2019年初中毕业升学考试(山东潍坊卷)数学【含答案及解析】
- 格式:docx
- 大小:518.01 KB
- 文档页数:20
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)2019的倒数的相反数是()A.﹣2019B.﹣C.D.20192.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.(3分)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.(3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)12241这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8B.97.5 3C.97 2.8D.97 38.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.1612.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t =0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6二、填空题(本题共6小题,满分18分。
2019年山东省潍坊市中考数学试题及参考答案(word解析版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年山东省潍坊市中考数学试题及参考答案(word解析版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年山东省潍坊市中考数学试题及参考答案(word解析版)的全部内容。
2019年山东省潍坊市中考数学试题及参考答案与解析(满分120分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分) 1.2019的倒数的相反数是()A.﹣2019 B.﹣C.D.20192.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2 C.﹣3(a﹣1)=3﹣3a D.(a3)2=a9 3.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1。
002×1011元.数据1.002×1011可以表示为()A.10。
02亿B.100.2亿C.1002亿D.10020亿4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图不变,主视图不变 D.主视图改变,俯视图改变5.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2。
5 B.2。
6 C.2。
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)2019的倒数的相反数是()A.﹣2019B.﹣C.D.20192.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.(3分)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.(3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)12241这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8B.97.5 3C.97 2.8D.97 38.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.1612.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t =0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6二、填空题(本题共6小题,满分18分。
山东潍坊2019初三学业水平考试重点试题1-数学数学模拟试题本卷须知 本试题分第一卷和第二卷两部分、第一卷为选择题,36分;第二卷为非选择题,84分;共120分、考试时间为120分钟、第一卷选择题(共36分)【一】选择题(此题共12小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每题选对得3分.)1.以下根式中与18是同类二次根式的是(). A.321 B.27C.6D.32.抛物线Y =2X2+4X -3的顶点坐标是〔 〕.A 、〔1,-5〕B 、〔-1,-5〕C 、〔-1,-4〕D 、〔-2,-7〕3.国家游泳中心——“水立方”是2017年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是〔保留三个有效数字〕〔〕.A.62.8×103B.6.28×104C.6.2828×104D.0.62828×1054.数据0,-1,6,1,X 的众数为-1,那么这组数据的方差是〔〕.A 、2B 、534C 、2D 、526 5.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,那么线段OM 的长的取值范围是〔〕.A.3≤OM ≤5B.4≤OM ≤5C.3《OM 《5D.4《OM 《5 6.小明随机地在如下图的正三角形及其内部区域投针,那么针扎到其内切圆(阴影)区域的概率为〔〕. A.21B.π63 C.π93 D.π33 7.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =M ,那么M 的取值范围是(). A 、1《M 《11B 、2《M 《22 C 、10《M 《12D 、5《M 《68.如图,P1、P2、P3是双曲线上的三点、过这三点分别作Y 轴的垂线,得到三个三角形P1A1O 、P2A2O 、P3A3O ,设它们的面积分别是S1、S2、S3,那么()、D A BO 第7题图 第6题图第8题图 第5题图B 第16题图第11题图 A.S1《S2《S3B.S2《S1《S3C.S1《S3《S2D.S1=S2=S3 9.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如下图,那么关于x 的不等式12k x b k x +>的解为〔〕.A.1x >-B.1x <-C.2x <-D.无法确定 10.如图,将ABC △沿DE 折叠,使点A 与BC边的中点F 重合,以下结论中①EF AB ∥且 12EF AB =;②BAF CAF ∠=∠; ③DE AF 21S ADFE ∙=四边形;④2BDF FEC BAC ∠+∠=∠,一定正确的个数是〔〕.A 、1B 、2C 、3 D.411.假设关于X 的一元二次方程AX2+2X -5=0的两根中有且仅有一根在0和1之间〔不含0和1〕,那么A 的取值范围是〔〕.A.A 《3B.A 》3C.A 《-3D.A 》-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,∠A =100°,∠C =30°,那么∠DFE 的度数是〔〕.A.55°B.60°C.65°D.70° 第二卷非选择题〔共84分〕【二】填空题〔此题共5小题,共15分、只要求填写最后结果,每题填对得3分、〕13.当m =时,关于x 的分式方程213x m x +=--无解.14.关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,那么a 的取值范围是.15.关于的一元二次方程012)1(2=-++x xk 有两个不相同的实数根,那么K 的取值范围是.16.如图,梯形ABCD 中,BC AD //,x b + x 第9题图第12题图1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是.17.在实数的原有运算法那么中我们补充定义新运算“⊕”如下:当A ≥B 时,A ⊕B =B2;当A 《B 时,A ⊕B =A 、那么当X =2时,〔1⊕X 〕-〔3⊕X 〕的值为、【三】解答题〔此题共7小题,共69分、解答应写出文字说明、证明过程或推演步骤、〕18.〔此题总分值8分〕据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表、为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?〔只写一项〕”的问题,对在校学生进行了随机抽样调查,从而得到一组数据、图1是根据这组数据绘制的条形统计图、请结合统计图回答以下问题:〔1〕该校对多少名学生进行了抽样调查?〔2〕本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?〔3〕假设该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?19.〔此题总分值9分〕某公司经销一种绿茶,每千克成本为50元、市场调查发现,在一段时间内,销售量W 〔千克〕随销售单价X 〔元/千克〕的变化而变化,具体关系式为:W =-2X +240、设这种绿茶在这段时间内的销售利润为Y 〔元〕,解答以下问题:〔1〕求Y 与X 的关系式;〔2〕当X 取何值时,Y 的值最大?〔3〕如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.〔此题总分值9分〕经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB =68°.〔1〕求所测之处江的宽度〔.48.268tan ,37.068cos ,93.068sin ≈≈≈ 〕;〔2〕除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.〔此题总分值10分〕如图,BD 为圆O 的直径,AB AC =,AD 交BC 于E ,2AE =,4ED =、〔1〕求证:ABE ADB △∽△,并求AB 的长;〔2〕延长DB 到F ,使BF BO =,连接FA ,那么直线FA 与⊙O 相切吗?为什么?22.〔此题总分值10分〕荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨、租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同、〔1〕求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?〔2〕假设荣昌公司计划此次租车费用不超过5000元、通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用、23.(此题总分值11分)如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于E 点.〔1〕求证:四边形ACED 是平行四边形;〔2〕假设AD =3,BC =7,求梯形ABCD 的面积.24.〔此题总分值12分〕如下图,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y 轴分别相交于A (-6,0),B 〔0,-8〕两点、〔1〕请求出直线AB 的函数表达式;〔2〕假设有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;〔3〕设〔2〕中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABC S S =△△?假设存在,请求出点P参考答案【一】选择题 1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C【二】填空题13.-614.A ≥315.K 》-2,且K ≠-116.317.-18.解:〔1〕由图1知:4810181050++++=〔名〕………2分答:该校对50名学生进行了抽样调查、〔2〕本次调查中,最喜欢篮球活动的有18人、………………3分 181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%、〔3〕1(302624)20-++=%%%%200201000÷=% 〔人〕…6分8100100016050⨯⨯=% 〔人〕答:估计全校学生中最喜欢跳绳活动的人数约为160人、………8分19.