甲状腺毒症
实验室和其他检查
甲功五项
TSH最敏感,可筛查
血清总甲状腺素TT4指标稳定,重复性好
TT3
血清游离甲状腺激素FT3和FT4:直接反应甲状腺功能,且TT4更稳定甲状腺抗体
TSH受体抗体(TRAb):诊断GD的第一线指标
TSAb
131碘的摄取率:用于甲状腺毒症病因的鉴别彩色多普勒CT和MRI
甲状腺放射性核素扫描:甲亢的鉴别诊断
治疗
甲状腺药物ATD(我国首选)
放射碘(美国首选)手术。
TSH简介目录•1促甲状腺激素概述•2TSH的别名•3促甲状腺激素的医学检查o 3.1检查名称o 3.2分类o 3.3促甲状腺激素的测定原理o 3.4试剂o 3.5操作方法o 3.6正常值o 3.7化验结果临床意义o 3.8附注o 3.9相关疾病•4促甲状腺激素说明书o 4.1药品名称o 4.2英文名称o 4.3TSH的别名o 4.4分类o 4.5剂型o 4.6促甲状腺激素的药理作用o 4.7促甲状腺激素的药代动力学o 4.8促甲状腺激素的适应证o 4.9促甲状腺激素的禁忌证o 4.10注意事项o 4.11促甲状腺激素的不良反应o 4.12促甲状腺激素的用法用量o 4.13TSH与其它药物的相互作用o 4.14专家点评这是一个重定向条目,共享了促甲状腺激素的内容。
为方便阅读,下文中的促甲状腺激素已经自动替换为TSH,可点此恢复原貌,或使用备注方式展现1TSH概述TSH主要是由腺垂体嗜堿性细胞分泌的一种糖蛋白激素。
在TSH释放激释放激素(TRH)的作用下,也可使腺垂体合成和释放TSH。
TSH能促进甲状腺细胞增生,促进甲状腺合成和分泌甲状腺激素,甲状腺激素分泌增加后又能反馈抑制TSH的分泌。
在体内受三碘甲状腺原氨酸、甲状腺素和中枢神经系统的调节,呈昼夜节律性变化,清晨2~4时最高,下午6~8点是最低。
检测TSH是临床上诊断原发性甲状腺功能减退症的最灵敏指标,对甲状腺功能紊乱及病变部位诊断有很大价值。
TSH缩写为促甲状腺激素。
是脑下垂体前叶分泌的,是可使甲状腺滤胞生长并促进其分泌机能的激素。
能活化参于甲状腺球蛋白代谢的各种酶。
脑下垂体前叶的这种激素的分泌是由来自视丘下部的TRF (促田状腺激素释放因子)促进的。
牛的促甲状腺激素分子量约2万8千,沉降系数为2.8S的糖蛋白,由90个以及110个氨基酸组成的α和β的亚单位组成。
在α亚单位中的糖是巖藻糖0.30.4(分子量每1万4千的残基数中),甘露糖5.6,半乳糖0.2,葡糖胺6.4,半乳糖胺2.7;在β亚单位中含巖藻糖0.9,甘露糖2.5,半乳糖0,糖胺3.1,半乳糖胺1.5。
1/18s 4.5V, 12V OPERATING CONDITIONS s 3dB-BANDWIDTH: 100MHz s SLEW-RATE: 100V/µss OUTPUT CURRENT: up to 55mA s INPUT SINGLE SUPPLY VOLTAGE s OUTPUT RAIL TO RAIL s SPECIFIED FOR 150Ω LOAD s LOW DISTORTION, THD: 0.1%s SOT23-5, TSSOP and SO PACKAGESDESCRIPTIONThe TSH8x serie offers Single and Dual opera-tional amplifiers featuring high video performanc-es with large bandwidth, low distortion and excel-lent supply voltage rejection. These amplifiers fea-ture also large output voltage swing and high out-put current capability to drive standard 150Ωloads.Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(±2.5V)and 10V(±5V) supplies.The TSH81 also features a Standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications.For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO8 pack-ages.APPLICATIONs Video Buffers s A/D Converters Driver s Hi-Fi ApplicationsPIN CONNECTIONS (top view)D SO8(Plastic Micro package)L SOT23-5(Plastic Micro package)P TSSOP8(Plastic Micro package)TSH80-TSH81-TSH82WIDE BAND, RAIL to RAIL OPERATIONAL AMPLIFIERWITH STANDBY FUNCTIONFebruary 2003TSH80-TSH81-TSH822/18ABSOLUTE MAXIMUM RATINGSOPERATING CONDITIONSORDER CODESI = Temperature rangeD = Small Outline Package (SO) - also available in Tape & Reel (DT)P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)Symbol ParameterValue Unit V CC Supply Voltage 1)14VV idDifferential Input Voltage 2)±2V V i Input Voltage 3)±6V T oper Operating Free Air Temperature Range -40 to +85°C T stg Storage Temperature-65 to +150°C T j Maximum Junction Temperature150°C R thjcThermal resistance junction to case 4)SOT23-5SO8TSSOPO8802837°C/WR thjaThermal resistance junction to ambient areaSOT23-5SO8TSSOPO8250157130°C/W ESDHuman Body Model2kV1.All voltage values, except differential voltage are with respect to network ground terminal2.Differential voltages are non-inverting input terminal with respect to the inverting terminal3.The magnitude of input and output must never exceed V CC +0.3V4.Short-circuits can cause excessive heatingSymbol ParameterValue Unit V CC Supply Voltage4.5 to 12V V IC Common Mode Input Voltage RangeV CC - to (V CC + -1.1)V Standby(V CC -) to (V CC +)VTypeTemperature Package Marking TSH80ILT -40°C to +85°C SOT23-5K303TSH80ID -40°C to +85°C SO8TSH80I TSH80IDT -40°C to +85°C SO8 T ape TSH80I TSH81ID -40°C to +85°C SO8TSH81I TSH81IDT -40°C to +85°C SO8 T ape TSH81I TSH81IPT -40°C to +85°C TSSOP8TSH81I TSH82ID -40°C to +85°C SO8TSH82I TSH82IDT -40°C to +85°C SO8 T ape TSH82I TSH82IPT-40°C to +85°CTSSOP8TSH82ITSH80-TSH81-TSH823/18ELECTRICAL CHARACTERISTICSV CC + = +5V, V CC - = GND, V ic = 2.5V, T amb = 25°C (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit |V io |Input Offset VoltageT amb = 25°CT min. < T amb < T max. 1.11012mV ∆V io Input Offset Voltage Drift vs Temperature T min. < T amb < T max.3µV/°C I io Input Offset Current T amb = 25°CT min. < T amb < T max.0.1 3.55µA I ib Input Bias Current T amb = 25°CT min. < T amb < T max.61520µA C in Input Capacitance0.3pF I CC Supply Current per Operator T amb = 25°CT min. < T amb < T max.8.210.511.5mA CMR Common Mode Rejection Ratio (δVic/δVio)+0.1<Vic<3.9V & Vout=2.5V T amb = 25°CT min. < T amb < T max.727097dB SVR Supply Voltage Rejection Ratio (δVCC/δVio)T amb = 25°CT min. < T amb < T max.686575dB PSRPower Supply Rejection Ratio (δVCC/δVout)Positive & Negative Rail 75dBA vdLarge Signal Voltage GainR L =150Ω to 1.5V V out =1V to 4V T amb = 25°CT min. < T amb < T max.757084dBI o Output Short Circuit Current SourceT amb =25°CV id =+1, V out to 1.5V V id =-1, V out to 1.5V |Source|SinkT min. < T amb < T max.V id =+1, V out to 1.5V V id =-1, V out to 1.5V |Source|Sink353328285555mAV oh High Level Output VoltageT amb =25°CR L = 150Ω to GND R L = 600Ω to GND R L = 2k Ω to GND R L = 10k Ω to GND R L = 150Ω to 2.5V R L = 600Ω to 2.5V R L = 2k Ω to 2.5V R L = 10k Ω to 2.5V T min. < T amb < T max.R L = 150Ω to GND R L = 150Ω to 2.5V4.24.54.14.44.364.854.904.934.664.904.924.93VTSH80-TSH81-TSH824/18V olLow Level Output VoltageT amb =25°CR L = 150Ω to GND R L = 600Ω to GND R L = 2k Ω to GND R L = 10k Ω to GNDR L = 150Ω to 2.5V R L = 600Ω to 2.5V R L = 2k Ω to 2.5V R L = 10k Ω to 2.5V T min. < T amb < T max.R L = 150Ω to GND R L = 150Ω to 2.5V485455562201057661150400200450mVGBP Gain Bandwidth Product F=10MHz A VCL =+11A VCL =-106555MHz BwBandwidth @-3dBA VCL =+1R L =150Ω to 2.5V 87MHzSR Slew RateA VCL =+2R L =150Ω // C L to 2.5V C L = 5pF C L = 30pF60104105V/µs φm Phase MarginR L =150Ω // 30pF to 2.5V 40°en Equivalent Input Noise Voltage F=100kHz11nV/√Hz THDTotal Harmonic DistortionA VCL =+2, F=4MHzR L =150Ω // 30pF to 2.5V V out =1Vpp V out =2Vpp-61-54dBIM2Second order inter modulation product A VCL =+2, V out =2Vpp R L =150Ω to 2.5VFin1=180kHz, Fin2=280kHz spurious measurement @100kHz-76dBcIM3Third order inter modulation product A VCL =+2, V out =2Vpp R L =150Ω to 2.5VFin1=180kHz, Fin2=280KHz spurious measurement @400kHz-68dBc∆G Differential gain A VCL =+2, R L =150Ω to 2.5V F=4.5MHz, V out =2Vpp0.5%DfDifferential phaseA VCL =+2, R L =150Ω to 2.5V F=4.5MHz, V out =2Vpp 0.5°Gf Gain FlatnessF=DC to 6MHz, A VCL =+20.2dB Vo1/Vo2Channel SeparationF=1MHz to 10MHz65dBSymbolParameterTest ConditionMin.Typ.Max.UnitTSH80-TSH81-TSH825/18ELECTRICAL CHARACTERISTICSV CC + = +5V, V CC - = -5V, V ic = GND, T amb = 25°C (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit |V io |Input Offset VoltageT amb = 25°CT min. < T amb < T max.0.81012mV ∆V io Input Offset Voltage Drift vs Temperature T min. < T amb < T max.2µV/°C I io Input Offset Current T amb = 25°CT min. < T amb < T max.0.1 3.55µA I ib Input Bias Current T amb = 25°CT min. < T amb < T max.61520µA C in Input Capacitance0.7pF I CC Supply Current per Operator T amb = 25°CT min. < T amb < T max.9.812.313.4mA CMR Common Mode Rejection Ratio (δVic/δVio)-4.9<Vic<3.9V & Vout=GND T amb = 25°CT min. < T amb < T max.8172106dB SVR Supply Voltage Rejection Ratio (δVCC/δVio)T amb = 25°CT min. < T amb < T max.716577dB PSRPower Supply Rejection Ratio (δVCC/δVout)Positive & Negative Rail 75dBA vdLarge Signal Voltage GainR L =150Ω to GND V out =-4 to +4T amb = 25°CT min. < T amb < T max.757086dBI o Output Short Circuit Current SourceT amb =25°CV id =+1, V out to 1.5V V id =-1, V out to 1.5V |Source|SinkT min. < T amb < T max.V id =+1, V out to 1.5V V id =-1, V out to 1.5V |Source|Sink353028285555mAV oh High Level Output Voltage T amb =25°CR L = 150Ω to GND R L = 600Ω to GND R L = 2k Ω to GND R L = 10k Ω to GND T min. < T amb < T max.R L = 150Ω to GND 4.24.14.364.854.94.93VV ol Low Level Output VoltageT amb =25°CR L = 150Ω to GND R L = 600Ω to GND R L = 2k Ω to GND R L = 10k Ω to GND T min. < T amb < T max.R L = 150Ω to GND -4.63-4.86-4.9-4.93-4.4-4.3mVGBP Gain Bandwidth Product F=10MHz A VCL =+11A VCL =-106555MHz BwBandwidth @-3dBA VCL =+1R L =150Ω // 30pF to GND100MHzTSH80-TSH81-TSH826/18SR Slew RateA VCL =+2R L =150Ω // C L to GND C L = 5pF C L = 30pF68117118V/µs φm Phase MarginR L =150Ω to gnd 40°en Equivalent Input Noise Voltage F=100kHz11nV/√Hz THDTotal Harmonic DistortionA VCL =+2, F=4MHzR L =150Ω // 30pF to gnd V out =1Vpp V out =2Vpp-61-54dBIM2Second order inter modulation product A VCL =+2, V out =2Vpp R L =150Ω to gndFin1=180kHz, Fin2=280KHz spurious measurement @100kHz-76dBcIM3Third order inter modulation product A VCL =+2, V out =2Vpp R L =150Ω to gndFin1=180kHz, Fin2=280KHz spurious measurement @400kHz-68dBc∆G Differential gain A VCL =+2, R L =150Ω to gnd F=4.5MHz, V out =2Vpp 0.5%DfDifferential phaseA VCL =+2, R L =150Ω to gnd F=4.5MHz, V out =2Vpp 0.5°Gf Gain FlatnessF=DC to 6MHz, A VCL =+20.2dB Vo1/Vo2Channel SeparationF=1MHz to 10MHz65dBSymbolParameterTest ConditionMin.Typ.Max.UnitTSH80-TSH81-TSH827/18STANDBY MODEV CC +, V CC -, T amb = 25°C (unless otherwise specified)Symbol ParameterTest ConditionMin.Typ.Max.Unit Vl ow Standby Low Level V CC -(V CC - +0.8)V V high Standby High Level(V CC - +2)(V CC +)V I CC SBY Current Consumption per Operator when STANDBY is Active pin 8 (TSH81) to V CC -2055µA Z out Output Impedance (Rout//Cout)R out C out1017M ΩpF T on Time from Standby Mode to Active Mode2µs T offTime from Active Mode to Standby ModeDown to I CC SBY = 10µA10µsTSH81 STANDBY CONTROL pin 8 (SBY)OPERATOR STATUSV low Standby V highActiveTSH80-TSH81-TSH828/18Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= ±2.5V, RL=150Ω, T amb = 25°CClosed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= ±2.5V, RL=150Ω, T amb = 25°CLarge Signal Measurement - Positive Slew Rate Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpkOvershoot function of output capacitance Gain=+2, Vcc= ±2.5V, T amb = 25°CClosed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= ±2.5V, RL=150Ω, T amb = 25°CLarge Signal Measurement - Negative Slew Rate Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpkTSH80-TSH81-TSH829/18Small Signal Measurement - Rise Time Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpkChannel separation (Xtalk) vs frequencyMeasurement configuration: Xtalk=20log(V0/V1)Equivalent Noise VoltageGain=100, Vcc=±2.5V, No loadSmall Signal Measurement - Fall TimeGain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpkChannel separation (Xtalk) vs frequency Gain=+11, Vcc=±2.5V, ZL=150Ω//27pFMaximum Output SwingGain=11, Vcc=±2.5V, RL=150ΩTSH80-TSH81-TSH8210/18Standby Mode - Ton, Toff Vcc= ±2.5V, Open LoopGroup DelayGain=2, Vcc= ±2.5V, ZL=150Ω//27pF , T amb = 25°CThird Order Inter modulationGain=2, Vcc= ±2.5V, ZL=150Ω//27pF , T amb = 25°CInter modulation productsThe IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level.The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum ana-lyzer are phase locked for precision consider-ations.Group DelayGain5.32ns1234Vout peak(V)-100-90-80-70-60-50-40-30-20-100I M 3 (d B c )740kHz380kHz 640kHz80kHzTSH80-TSH81-TSH8211/18Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= ±5V, RL=150Ω, T amb = 25°CClosed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= ±5V, RL=150Ω, T amb = 25°CLarge Signal Measurement - Positive Slew Rate Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpkOvershoot function of output capacitance Gain=+2, Vcc= ±5V, T amb = 25°CClosed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= ±5V, RL=150Ω, T amb = 25°CLarge Signal Measurement - Negative Slew Rate Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpkTSH80-TSH81-TSH8212/18Small Signal Measurement - Rise Time Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpkChannel separation (Xtalk) vs frequencyMeasurement configuration: Xtalk=20log(V0/V1)Equivalent Noise Voltage Gain=100, Vcc=±5V, No loadSmall Signal Measurement - Fall Time Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpkChannel separation (Xtalk) vs frequency Gain=+11, Vcc=±5V, ZL=150Ω//27pFMaximum Output SwingGain=11, Vcc=±5V, RL=150ΩTSH80-TSH81-TSH8213/18Standby Mode - Ton, Toff Vcc=±5V, Open LoopGroup DelayGain=2, Vcc=±5V, ZL=150Ω//27pF , T amb = 25°CThird Order Inter modulationGain=2, Vcc=±5V, ZL=150Ω//27pF , T amb = 25°CInter modulation productsThe IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level.The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum ana-lyzer are phase locked for precision consider-ations.Group DelayGain5.1ns1234Vout peak(V)-100-90-80-70-60-50-40-30-20-100I M 3 (d B c )80kHz380kHz640kHz740kHzTSH80-TSH81-TSH8214/18TESTING CONDITIONS:Layout precautions:To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies:- First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low in-ductance and low resistance common return.- Power supply bypass capacitors (4.7uF and ce-ramic 100pF) should be placed as close as possi-ble to the IC pins in order to improve high frequen-cy bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins.- Proper termination of all inputs and outputs must be in accordance with output termination resistors;then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance.- For lower gain application, attention should be paid not to use large feedback resistance (>1k Ω)to reduce time constant with parasitic capacitanc-es.- Choose component sizes as small as possible (SMD).- Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. CCIR330 video lineMaximum input level:The input level must not exceed the following val-ues:u negative peak: must be greater than-Vcc+400mV.u positive peak value: must be lower than+Vcc-400mV.The electrical characteristics show the influence of the load on this parameter.Video capabilities:To characterize the differential phase and differ-ential gain a CCIR330 video line is used.The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the sig-nal. The chrominance gives various phases which define the colour of the signal.Differential phase (respectively differential gain)distortion is present if a signal chrominance phase (gain) is affected by luminance level. They repre-sent the ability to uniformly process the high fre-quency information at all luminance levels.When differential gain is present, colour saturation is not correctly reproduced.The input generator is the Rohde & Schwarz CCVS. The output measurement is done by the Rohde and Schwarz VSA.Measurement on Rohde and Schwarz