解:⑴Y =(X -50)∙W =(X -50)∙(-2X +240)=-2X2+340X -12000, ∴Y 与X 的关系式为:Y =-2X2+340X -12000、.......3分⑵Y =-2X2+340X -12000=-2(X -85)2+2450,∴当X =85时,Y 的值最大、……………………………6分⑶当Y =2250时,可得方程-2(X -85)2+2450=2250、解这个方程,得X1=75,X2=95、根据题意,X2=95不合题意应舍去、∴当销售单价为75元时,可获得销售利润2250元、…………9分20.解:〔1〕在BAC Rt ∆中,68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB 〔米〕 答:所测之处江的宽度约为248米…………………………………3分〔2〕从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.〔1〕证明:AB AC =,ABC C ∴=∠∠,C D =∠∠,ABC D ∴=∠∠、又BAE DAB =∠∠,ABE ADB ∴△∽△、AB AE AD AB ∴=、AB2=AD ·AE =〔AE +ED 〕·AE =〔2+4〕×2=12.AB ∴=5分〔2〕直线FA 与⊙O 相切、理由如下:连接OA 、 BD 为⊙O 的直径,90BAD ∴=∠、BD ∴===、1122BF BO BD ∴===⨯= 2AB =BF BO AB ∴==、90OAF ∴=∠、直线FA与⊙O相切、……………………………………10分22.解:〔1〕设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元、由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元、……………………3分〔2〕设租用甲型汽车辆,那么租用乙型汽车辆、由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆、方案一的费用是〔元〕;方案二的费用是〔元〕;方案三的费用是〔元〕,所以最低运费是4900元、……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆、最低运费是4900元、……………………………………………10分23.证:⑴∵AD∥BC∴AD∥CE又∵DE∥AC∴四边形ACED是平行四边形………………3分⑵过D点作DF⊥BE于F点……………………∵DE∥AC,AC⊥BD∴DE⊥BD,即∠BDE=90°由⑴知DE=AC,CE=AD=3∵四边形ABCD是等腰梯形∴AC =DB ………………………………………7分∴DE =DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形∴DF =BF =21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD =⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF =21BC =27同理OH =21AD =23,高HF =52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF =FC =21(AD +BC )=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24.解:〔1〕设直线AB 的函数表达式为(0)y kxk =≠,∵直线AB 经过(60)(08)A B --,,,, ∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB 的函数表达式为483y x =--、……4分〔2〕在Rt AOB △中,由勾股定理,得10AB =,∵圆M 经过O A B ,,三点,且90AOB ∠=°,AB ∴为圆M 的直径,∴半径5MA =,设抛物线的对称轴交x 轴于点N ,1)MN x ⊥∵,∴由垂径定理,得132AN ON OA ===、 在Rt AMN △中,4MN ===,541CN MC MN ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++,它经过(08)B -,, ∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---、…………8分〔3〕如图,连结AC ,BC ,35213521ON MC 21AN MC 21S S S BM C A M C A BC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆=15在抛物线268y x x =---中,设0y =, 那么2680x x ---=,解得12x =-,24x =-、D E ∴,的坐标分别是(40)-,,(20)-,, 2DE ∴=;设在抛物线上存在点()P x y ,,使得111511515PDE ABC S S =⨯=△△=, 那么1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,; 当1y =-时,2681x x ---=-,解得13x =-23x =-,2(3)P ∴--1,3(3)P --1、综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P --1,3(31)P --、…………………….12分。
2019年潍坊市中考数学试卷(及答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.185.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°6.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°7.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A .10°B .15°C .18°D .30°8.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大 9.下列二次根式中的最简二次根式是( )A .30B .12C .8D .0.510.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠11.cos45°的值等于( ) A .2B .1C .32D .2212.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.16.已知62x =+,那么222x x -的值是_____.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
2 2 a _ __ __ __ 此 __ 第Ⅰ卷(选择题 共 36 分) __ _号 _ _A. -2019B. - 1C. 1_ __ 上 --------------------a ⨯ 2a =6a B. a 8 ÷ a 4=a 2 __ _ _ _ 名 _ ⎛ 1 3 ⎫2 C. -3(a - 1) = 3 - 3a D . a ⎪ = a 9 __ 3.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程 截止去年 9 月底,各地__ --------------------计完成投资1.002 ⨯10 元.数据1.002 ⨯10 可以表示为()__ __ _ 业 题毕 -------------------- 视图不变,左视图不变21.20195.利用-----------------------------绝密★启用前山东省潍坊市 2 019 年初中学业水平考试在6.下列因式分解正确的是 ( )A. 3ax 2 - 6ax =3(ax 2 - 2ax )B. x 2 + y=(- x + y )(- x - y ) --------------------数学C. a 2 + 2ab - 4b =(a + 2b )2D. -ax 2 + 2ax - =- a (x - 1)2_ __ _ 生 __合题目要求的) 考 _卷 _-------------------- 的倒数的相反数是( )__ __ __ 2.下列运算正确的是 ()_ _ _ _ 姓 _⎝ 3 ⎭ 9___ __ A.10.02 亿 B.100.2 亿 C.1 002 亿 D .10 020 亿__ __ 4.如图是由 10 个同样大小的小正方体摆成的几何体.将小正方体① 校 移走后,则关于新几何体的三视图描述正确的是 ( ) 学(本试卷满分 120 分,考试时间 120 分钟)--------------------一、选择题(本大题共 12 小题,共 36 分。
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)2019的倒数的相反数是()A.﹣2019B.﹣C.D.20192.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.(3分)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.(3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)12241这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8B.97.53C.97 2.8D.9738.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.1612.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t =0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6二、填空题(本题共6小题,满分18分。
第1页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………山东省潍坊市2019年中考数学试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题))A . -2019B .C .D . 20192. 如图,已知 .按照以下步骤作图:①以点 为圆心,以适当的长为半径作弧,分别交 的两边于 , 两点,连接 .②分别以点 , 为圆心,以大于线段 的长为半径作弧,两弧在 内交于点 ,连接 , .③连接 交 于点 .下列结论中错误的是( )A.B .C.D.3. 下列运算正确的是( )A .B .C .D .4. 下列因式分解正确的是( ) A.B.C.答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………D .成绩(分) 94 95 97 98 100 周数(个) 1 2 2 4 1这10个周的综合素质评价成绩的中位数和方差分别是( ) A . 97.5 2.8 B . 97.5 3 C . 97 2.8 D . 97 3 6. 抛物线 的对称轴为直线 .若关于 的一元二次方程( 为实数)在 的范围内有实数根,则 的取值范围是( ) A . B .C .D .7. 关于 的一元二次方程 的两个实数根的平方和为12,则 的值为( )A .B .C . 或D .或8. 如图,四边形 内接于 , 为直径,,过点 作 于点 ,连接交于点 .若,,则的长为( )A . 8B . 10C . 12D . 169. “十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资元.数据可以表示为( )A . 10.02亿B . 100.2亿C . 1002亿D . 10020亿10. 如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )第3页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 俯视图不变,左视图不变B . 主视图改变,左视图改变C . 俯视图不变,主视图不变D . 主视图改变,俯视图改变11. 利用计算器计算时,依次按键下: ,则计算器显示的结果与下列各数中最接近的一个是( )A . 2.5B . 2.6C . 2.8D . 2.912. 如图,在矩形 中, , ,动点 沿折线 从点 开始运动到点 .设运动的路程为 ,的面积为 ,那么 与 之间的函数关系的图象大致是( )A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分一、填空题(共6题)1. 如图,直线 与抛物线 交于 , 两点,点 是 轴上的一个动点,当的周长最小时,.2. 如图, 中,,顶点 , 分别在反比例函数与的图象上,则的值为 .3. 若 ,,则.4. 当直线经过第二、三、四象限时,则 的取值范围是 .5. 如图,在矩形 中, .将 向内翻折,点 落在 上,记为 ,折痕为.若将沿 向内翻折,点 恰好落在 上,记为 ,则 .第5页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 如图所示,在平面直角坐标系 中,一组同心圆的圆心为坐标原点 ,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线, , , , ,…都与x 轴垂直,相邻两直线的间距为l ,其中 与 轴重合若半径为2的圆与 在第一象限内交于点 ,半径为3的圆与 在第一象限内交于点 ,…,半径为的圆与 在第一象限内交于点,则点的坐标为 .( 为正整数)评卷人 得分二、解答题(共2题)7. 己知关于 , 的二元一次方程组 的解满足 ,求 的取值范围.8. 自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡 米,坡度为 ;将斜坡 的高度 降低米后,斜坡改造为斜坡,其坡度为.求斜坡的长.(结果保留根号)评卷人 得分三、综合题(共5题)9. 如图1,菱形 的顶点 , 在直线上,,以点 为旋转中心将菱形顺时针旋转 ,得到菱形,交对角线于点,交直线 于点,连接.答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)当 时,求 的大小.(2)如图2,对角线 交 于点 ,交直线 与点 ,延长 交于点 ,连接.当的周长为2时,求菱形 的周长.10. 如图,在平面直角坐标系 中, 为坐标原点,点,点 , 的中线 与 轴交于点 ,且经过 , , 三点.(1)求圆心 的坐标;(2)若直线 与 相切于点 ,交 轴于点 ,求直线 的函数表达式;(3)在过点 且以圆心 为顶点的抛物线上有一动点 ,过点 作轴,交直线 于点 .若以为半径的与直线 相交于另一点 .当时,求点 的坐标.第7页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………11. 如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:次数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次数字 35 2 3 3 4 3 5(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)12. 扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了 .(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.) 13. 如图,正方形 的边 在正方形 的边 上,连接,过点 作,交于点.连接,,其中交于点.答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证: 为等腰直角三角形.(2)若,,求的长.参数答案1.【答案】:【解释】:2.【答案】:【解释】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………3.【答案】:【解释】: 4.【答案】:【解释】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.【答案】:【解释】:6.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………7.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………9.【答案】:【解释】:10.【答案】:【解释】:11.【答案】:【解释】:12.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】: 【解释】: (1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:(2)【答案】: 【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:。
山东省潍坊市2019年初中学业水平考试数学答案解析1.【答案】B【解析】2019的倒数是12019,12019的相反数为12019-; 【考点】倒数和相反数 2.【答案】C【解析】解:A 、2326a a a ⨯=,故本选项错误; B 、844a a a ÷=,故本选项错误; C 、()3133a a --=-,正确;D 、3261139a a ⎛⎫= ⎪⎝⎭,故本选项错误.【考点】单项式乘法法则,同底数幂的除法的性质,去括号法则,积的乘方的性质 3.【答案】C 【解析】解:111.002101 002 000 000 001002=⨯=亿【考点】科学记数法的展开 4.【答案】A【解析】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;【考点】简单组合体的三视图 5.【答案】B2.646≈,∴与最接近的是2.6,【考点】计算器基础知识 6.【答案】D【解析】解:A 、()23632ax ax ax x =--,故此选项错误;B 、22xy +,无法分解因式,故此选项错误;C 、2224a ab b +-,无法分解因式,故此选项错误;D 、()2221ax ax a a x -+-=--,正确. 【考点】提取公因式法以及公式法分解因式 7.【答案】B【解析】解:这10个周的综合素质评价成绩的中位数是979897.52+=(分), 平均成绩为()1949529729841009710⨯+⨯+⨯+⨯+=(分), ∴这组数据的方差为()()()()()222221 949795972979729897410097310⨯-+-⨯+-⨯⎡⎤=⎣-⨯-⎦++(分),【考点】中位数和方差 8.【答案】C【解析】解:由作图步骤可得:OE 是AOB ∠的角平分线, ∴CEO DEO ∠=∠,CM MD =,OCED S CD OE = 四边形, 但不能得出OCD ECD ∠=∠, 【考点】作图﹣基本作图 9.【答案】D【解析】解:由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+. 【考点】动点问题的函数图象 10.【答案】A【解析】解:设1x ,2x 是2220x mx m m +++=的两个实数根, ∴40m -△=≥, ∴0m ≤,∴122x x m +-=,212x x m m + =,∴()22222212121224222212x x x x x x m m m m m =-==---++= , ∴3m =或2m =-; ∴2m =-;【考点】一元二次方程根与系数的关系 11.【答案】C【解析】解:连接BD ,如图, ∵AB 为直径,∴90ADB ACB ∠=∠=︒, ∵AD CD ∠=, ∴DAC DCA ∠=∠, 而DCA ABD ∠=∠, ∴DAC ABD ∠=∠,∵D E AB ⊥, ∴90ABD BDE ∠+∠=︒, 而90ADE BDE ∠+∠=︒, ∴A B D A D E ∠=∠, ∴ADE DAC ∠=∠, ∴5FD FA ==,在Rt AEF △中,∵3sin 5EF CAB AF ∠==, ∴3EF =,∴4AE =,538DE =+=, ∵A D E D B E ∠=∠,A E D B ED ∠=∠, ∴ADE DBE △∽△,∴::DE BE AE DE =,即8:4:8BE =, ∴16BE =,∴41620AB =+=,在Rt ABC △中,∵3sin 5BC CAB AB ∠==, ∴320125BC =⨯=.【考点】圆周角定理 12.【答案】A 【解析】解:∵23y x bx =++的对称轴为直线1x =,∴2b =-, ∴223y xx -=+,∴一元二次方程230x bx t ++-=的实数根可以看做223y x x -=+与函数y t =的有交点,∵方程在14x -<<的范围内有实数根, 当1x =-时,6y =; 当4x =时,11y =; 函数223y xx -=+在1x =时有最小值2;∴211t ≤<; 【考点】二次函数的图象及性质 13.【答案】15【解析】解:∵23x =,25y = ∴2223515x y x y +==⨯= . 【考点】同底数幂的乘法14.【答案】13k << 【解析】解:()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴13k k >,<, ∴13k <<; 【考点】一次函数图象与系数的关系 15.【解析】解:过A 作AC x ⊥轴,过B 作BD x ⊥轴于D , 则90BDO ACO ∠=∠=︒, ∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上, ∴5122BDO AOC S S ==△△,∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒, ∴DBO AOC ∠=∠, ∴BDO OCA △∽△, ∴252512BODOACS OB S OA ⎛⎫=== ⎪⎝⎭△△,∴OBOA=∴tan OBBAO OA∠==【考点】相似三角形的判定与性质,反比例函数的性质,直角三角形的性质 16.【解析】解:∵四边形ABCD 为矩形, ∴90ADC C B ∠=∠=∠=︒,AB DC =,由翻折知,'AED A ED △≌△,'''A BE A B E △≌△,''''90A B E B A B D ∠=∠=∠=︒, ∴'''''AED A ED A EB A EB BE B E ∠=∠∠=∠=,,, ∴''18060AED A ED A EB ∠=∠=∠⨯︒=︒,∴9030ADE AED ∠=︒-∠=︒,'90'30A DE A EB ∠=︒-∠=︒, ∴''30ADE A DE A DC ∠=∠=∠=︒, 又∵''90C A B D ∠=∠=︒,''DA DA =, ∴()'''DB A DCA AAS △≌△,∴'DC DB =, 在Rt AED △中,302ADE AD ∠=︒=,,∴AE ,设AB DC x ==,则'BE B E x ==-∵222AE AD DE =+,∴2222x x ⎛++ ⎝⎭⎝⎭=,解得,1x =,2x ,【考点】矩形的性质,轴对称的性质17.【答案】125【解析】解:2145y x y x x =+⎧⎪⎨=-+⎪⎩, 解得,12x y =⎧⎨=⎩或45x y =⎧⎨=⎩,∴点A 的坐标为()1,2,点B 的坐标为()4,5,∴AB ==,作点A 关于y 轴的对称点A′,连接A′B 与y 轴的交于P ,则此时PAB △的周长最小, 点A '的坐标为()1,2-,点B 的坐标为()4,5,设直线AB'的函数解析式为y kx b =+, 245k b k b -+=⎧⎨+=⎩,得35135k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AB'的函数解析式为31355y x =+, 当0x =时,135y =,即点P 的坐标为130,5⎛⎫⎪⎝⎭,将0x =代入直线1y x =+中,得1y =, ∵直线1y x =+与y 轴的夹角是45︒, ∴点P 到直线AB的距离是:1381sin4555⎛⎫-⨯︒=⎪⎝⎭∴PAB △的面积是:12525=,【考点】二次函数的性质,一次函数的性质,轴对称﹣最短路径问题 18.【分析】()1n +【解析】解:连接1O P ,2O P ,3O P ,1l 、2l 、3l 与x 轴分别交于1A 、2A 、3A ,如图所示: 在11Rt OA P △中,11OA =,12OP =,∴11A P ===同理:2233A P A P =∴1P的坐标为(,2P的坐标为(,3P的坐标为(, 按照此规律可得点n P 的坐标是n ⎛⎝,即(n【考点】切线的性质,勾股定理 19.【答案】5k <【解析】解:2352x y x y k -=⎧⎨-=⎩①②-①②得:5x y k -=-,∵x y >, ∴0x y ->. ∴50k ->. 解得:5k <.【考点】二元一次方程组的解20.【答案】米【解析】解:∵90AEB ∠=︒,200AB =,坡度为,∴tanABE ∠=, ∴30ABE ∠=︒,∴11002AE AB ==,∵20AC =, ∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是米.【考点】解直角三角形的应用,坡度坡角问题21.【答案】(1)解:()135233435 3.58⨯+++++++=(2)解:能发生.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次的所指数字之和为28,所以最后两次所指数字之和应不小于5,且不大于7. 第9次和第10次指针所指数字如下表所示:第10次第9次2 3 4 5 2 (2,2) (2,3) (2,4) (2,5) 3 (3,2) (3,3) (3,4) (3,5) 4 (4,2) (4,3) (4,4) (4,5) 5(5,2)(5,3)(5,4)(5,5)或第9次和第10次指针所指数字画树状图如下:一共有16种等可能结果,其中指针所指数字之和不小于5,且不大于7的有9种结果,其概率916P =. 因此这10次的指针所指数字的平均数不小于3.3,且不大于3.5的概率为云916. 【解析】(1)根据平均数的定义求解可得;(2)由这10次的指针所指数字的平均数不小于3.3,且不大于3.5知后两次指针所指数字之和不小于5,且不大于7,再画树状图或列表求解即可。