VSA.TSH80-TSH81-TSH8215/18Video Results:Precautions on asymmetrical supply operation:The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2).This bias network must be carefully designed, in order to reject any noise present on the supply rail.As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an off-set mismatch at the amplifier inputs.R1=10k Ω will be convenient. C1, C2, C3 are by-pass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF.R2, R3 are such that the current through them must be superior to 100 times the bias current. So,we take R2=R3=4.7k Ω.Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10k Ω, RL=150Ω, and Cin=2uF,Cout=220uF we provide a cutoff frequency below 10Hz.Use of the TSH8X in gain=-1 configuration:Some precautions have to be added, specially for low power supply application.A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit.Parameter Value (Vcc=±2.5V)Value (Vcc=±5V)Unit Lum NL 0.10.3%Lum NL Step 1100100%Lum NL Step 210099.9%Lum NL Step 399.999.8%Lum NL Step 499.999.9%Lum NL Step 599.999.7%Diff Gain pos 00%Diff Gain neg -0.7-0.6%Diff Gain pp 0.70.6%Diff Gain Step1-0.5-0.3%Diff Gain Step2-0.7-0.6%Diff Gain Step3-0.3-0.5%Diff Gain Step4-0.1-0.3%Diff Gain Step5-0.4-0.5%Diff Phase pos 00.1deg Diff Phase neg -0.2-0.4deg Diff Phase pp 0.20.5deg Diff Phase Step1-0.2-0.4deg Diff Phase Step2-0.1-0.4deg Diff Phase Step3-0.1-0.3deg Diff Phase Step400.1deg Diff Phase Step5-0.2-0.1degTSH80-TSH81-TSH8216/18Example of a video application:This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2).You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise.The video application requires 1Vpeak at input and output. Calculation of components:A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10k Ω. At the output, Cout=220uF.The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1k Ω,V1=2Vpk, V2=1VpkFor the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1.To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2.For example, for an attenuation of 3dB, we choose R5=300Ω and R6=1k Ω. We have V4=2Vpk and Vout=1Vpk.The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same.Parameter Cf (pF)Vcc=±1.5VVcc=±2.5VVcc=±5V Unit Phase Margin0284356deg f-3dB 4039.338.3MHz Phase Margin5.6304356deg f-3dB 4039.338.3MHz Phase Margin22375267deg f-3dB 373432MHz Phase Margin33486578deg f-3dB33.730.727.6MHz17/18PACKAGE MECHANICAL DATA8 PINS - PLASTIC MICROPACKAGE (SO)PACKAGE MECHANICAL DATA8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)limeters Inches Min.Typ.Max.Min.Typ.Max.A 1.750.069a10.10.250.0040.010a2 1.650.065a30.650.850.0260.033b 0.350.480.0140.019b10.190.250.0070.010C 0.250.50.0100.020c145° (typ.)D 4.8 5.00.1890.197E 5.86.20.2280.244e 1.270.050e3 3.810.150F 3.8 4.00.1500.157L 0.41.270.0160.050M 0.60.024S8° (max.)limeters Inches Min.Typ.Max.Min.Typ.Max.A 1.200.05A10.050.150.010.006A20.80 1.00 1.050.0310.0390.041b 0.190.300.0070.15c 0.090.200.0030.012D 2.90 3.003.100.1140.1180.122E 6.400.252E14.30 4.40 4.500.1690.1730.177e 0.650.025k 0°8°0°8°l0.500.600.750.090.02360.03018/18PACKAGE MECHANICAL DATA 5 PINS - TINY PACKAGE (SOT23)limetersInches Min.Typ.Max.Min.Typ.Max.A 0.90 1.20 1.450.0350.0470.057A100.150.006A20.90 1.05 1.300.0350.0410.051B 0.350.400.500.0140.0160.020C 0.090.150.200.0040.0060.008D 2.802.903.000.1100.1140.118D1 1.900.075e 0.950.037E 2.60 2.80 3.000.1020.1100.0118F 1.50 1.60 1.750.0590.0630.069L 0.100.50.600.0040.0140.024K0d 10d 0d10dInformation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics© 2003 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States。