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)2019的倒数的相反数是()A.﹣2019B.﹣C.D.20192.(3分)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.(3分)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.(3分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)12241这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8B.97.5 3C.97 2.8D.97 38.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=211.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.1612.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6二、填空题(本题共6小题,满分18分。
山东省潍坊市二〇一九年初中学业水平考试考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 12小题,每小题3分,共36分. {题目}1.(2019年山东潍坊T1)2019的倒数的相反数是( )A .-2019B .-12019C .12019D .2019{答案}B{解析}本题考查了倒数与绝对值的概念,乘积为1的两个数互为倒数,只有符号不同的两个数互为倒数.2019的倒数是12019,12019的相反数是-12019.{分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {考点:倒数} {类别:常考题} {类别:易错题} {难度:1-最简单}{题目}2.(2019年山东潍坊T2)下列运算正确的是( ) A .3a ×2a=6a B .a 8÷a 4=a 2 C .-3(a -1)=3-3a D .(31a 3)2=91a 9{答案}C{解析}本题考查了整式的运算、去括号与幂的运算性质,解题的关键是正确按照各运算法则与性质进行计算.3a ×2a=6a 2,故A 错误;a 8÷a 4=a 4,故B 错误;-3(a -1)=-3a+3=3-3a ,故C 正确;(31a 3)2=91a 6,故D 错误. {分值}3{章节:[1-14-1]整式的乘法} {考点:去括号}{考点:单项式乘以单项式} {考点:同底数幂的除法} {考点:积的乘方} {类别:常考题} {类别:易错题} {难度:1-最简单}{题目}3.(2019年山东潍坊T3)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( ) A .10.2亿 B .100.2亿 C .1002亿 D .10020亿 {答案}C{解析}本题考查了科学记数法表示数的知识.科学记数法a ×10n 中,a 的整数位数只有1位.当原数的绝对值≥10时,确定n 的方法是:①把已知数的小数点向左移动的位数即为n 值;②n 等于原数的整数位数减1.当原数的绝对值<1时,确定n 的方法是:①把已知数的小数点向右移动几位数,n 就为负几;②n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的那个0)的相反数. 对于含有计数单位并需转换单位的科学记数法,利用1亿=1×108,1万=1×104,1千=1×103来表示,可使问题简化.本题中1.002×1011=1.002×103×108=1002亿. {分值}3{章节:[1-1-5-2]科学计数法} {考点:由科学计数法推导原数}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}4.(2019年山东潍坊T4)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变{答案}A{解析}本题考查了识别几何体的三视图.主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的平面图形,合称三视图,属于正投影.三视图的主要特征是:长对正、高平齐、宽相等.该题中.将小正方体①移走后,只有主视图发生改变,左视图与俯视图均未改变.{分值}3{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:1-最简单}{题目}5.(2019年山东潍坊T5)利用教材中时计算器依次按键下:,则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9{答案}B{解析}本题考查了利用计算器进行开方运算,能读懂计算器的按键功能是关键.该题利用计算器计算7的值,利用计算器计算显示7=2.645751311,最接近的一个是 2.6.也可以通过笔算获解,因为(7)2=7,2.52=6.25,2.62=6.76,2.82=7.84,所以与7最接近的一个数是2.6.{分值}3{章节:[1-6-3]实数}{考点:计算器求算术平方根}{类别:常考题}{难度:1-最简单}{题目}6.(2019年山东潍坊T6)下列因式分解正确的是()A.3ax2-6ax=3(ax2-2ax) B.x2+y2=(-x+y)(-x-y)C.a2+2ab-4b2=(a+2b)2D.-ax2+2ax-a=-a(x-1)2{答案}D{解析}本题考查了因式分解.把一个多项式分解因式时一般先提公因式,然后再考虑套用公式,分解因式一定要彻底.选项A分解不彻底,选项B中x2+y2无法分解,选项C中应为a2+4ab+4b2=(a+2b)2,选项D中,-ax2+2ax-a=-a(x2-2x+1)=-a(x-1)2,故D正确.{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-完全平方式}{类别:常考题}{类别:易错题}{难度:2-简单}{这 ) A .97.5 2.8 B .97.5 3 C .97 2.8 D .97 3 {答案}B{解析}本题考查了求一组数据的中位数与方差,解题的关键是掌握中位数的概念与方差的求解公式.表格中给出的10个数据已经按大小顺序排列,处于中间位置的第5、6个数分别是97、98,它们的平均数是97.5,所以该组数据的中位数是97.5;这组数据的平均数为1010049829729594+⨯+⨯+⨯+=97,故这组数据的方差为S 2=101[(94-97)2+(95-97)2×2+(97-97)2×2+(98-97)2×4+(100-97)2]=101(9+8+0+4+9)=101×30=3,故选择B .{分值}3{章节:[1-20-2-1]方差}{考点:加权平均数(频数为权重)} {考点:中位数} {考点:方差} {类别:常考题} {难度:2-简单}{题目}8.(2019年山东潍坊T8)如图,已知∠AOB .按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE .③连接OE 交CD 于点M . 下列结论中错误的是( )A .∠CEO =∠DEOB .CM =MDC .∠OCD =∠ECD D .S 四边形OCED =21CD ·OE{答案}C{解析}本题考查了角平分线的尺规作图、全等三角形的判定与性质、线段垂直平分线的判定与性质(等腰三角形的性质与判定),以及图形面积.由作图过程可知OE 是∠AOB 的平分线,且OC=OD ,CE=DE ,故△COE ≌△DOE ,OE 为线段CD 的垂直平分线,因此,选项A 、B 、D 均正确.由于OC 不一定与CE 相等,故四边形CODE 一定是筝形,但不一定是菱形,所以∠OCD 与∠ECD 不一定相等.故选项C 错误. {分值}3{章节:[1-13-2-1]等腰三角形}{考点:与角平分线有关的作图问题} {考点:全等三角形的判定SSS}OABCDEM{考点:三线合一}{考点:垂直平分线的判定} {考点:垂直平分线的性质} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年山东潍坊T9)如图,在矩形ABCD 中,AB =2,BC =3,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( ){答案}D{解析}本题考查了动点函数图象的识别.当点P 由点B 运动到点C 时,即0≤x ≤3时,y =21AD·AB=21×3×2=3;当点P 由点C 运动到点D 的过程中,△ADP 的面积为y 慢慢变小,即当3<x <5时,y =×3×(5﹣x )=-33x +215,此时y 随x 的增大而减小.只有选项D 符合题意.{分值}3{章节:[1-14-1]整式的乘法} {考点:合并同类项} {考点:积的乘方}{考点:单项式乘以单项式} {考点:同底数幂的除法} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}10.(2019年山东潍坊T10)关于x 的一元二次方程x 2+2mx+m 2+m=0的两个实数根的平方和为12,则m 的值为( )A .m=-2B .m=3C .m=3或m=-2D .m=-3或m=2 {答案}A{解析}本题考查了一元二次方程根与系数的关系,根的判别式.设方程的两根为x 1,x 2,根据根与系数的关系,得x 1+x 2=-2m ,x 1x 2=m 2+m .则2221x x +=(x 1+x 2)2-2x 1x 2=(-2m)2-2(m 2+m)=4m 2-2m 2-2m=2m 2-2m=12,即m 2-m -6=0,(m -3)(m+2)=0,解得m 1=3,m 2=-2.又∵△= (2m)2-4(m 2+m)=-4m >0,即m <0,∴m =3不合题意,舍去,∴m =-2.C1 2 341 2 3 4 x yO 5 P ABC 1 234 1 2 3 4 x yO 5 1 23 4 1 2 3 4 x yO 5D1 2 34 1 2 3 4 x yO 5{分值}3{章节:[1-25-2]用列举法求概率} {考点:两步事件放回} {类别:常考题} {类别:易错题} {难度:4-较高难度}{题目}11.(2019年山东潍坊T11)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =53,DF =5,则BC 的长为( ) A .8 B .10 C .12 D .16{答案} C{解析}本题考查了在圆周角定理及推论,相似三角形的判定及性质,解直角三角形等知识,综合性较强.原题给出的线段AD=DC 得出圆周角相等;连接BD 后倒角得出AF=DF=5,再运用sin ∠CAB =53,计算出线段EF 的长度,再用射影定理就可以得出结论.连接BD ,因为AD=CD ,∠DCA=∠DAC=∠DBA ;因为AB 是直径,所以∠ADB=90°,DE ⊥AB ,所以∠DBA=∠ADE ;所以∠ADE=∠DAC ,有DF=AF=5;在AEF Rt △中sin ∠CAB =53,得出EF=3,所以DE=8,由∠ADE =∠DBE ,∠AED =∠BED ,得△ADE ∽△BDE ,得DE 2=EA ·EB ,8:BE =4:8,BE=16,∴AB=20;在Rt △ABC 中,sin ∠CAB =53,解得BC=20×53=12.{分值}3{章节:[1-24-1-4]圆周角}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质} {考点:圆周角定理}{考点:直径所对的圆周角} {考点:解直角三角形}{考点:特殊角的三角函数值} {考点:射影定理} {类别:常考题}{难度:4-较高难度}{题目}12.(2019年山东潍坊T12)抛物线y=x 2+bx+3的对称轴为直线x=1.若关于x 的一元二次方程x 2+bx+3-t=0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2 C .6<t <11 D .2≤t <6 {答案}A{解析}本题考查了二次函数与一元二次方程综合的知识,方程有实数根可转化为二次函数与直线有交点,画图函数的图像可以有效帮助解决问题.因为对称轴是x=1,所以b=-2,抛物线的解析式为y=x 2-2x+3,方程x 2-2x+3-t =0有实数根,可以转化为函数y=x 2-2x+3与y=t 有交点,当x=4时,y=11;y=t 向下平移时,平移到函数最低点时,t=2,所以t 的取值范围是2≤t <11. {分值}3{章节:[1-22-2]二次函数与一元二次方程} {考点:二次函数y =ax2+bx+c 的性质} {考点:抛物线与一元二次方程的关系} {考点:代数选择压轴} {类别:高度原创} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6个小题,每小题3分,共18分. {题目}13.(2019年山东潍坊T13)若2x =3,2y =5,则2x +y = . {答案}15{解析}本题考查了同底数幂的乘法的逆用.由2x =3,2y =5,得2x +y =2x ·2y =3×5=15. {分值}3{章节:[1-14-1]整式的乘法} {考点:同底数幂的乘法} {类别:常考题} {难度:1-最简单}{题目}14.(2019年山东潍坊T14)当直线y=(2-2k)x+k -3经过第二、三,四象限时,则k 的取值范围是 . {答案}1<k <3{解析}本题考查了一次函数图象与系数的关系.当直线y=(2-2k)x+k -3经过第二、三,四象限时,有⎩⎨⎧<−<−.03,022k k 解得1<k <3.{分值}3{章节:[1-19-2-2]一次函数} {考点:平面直角坐标系} {考点:解一元一次不等式组}{考点:一次函数与一元一次不等式} {考点:一次函数的图象} {类别:常考题} {难度:2-简单}{题目}15.(2019年山东潍坊T15)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数y =x 1(x >0)与y =x5−(x <0)的图象上,则tan ∠BAO 的值为 .{答案}11{解析}本题考查了相似三角形的判定与性质、反比例函数的性质以及锐角三角函数的知识.如图,过点A 作AC ⊥x 轴,过点B 作BD ⊥x 轴于D ,则∠BDO =∠ACO =90°,由反比例函数k 的几何意义,得S △BDO =25,S △AOC =21.∵∠AOB =90°,∴∠BOD +∠DBO =∠BOD +∠AOC =90°,∴∠DBO =∠AOC ,又∵∠BDO =∠OCA =90°,∴△BDO ∽△OCA ,∴S △BOD :S △OAC =25:21=(OA OB )2,∴OAOB=5,∴tan ∠BAO =OAOB=5.{分值}3{章节:[1-28-3]锐角三角函数} {考点:反比例函数的几何意义}{考点:相似三角形的判定(两角相等)} {考点:相似三角形面积的性质} {考点:正切} {类别:常考题} {类别:思想方法} {难度:3-中等难度}{题目}16.(2019年山东潍坊T16)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ′,折痕为DE .若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB = .{答案}3{解析}本题考查了矩形的性质、全等三角形的判定与性质、解直角三角形与一元一次方程等知识.在矩形ABCD 中,∠ADC =∠C =∠B =90°,AB =DC .由翻折可知,∠AED =∠A 'ED =∠A 'EB =60°,∴∠A 'DE =∠ADE =30°,∴∠A 'DC =30°=∠A 'DB ',又∠A 'B 'D =∠B =∠C ,DA '=DA ',∴△DB 'A '≌△DCA '(AAS ),∴DC =DB '.在Rt △ADE 中,tan30°=AD AE ,即33=2AE ,解得AE =332.∴DE =334.设AB =DC =DB '=x ,则B 'E =BE =x -332,即有x -332+x =334,解得x =3.{分值}3{章节:[1-18-2-1]矩形}{考点:全等三角形的判定ASA,AAS} {考点:全等三角形的性质} {考点:矩形的性质} {考点:解直角三角形}{考点:解一元一次方程(移项)} {类别:常考题} {难度:3-中等难度}{题目}17.(2019年山东潍坊T17)如图,直线y =x +1与抛物线y =x 2-4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,S △P AB = .{答案}512 {解析}本题综合考查了二次函数的性质、一次函数的性质、轴对称与最短路径问题、解一元二次方程、待定系数法等知识.解方程x +1=x 2-4x +5,得x 1=1,x 2=2,分别代入y =x +1,得y 1=2, y 2=3,∴A(1,2),B(4,5). 作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,此时△P AB 的周长最小,点A ′的坐标为(-1,2).设直线A ′B 的函数解析式为y =kx +b ,有⎩⎨⎧=+=+−,54,2b k b k 解得k =53,b =513,∴直线A ′B 的函数解析式为y =53x +513,与y 轴的交点P 的坐标为(0,513).直线y =x +1与y 轴的交点C 的坐标为(0,1),则PC =513-1=58,于是S △P AB =S △PBC -S △P AC =21×58×4-21×58×1=516-108=512.{分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:待定系数法求一次函数的解析式} {考点:解一元二次方程-因式分解法} {考点:其他二次函数综合题} {考点:坐标系中的轴对称} {考点:最短路线问题} {考点:代数填空压轴} {类别:常考题} {类别:思想方法} {难度:4-较高难度}{题目}18.(2019年山东潍坊T18)如图所示,在平面直角坐标系xoy 中,一组同心圆的圆心为坐标原点O ,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l 0,l 1,l 2,l 3,…都与x 轴垂直,相邻两直线的间距为1,其中l 0与y 轴重合.若半径为2的圆与l 1在第一象限内交于点P 1,半径为3的圆与l 2在第一象限内交于点P 2,…,半径为n +1的圆与l n 在第一象限内交于点P n ,则点P n 的坐标为 .(n 为正整数){答案}(n ,12+n ){解析}本题考查了平面直角坐标系内点的排列规律、圆的切线的判定、勾股定理等知识.如图,分别连接OP 1,OP 2,OP 3,l 1、l 2、l 3与x 轴分别交于A 1、A 2、A 3,由题意可知A 1、A 2、A 3均为切点.在Rt △OA 1P 1中,OA 1=1,OP 1=2,∴A 1P 1=2121OA OP −=2212−=3,同理,A 2P 2=2223−=5,A 3P 3=2234−=7,……,∴P 1的坐标为( 1,3),P 2的坐标为( 2,5),P 3的坐标为(3,7),……AyOxBP A ′ C按照此规律可得点P n 的坐标是(n ,22)1(n n −+),即(n ,12+n ).{分值}3{章节:[1-17-1]勾股定理} {考点:切线的判定} {考点:勾股定理} {考点:代数填空压轴} {类别:常考题} {类别:发现探究} {难度:4-较高难度}{题型:4-解答题}三、解答题:本大题共7小题,共66分.{题目}19.(2019年山东潍坊T19)已知关于x ,y 的二元一次方程组⎩⎨⎧=−=−ky x y x 2,532的解满足x >y ,求k 的取值范围.{解析}本题考查了解二元一次方程组,一元一次不等式,熟练掌握解二元一次方程组与一元一次不等式的方法步骤是解决该类问题的关键,有时把握整体,解法更为简捷.如本题直接把两个方程相减得x -y=5-k ,由此求k 的取值范围更方便灵活. {答案}解:方法一:⎩⎨⎧=−=−k y x y x 2,532②①①-②,得x -y=5-k .∵x >y ,∴5-k >0,∴k <5. 方法二:⎩⎨⎧=−=−k y x y x 2,532②①①-②×2,得y =5-2k ,代入②,得 x -2(5-2k )=k ,解得x =10-3k . ∵x >y ,∴10-3k >5-2k , -k >-5,解得k <5. {分值}5{章节:[1-9-2]一元一次不等式}{考点:选择合适的方法解二元一次方程组} {考点:解一元一次不等式} {类别:思想方法} {类别:常考题} {难度:1-最简单}{题目}20.(2019年山东潍坊T20)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多.为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB =200米,坡度为1:3;将斜坡AB 的高度AE 降低AC =20米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号){解析}本题考查了解直角三角形的相关知识.根据条件AB=200和坡度比可以求出AE 的长度,进而知道线段CE 的长度,再根据第二个坡度在Rt △CDE 中利用∠D 的三角函数值求CD 的长度. {答案}解:在Rt △ABE 中,∵tan ∠ABE=1:3,∴∠ABE=30°.∵AB=200,∴AE=100.∵AC=20,∴CE=100-20=80.在Rt △CDE 中,∵tan ∠D=1:4, ∴sin ∠D=1717,∴1717=CD CE . ∴CD=8017(米).答:斜坡CD 的长是8017米. {分值}6{章节:[1-28-1-2]解直角三角形}{考点:解直角三角形的应用-坡度}{考点:特殊角的三角函数值}{类别:常考题}{难度:2-简单}{题目}21.(2019年山东潍坊T21)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,次数 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次数字3 5 2 3 34 35 (2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.){解析}本题考查了统计中的加权平均数与概率.(1)利用加权平均数公式直接计算即可;(2)前8次总和为28,若要10次的平均数在3.3与3.5之间,则需要后两次的和在5和7之间,再画出树状图或列表求解.{答案}解:(1)8422543++⨯+⨯=3.5. 答:前8次的指针所指数字的平均数为3.5.(2)能发生.ACEB D图2若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次的所指数字之和为28,所以最后两次的所指数字之和应不小于5,且不大于7.第9次和第10次指针所指数字如下表所示: 第10次 第9次2 3 4 5 2 (2,2) (2,3) (2,4) (2,5)3 (3,2) (3,3) (3,4) (3,5)4 (4,2) (4,3) (4,4) (4,5)5 (5,2) (5,3) (5,4) (5,5)第9次和第10次指针所指数字树状图如下:一共有16种等可能结果,其中指针所指数字之和不小于5,且不大于7的有9种结果,其概率为:P =169. 因此,这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的概率为169. {分值}9{章节:[1-25-2]用列举法求概率}{考点:加权平均数(频数为权重)}{考点:两步事件放回}{类别:常考题}{难度:3-中等难度}{题目}22.(2019年山东潍坊T22)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接DG ,过点A 作AH ∥DG ,交BG 于点H .连接HF ,AF ,其中AF 交EC 于点M .(1)求证:△AHF 为等腰直角三角形.(2)若AB =3,EC =5,求EM 的长.{解析}本题综合考查了正方形和三角形的有关性质,能在正方形背景中识别出三角形全等和三角形相似是解决本问题的关键.第(1)问证明△AHF 是等腰直角三角形,只需要证明线段HA =HF ,∠AHG =90°即可.第(2)问容易识别出△EFM ∽△ADM ,根据对应线段成比例就可以求出线段EM 的长度.{答案}解:(1)证明:∵四边形ABCD ,四边形ECGF 都是正方形,∴AD ∥CG ,AH ∥DG ,∴四边形ADGH 为平行四边形,AD =HG .∵AD =BC ,∴BC =HG ,∴BC +CH =HG +CH ,即BH =CG .∴GF =BH .在△ABH 和△HGF 中,AB =HG ,∠B =∠HGF ,BH =GF ,∴△ABH ≌△HGF .∴∠BAH=∠GHF ,AH=HF .∵∠BAH +∠BHA =90°,∴∠GHF +∠BHA =90°.∴∠AHF =90°.∴△AHF 为等腰直角三角形.(2)∵AB =3,EC =5,∴AD =CD =3,CE =EF =5.∴DE =2.∵AD ∥EF ,∴53==EF AD EM DM . ∴EM =85DE =45. {分值}10{章节:[1-27-1-1]相似三角形的判定}{考点:正方形的性质}{考点:两组对边分别平行的四边形是平行四边形}{考点:直角三角形两锐角互余}{考点:全等三角形的判定SAS}{考点:由平行判定相似}{考点:等腰直角三角形}{类别:常考题}{难度:3-中等难度}{题目}23.(2019年山东潍坊T23)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w 元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.){解析}本题考查了分式方程与二次函数的实际应用.(1)解题的关键在于找到等量关系,根据题目中给出的条件,去年和今年的产量之间的关系,去年和今年价格之间的关系,去年和今年销售金额之间的关系,设出未知数,就可以列出方程;(2)属于常见的二次函数利润问题,能根据价格与销售量之间的关系列出函数关系式,根据二次函数关系式就可以求出函数的最大值.{答案}解:(1)设今年这种水果每千克的平均批发价为x 元,由题意,得1100000%)201(100000+−+x x =1000. 解之,得x 1=24,x 2=-5(舍去).答:今年这种水果每千克的平均批发价为24元.(2)设每千克的平均销售价为m 元,由题意,得w=(m -24)(300+180×341m −)=-60(m -35)2+7260. ∵-60<0,∴当m=35时,w 取得最大值为7260.答:当每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元. {分值}10{章节:[1-22-3]实际问题与二次函数}{考点:其他分式方程的应用}{考点:商品利润问题}{类别:常考题}{难度:3-中等难度}{题目}24.(2019年山东潍坊T24)如图1,菱形ABCD 的顶点A ,D 在直线l 上,∠BAD =60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB ′C ′D ′.B ′C ′交对角线AC 于点M ,C ′D ′交直线l 于点N ,连接MN .(1)当MN ∥B ′D ′时,求α的大小.(2)如图2,对角线B ′D ′交AC 于点H ,交直线l 与点G ,延长C ′B ′交AB 于点E ,连接EH .当△HEB ′的周长为2时,求菱形ABCD 的周长.{解析}本题考查了菱形的性质,平行线分线段成比例,全等三角形的判定与性质,旋转等知识.(1)由MN ∥B ′D ′易得MB ′=ND ′,再通过证明AB ′M ≌△AD ′N 得∠B ′AM =∠D ′AN ,即可解决问题;(2)首先根据旋转证明出△AB ′E ≌△AD ′G ,再进一步证明△AHE ≌△AHG ,得EH =GH ,B ′D ′=2,即可菱形ABCD 的周长.{答案}解:(1)∵MN ∥B ′D ′,∴D C B C D N B M ''''=''. 又∵C ′B ′=C ′D ′,∴MB ′=ND ′.在AB ′M 和△AD ′N 中,∴AB ′=AD ′,∠AB ′M =∠AD ′N , B ′M =D ′N ,∴△AB ′M ≌△AD ′N ,∴∠B ′AM =∠D ′AN .又∵∠D ′AN =α,∴∠B ′AM =α.∴∠B ′AM =∠BAB ′=21∠BAC =41∠BAD =15°. 即α=15°.(2)在△AB ′E 和△AD ′G 中,∠AB ′E =∠AD ′G ,∠EAB ′=∠GAD ′,AB ′=AD ′,∴△AB ′E ≌△AD ′G ,∴EB ′=GD ′,AE =AG .在△AHE 和△AHG 中,AE =AG ,∠EAH =∠GAH ,AH =AH ,∴△AHE ≌△AHG ,∴EH =GH .∵△HEB ′的周长为2,∴EH +EB ′+HB ′=2,∴GH +GD ′+B ′H =2,∴B ′D ′=BD =2,∴菱形ABCD 的周长为8.{分值}13{章节:[1-18-2-2]菱形}{考点:菱形的性质}{考点:全等三角形的判定SAS}{考点:全等三角形的判定ASA,AAS}{考点:平行线分线段成比例}{考点:旋转的性质}{考点:几何综合}{类别:常考题}{难度:4-较高难度}{题目}25.(2019年山东潍坊T25)如图,在平面直角坐标系xoy 中,O 为坐标原点,点A (4,0),点B (0,4),△ABO 的中线AC 与y 轴交于点C ,且⊙M 经过O ,A ,C 三点.(1)求圆心M 的坐标;(2)若直线AD 与⊙M 相切于点A ,交y 轴于点D ,求直线AD 的函数表达式;(3)在过点B 且以圆心M 为顶点的抛物线上有一动点P ,过点P 作PE ∥y 轴,交直线AD 于点E .若以PE 为半径的⊙P 与直线AD 相交于另一点F .当EF =45时,求点P 的坐标.{解析}本题综合考查了在坐标系中解决抛物线和圆的有关问题.第(1)问因为点M 是AC 的中点,容易得出点M 的坐标;第(2)问的关键在直线AD 和圆相切,相切就有直径垂直于切线,根据相似三角形的知识可求出线段OD 的长度,进而求出点D 点坐标;第(3)问中,抛物线的顶点是M ,可以根据顶点式求出抛物线的解析式.设出P 点坐标,再利用Rt △EHP ∽Rt △DOA 构建一元二次方程模型求解.{答案}解:(1)∵AC 是△ABO 的中线,∴点C 的坐标为(0,2).∵∠AOC=90°,∴线段AC 是⊙M 的直径,∴点M 为线段AC 的中点, ∴圆心M 的坐标为(2,1).(2)∵AD 与⊙M 相切于点A ,∴AC ⊥AD ,∴Rt △AOC ∽Rt △DOA ,∴21==OD OA OA OC . ∵OA=4,∴OD=8. ∴点D 的坐标为(0,-8). 设直线AD 的函数表达式为y =kx +b ,可得⎩⎨⎧=−+=.8,40b b k ∴k=2,b=-8.∴直线AD 的函数表达式为y =2x -8.(3)设抛物线为y=a(x -2)2+1,且过点(0,4),∴4=a(0-2)2+1,∴a=43. 所以,抛物线的关系式为y =43x 2-3x +4. 设点P (m ,43m 2-3m +4),则点E (m ,2m 2-8),∴PE =43m 2-5m +12. 过点P 作PH ⊥EF ,垂足为H ,∵PE ∥y 轴,∴Rt △EHP ∽Rt △DOA , ∴548==AD OD PE EH . ∴EH=52×(43m 2-5m +12). ∵EF=45,∴25=52×(43m 2-5m +12). 化简,得3m 2-20m +28=0, 解之,得m 1=2,m 2=314. 所以点P 的坐标为(2,1)或(314,319). {分值}13{章节:[1-24-2-2]直线和圆的位置关系} {考点:待定系数法求一次函数的解析式} {考点:相似三角形的判定(两角相等)} {考点:二次函数y =ax2+bx+c 的性质} {考点:切线的性质}{考点:直径所对的圆周角}{考点:圆与相似的综合}{考点:圆与函数的综合}{考点:二次函数与圆的综合} {考点:代数综合}{考点:几何综合}{类别:常考题}{难度:5-高难度}。
2019年山东省潍坊市初中毕业、升学考试数 学(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019山东省潍坊市,1,3分) 2019的倒数的相反数是( ) A .-2019 B .12019- C .12019D .2019 【答案】B【解析】2019的倒数为12019,而12019的相反数为12019-,故选择B . 【知识点】有理数,相反数,倒数2.(2019山东省潍坊市,2,3分)下列运算正确的是( )A .3a ×2a =6aB .a 8÷a 4=a 2C .-3(a -1)=3-3aD .32911)39a a =( 【答案】C【解析】选项A :3a ×2a =6a 2;选项B :a 8÷a 4=a 4;选项C 正确;选项D :32611)39a a =(,故选择C . 【知识点】整式的乘除,单项式乘以单项式,同底数幂的除法,单项式乘以多项式,积的乘方,幂的乘方 3.(2019山东省潍坊市,3,3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资×1011元.数据×1011可以表示为( ) A .B .C .1002亿 D .10020亿 【答案】C【解析】×1011=100200000000=1002亿,故选择C . 【知识点】科学记数法——表示较大的数 4.(2019山东省潍坊市,4,3分)如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A .俯视图不变,左视图不变B .主视图改变,左视图改变C .俯视图不变,主视图不变D .主视图改变,俯视图改变 【答案】A 【解析】通过小正方体①的位置可知,只有从正面看会少一个正方形,故主视图会改变,而俯视图和左视图不变,故选择A .【知识点】三视图5.(2019山东省潍坊市,5,3分)利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是( ) A .B .C .D . 【答案】B【解析】7的近似值,分别计算四个数的平方可得:22227≈,故选择B . 【知识点】计算器的使用,估算 6.(2019山东省潍坊市,6,3分)下列因式分解正确的是( ) A .22363(2)ax ax ax ax -=- B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=-- 【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .【知识点】因式分解,提公因式法,运用公式法这10个周的综合素质评价成绩的中位数和方差分别是( ) A .B .C .D .97 3 【答案】B 【解析】949529729841009710x +⨯+⨯+⨯+==,故其方差为222222(9497)(9597)2(9797)2(9897)4(10097)310s -+-⨯+-⨯+-⨯+-==;故选择B .【知识点】中位数,方差,加权平均数 8.(2019山东省潍坊市,8,3分)如图已知∠AOB ,按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交∠AOB 的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在∠AOB 内交于点E ,连接CE ,DE . ③连接OE 交CD 于点M . 下列结论中错误的是( )A .∠CEO =∠DEOB .CM =MDC .∠OCD =∠ECD D .S 四边形OCED =12CD ·OE 【答案】C【解析】由作图可知OC =OD ,CE =DE ,OE =OE ,所以△OCE ≌ODE ,∴∠CEO =∠DEO ,选项A 正确,根据“三线合一”可知,CM =MD ,CD ⊥OE ,所以选项B 、D 正确;选项C 错误;故答案选择C. 【知识点】尺规作图,全等三角形的判定和性质,等腰三角形的性质 9.(2019山东省潍坊市,9,3分)如图,在矩形ABCD 中,AB =2,BC =3,动点P 沿折线BCD 从点B 开始运动到点D .使运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( ) 【答案】D【解析】当点P 在BC 段时0≤x ≤3,此时△ADP 的面积不变,13232y =⨯⨯=,当点P 在CD 段时3<x <4(当点P 运动到点D 时不构成三角形),13153(32)222y x x =⨯⨯+-=-+,所以3(03)315(34)22x y x x ≤≤⎧⎪=⎨-+<<⎪⎩,故答案选D .【知识点】分段函数的图象,动点问题10.(2019山东省潍坊市,10,3分)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .m =-2B .m =3C .m =3或m =-2D .m =3或m =2 【答案】A【解析】由题意可得:222121212()212x x x x x x +=+-=,因为:122122,x x m x x m m+=-⎧⎨=+⎩所以:22(2)2()12m m m --+=,解得:m 1=3,m 2=-2;当m =3时Δ=62-4×1×12<0,所以m =3应舍去; 当m =-2时Δ=(-4)2-4×1×2>0,符合题意. 所以m =-2,故选择A .【知识点】一元二次方程根与系数的关系,一元二次方程根的判别式 11.(2019山东省潍坊市,11,3分)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD .过点D 作DE ⊥AB 于点E .连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则BC 的长为( ) A .8 B .10 C .12 D .16 【答案】C【思路分析】连接BD ,先证明∠DAC =∠ACD =∠ABD =∠ADE ,从而可得AF =DF =5,根据sin ∠CAB =35,求得EF 和AE 的长度,再利用射影定理求出BE 的长度从而得到直径AB ,根据sin ∠CAB =35求得BC 的长度. 【解题过程】连接BD . ∵AD =CD ,∴∠DAC =∠ACD . ∵AB 为直径,∴∠ADB =∠ACB =90°. ∴∠DAB +∠ABD =90°. ∵DE ⊥AB ,∴∠DAB +∠ADE =90°. ∴∠ADE =∠ABD . ∵∠ABD =∠ACD , ∴∠DAC =∠ADE . ∴AF =DF =5. 在Rt △AEF 中, sin ∠CAB =35EF AF = ∴EF =3,AE =4. ∴DE =3+5=8.由DE 2=AE ▪EB ,得228164DE BE AE ===. ∴AB =16+4=20.在R t △ABC 中, sin ∠CAB =35BC AB = ∴BC =12.【知识点】圆周角,锐角三角比 12.(2019山东省潍坊市,12,3分)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3-t =0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2 C .6<t <11 D .2≤t <6 【答案】A【思路分析】根据对称轴为直线x =1,求出b 的值,画出抛物线y =x 2+bx +3(-1<x <4)的图象,如果该图象与直线y =t 有交点,则题目所给的一元二次方程有实数根,利用图象可得t 的取值范围.【解题过程】由题意得:12b-=,b =-2,抛物线解析式为y =x 2-2x +3,当-1<x <4时,其图象如图所示: 从图象可以看出当2≤t <11时,抛物线y =x 2-2x +3与直线y =t 有交点,故关于x 的一元二次方程x 2+bx +3-t =0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是2≤t <11,故选择A .方法二:把y =x 2-2x +3-t (-1<x <4)的图象向下平移2个单位时图象与x 轴开始有交点,向下平移11个单位时开始无交点,故2≤t <11,故选择A .【知识点】二次函数与一元二次方程,数形结合法二、填空题:本大题共6小题,每小题3分,共18 分.不需写出解答过程,请把最后结果填在题中横线上.13.(2019山东省潍坊市,13,3分)若2x =3,2y =5,则2x +y = . 【答案】15【解析】2x +y =2x ▪2y =3×5=15. 【知识点】同底数幂的乘法14.(2019山东省潍坊市,14,3分)当直线(22)3y k x k =-+-经过第二、三、四象限时,则k 的取值范围是 . 【答案】1<k <3【解析】∵直线经过第二、三、四象限,所以220,30k k -<⎧⎨-<⎩,解得:1<k <3.【知识点】一次函数的图象和性质15.(2019山东省潍坊市,15,3分)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数1(0)y x x=>与5(0)y x x-=<的图象上.则tan ∠BAO 的值为 .【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D . 则△BDO ∽△OCA , ∴2S =()SBDO OCABD OA∵S △BDO =52,S △ACO =12, ∴2()=5BD OA, ∴tan∠BAO =BDOA=.【知识点】反比例函数,反比例函数k 的几何意义,相似三角形的判定和性质 16.(2019山东省潍坊市,16,3分)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 在BC 上,记为A ′,折痕为DE .若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB =.【思路分析】由翻折可得∠AED =∠A ′ED =∠A ′EB =60°,从而可得∠ADE =∠A ′DE =∠A ′DC =30°,根据角平分线性质可知A ′C =A ′B ′=A ′B ,求出A ′C 的长度,解Rt △A ′CD ,得CD 的长即为AB . 【解题过程】由翻折可得∠AED =∠A ′ED =∠A ′EB =60°, ∴∠ADE =∠A ′DE =∠A ′DC =30°. ∴A ′D 平分∠EDC ,∵A ′B ′⊥DE ,A ′C ⊥DC ,∴A ′C =A ′B ′. ∵A ′B ′=A ′B ∴A ′C =A ′B , ∵BC =AD =2 ∴A ′C =1.在Rt △A ′DC 中, tan 30°='3A C DC =. ∴DC. ∴AB【知识点】图形的翻折,轴对称,矩形,锐角三角比17.(2019山东省潍坊市,17,3分)如图,直线y =x +1与抛物线y =x 2-4x +5交于A ,B 两点,点P 是y 轴上的一个动点.当△P AB 的周长最小时,S △P AB = . 【答案】125【思路分析】先求出A 、B 两点坐标,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,求出直线A ′B 的解析式,从而可求出△P AB 的面积. 【解题过程】解方程组2145y x y x x =+⎧⎨=-+⎩,得:1112x y =⎧⎨=⎩,2245x y =⎧⎨=⎩.∴A (1,2) B (4,5)作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P . 则A ′(-1, 2).设直线A ′B 解析式为y =kx +b , 则245k b k b -+=⎧⎨+=⎩,解得:3,5135k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线A ′B :31355y x =+. ∴当△P AB 的周长最小时,点P 的坐标为(0,135). 设直线AB 与y 轴的交点为C ,则C (0,1) ∴S △P AB =S △PCB -S △PCA=113113(1)4(1)12525⨯-⨯-⨯-⨯ =125【知识点】二次函数与一次函数综合,几何最短问题,三角形面积的计算 18.(2019山东省潍坊市,18,3分)如图所示,在平面直角坐标系xoy 中,一组同心圆的圆心为坐标原点O ,它们的半径分别为1,2,3,…,按照“加1” 依次递增;一组平行线l 0,l 1,l 2,l 3,…都与x 轴垂直,相邻两直线的间距为1,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内相交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)【答案】(n)【思路分析】横坐标依次为1,2,3,4,…可以确定点P n的横坐标,再根据勾股定理可确定点P n的纵坐标.【解题过程】由图可知点P n的横坐标与它所在圆的半径相同,故点P n的横坐标为n,点P1=点P2=……点P n=,∴点P n的坐标为(n).【知识点】规律探索,图形与坐标三、解答题(本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(2019山东省潍坊市,19,5分)已知关于x,y的二元一次方程组2352x yx y k-=⎧⎨-=⎩的解满足x﹥y,求k的取值范围.【思路分析】方法一:直接两个方程相减,得到x-y的值,然后根据x﹥y,列出不等式求解;方法二:解方程组求得x,y的值,代入不等式求k的取值范围.【解题过程】方法一:①-②得:x-y=5-k∵x﹥y,∴5-k﹥0∴k<5.方法二:2352x yx y k-=⎧⎨-=⎩解之得:31025 x ky k=-+⎧⎨=-+⎩∵x﹥y,∴-3k+10﹥-2k+5∴k<5.【知识点】二元一次方程组与一元一次不等式的解法20.(2019山东省潍坊市,20,6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多.为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1∶4.求斜坡CD的长.(结果保留根号)【思路分析】解Rt△ABE求出AE的长,进一步求出CE的长度,再根据CD的坡度解Rt△CDE求出CD的长度.【解题过程】在Rt△ABE中,∵tan ∠ABE =1∴∠ABE =30°. ∵AB =200, ∴AE =12AB =100. ∵AC =20,∴CE =100-20=80. 在Rt △CDE 中, ∵tanD =1∶4, ∴sinD.∴17CE CD =. ∴CD=答:斜坡CD的长是【知识点】解直角三角形的应用,坡度和坡比 21.(2019山东省潍坊市,21,9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次,”的结果?若有可能,计算发生此结果的概率,并写出计算过程,若不可能,说明理由.(指针指向盘面等分线时视为无效转次) 【思路分析】(1)利用平均数公式直接计算即可;(2)计算出前8次数字的和,根据总平均数 【解题过程】(1)34+52+2+4=3.58⨯⨯.(2)能发生不小于33,且不大于35.而前8次的所指数字之和为28,所以最后两次的所指数字之和应不小于5,且不大于7.第9次和第10次指针所指数字树状图如下:一共有16种等可能结果,其中指针所指数字之和不小于5,且不大于7的有9种结果,其概率为:916P =. 【知识点】统计与概率,平均数,事件发生的可能性,概率的计算22.(2019山东省潍坊市,22,10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H,连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.【思路分析】(1)利用“SAS”证明△ABH≌△HGF,即可得到边角关系,从而证明△AHF为等腰直角三角形;(2)计算出DE的长度,利用AD∥EF可得35DM ADEM EF==,从而求得EM.【解题过程】(1)证明:∵AD∥CG,AH∥DG ∴四边形ADGH为平行四边形.∴AD=HG.∵AD=BC,∴BC=HG∴BC+CH=GH+HC即BH=CG∴GF=BH在△ABH和△HGF中AB=HG∠B=∠HGF BH=GF∴△ABH≌△HGF∴∠BAH=∠GHF AH=HF∵∠BAH+∠BHA=90°∴∠AHF=90°∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5∴AD=CD=3,CE=EF=5∴DE=2∵AD∥EF∴35 DM AD EM EF==∴EM=58DE=54.【知识点】正方形的性质,等腰直角三角形,全等三角形的判定和性质,相似三角形的判定和性质23.(2019山东省潍坊市,23,10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场,与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克,若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)【思路分析】(1)设今年这种水果每千克的平均批发价为x元,则去年的批发价为(x+1)元,根据“今年比去年这种水果的产量增加了1000千克”列方程求解;(2)设每千克的平均销售价为m元,求出这种水果的销售量,根据“利润=(售价-进价)×销售量”列出函数关系求最值.【解题过程】(1)设今年这种水果每千克的平均批发价为x元,由题意,得:解之,得:x1=24,x2=-5(舍去)答:今年这种水果每千克的平均批发价为24元.(2)设每千克的平均销售价为m元,由题意得:∵-60<0∴当x=35时,w取得最大值为7260答:当每千克平均销售价为35元时,一天的利润最大,最大利润是7260元.【知识点】分式方程的应用,二次函数的应用24.(2019山东省潍坊市,24,13分)如图1,菱形ABCD的顶点A,D在直线l上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′.B′C′交对角线AC于点M,C′D′交直线l 于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l于点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.【思路分析】(1)根据平行线分线段成比例求得MB′=ND′,证明△AB′M≌△AD′N,从而得到∠B′AM=∠D′AN=α,根据∠BAD=60°,求得α的大小;(2)先证明△AB′E≌△AD′G,得到EB′=GD′,AE=AG,再证明△AHE≌△AHG,得到EH=GH,从而△HEB′的周长= B′D′=BD,进一步求出菱形的周长.【解题过程】(1)∵MN∥B′D′∴'''''' MB C B ND C D又∵C′B′=C′D′∴MB′=ND′在△AB′M和△AD′N中AB′=AD′,∠AB′M=∠AD′N,B′M=D′N ∴△AB′M≌△AD′N∴∠B′AM=∠D′AN又∵∠D′AN=α∴∠B′AM=α∴∠B′AM=∠BAB′=12∠BAC=14∠BAD=15°即α=15°(2)在△AB′E和△AD′G中,∠AB′E=∠AD′G,∠EAB′=∠GAD′,AB′=AD′∴△AB′E≌△AD′G∴EB′=GD′,AE=AG在△AHE和△AHG中,AE=AG,∠EAH=∠GAH,AH=AH∴△AHE≌△AHG∴EH=GH∵△HEB′的周长为2∴EH+EB′+B′H=2∴GH+GD′+B′H=2∴B′D′=BD=2∴菱形ABCD的周长为8.【知识点】菱形的性质,图形的旋转,全等三角形的判定和性质25.(2019山东省潍坊市,25,13分)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=P的坐标.【思路分析】(1)先求出点C的坐标,根据M为AC的中点求得坐标;(2)先证明Rt△AOC∽Rt△DOA,求出OD的长,从而求出点D的坐标,利用待定系数法求AD的解析式;(3)利用顶点式求出抛物线的解析式,过点P 作PH ⊥EF ,垂足为H ,设出点P 的坐标,根据Rt △EHP ∽Rt △DOA ,得到EH ODPE AD=,求出EH 与PE 的关系式,即可求解. 【解题过程】(1)∵AC 是△ABO 的中线 ∴点C 的坐标为(0,2) ∵∠AOC =90°∴线段AC 是⊙M 的直径 ∴点M 为线段AC 的中点 ∴圆心M 的坐标为(2,1) (2)∵AD 与⊙M 相切于点A ∴AC ⊥AD∴Rt △AOC ∽Rt △DOA ∴12OC OA OA OD == ∵OA =4, ∴OD =8∴点D 的坐标为(0,-8)设直线AD 的函数表达式为y =kx +b可得:048k b b =+⎧⎨-=⎩∴k =2,b =-8∴直线AD 的函数表达式为:y =2x -8(3)设抛物线2(2)1y a x =-+,且过点(0,4) ∴4=a (0-2)2+1 ∴34a =所以,抛物线的关系式为:23344y x x =-+ 设点P (m ,23344m m -+),则点E (m ,2m -8) ∴235124PE m m =-+ 过点P 作PH ⊥EF ,垂足为H 在Rt △DOA 中, ∵PE ∥y 轴∴Rt △EHP ∽Rt △DOA ∴EH OD PE AD == ∴23(512)4EH m m =-+∵EF =∴23(512)4m m =-+ 化简,得:2320280m m -+=解之,得:m 1=2,m 2=143. 所以点P 为(2,1)或(143,193) 【知识点】二次函数综合,圆的基本性质,一次函数、二次函数的解析式,相似三角形的判定和性质。
最新山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。
2019潍坊数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.2019的倒数的相反数是()A.﹣2019 B.﹣C.D.20192.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(a3)2=a93.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.96.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)27.小莹同学10个周综合素质评价成绩统计如下:这10个周的综合素质评价成绩的中位数和方差分别是()A.97.5 2.8 B.97.5 3C.97 2.8 D.97 38.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE9.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.10.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=211.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.1612.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二、填空题(共6小题)13.若2x=3,2y=5,则2x+y=.14.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.15.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为.16.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.17.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.18.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)三、解答题(共7小题)19.已知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.20.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)21.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)22.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.23.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)24.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.25.如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.2019潍坊数学中考真题(解析版)参考答案一、单选题(共12小题)1.【解答】解:2019的倒数是,再求的相反数为﹣;故选:B.【知识点】倒数、相反数2.【解答】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(a3)2=a6,故本选项错误.故选:C.【知识点】去括号与添括号、幂的乘方与积的乘方、同底数幂的除法、单项式乘单项式3.【解答】解:1.002×1011=1 002 000 000 00=1002亿故选:C.【知识点】科学记数法—表示较大的数4.【解答】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.【知识点】简单组合体的三视图5.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.【知识点】计算器—数的开方6.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.【知识点】提公因式法与公式法的综合运用7.【解答】解:这10个周的综合素质评价成绩的中位数是=97.5(分),平均成绩为×(94+95×2+97×2+98×4+100)=97(分),∴这组数据的方差为×[(94﹣97)2+(95﹣97)2×2+(97﹣97)2×2+(98﹣97)2×4+(100﹣97)2]=3(分2),故选:B.【知识点】中位数、方差8.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD•OE,但不能得出∠OCD=∠ECD,故选:C.【知识点】作图—基本作图9.【解答】解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.【知识点】动点问题的函数图象10.【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴△=﹣4m≥0,∴m≤0,∴x1+x2=﹣2m,x1•x2=m2+m,∴x12+x22=(x1+x2)2﹣2x1•x2=4m2﹣2m2﹣2m=2m2﹣2m=12,∴m=3或m=﹣2;∴m=﹣2;故选:A.【知识点】根与系数的关系11.【解答】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.【知识点】圆心角、弧、弦的关系、解直角三角形、圆周角定理12.【解答】解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.【知识点】二次函数的性质、抛物线与x轴的交点二、填空题(共6小题)13.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.【知识点】同底数幂的乘法14.【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,∴2﹣2k<0,k﹣3<0,∴k>1,k<3,∴1<k<3;故答案为1<k<3;【知识点】一次函数图象与系数的关系15.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.【知识点】反比例函数的性质、解直角三角形、反比例函数图象上点的坐标特征16.【解答】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.【知识点】翻折变换(折叠问题)、矩形的性质17.【解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.【知识点】二次函数图象上点的坐标特征、二次函数的性质、一次函数的性质、一次函数图象上点的坐标特征、轴对称-最短路线问题18.【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,同理:A2P2==,A3P3==,……,∴P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,…按照此规律可得点P n的坐标是(n,),即(n,)故答案为:(n,).【知识点】勾股定理、规律型:点的坐标三、解答题(共7小题)19.【解答】解:①﹣②得:x﹣y=5﹣k,∵x>y,∴x﹣y>0.∴5﹣k>0.解得:k<5.【知识点】解一元一次不等式、二元一次方程组的解20.【解答】解:∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,∴∠ABE=30°,∴AE=AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴,即,解得,ED=320,∴CD==米,答:斜坡CD的长是米.【知识点】解直角三角形的应用-坡度坡角问题21.【解答】解:(1)前8次的指针所指数字的平均数为×(3+5+2+3+3+4+3+5)=3.5;(2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5,∴后两次指正所指数字和要满足不小于5且不大于7,画树状图如下:由树状图知共有16种等可能结果,其中符合条件的有9种结果,所以此结果的概率为.【知识点】算术平均数、列表法与树状图法22.【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD∵CD=HG,∠ECG=∠CGF=90°,FG=CG∴△DCG≌△HGF(SAS)∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5∵AD∥EF∴=,且DE=2∴EM=【知识点】全等三角形的判定与性质、正方形的性质、等腰直角三角形23.【解答】解:(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元今年的批发销售总额为10(1+20%)=12万元∴整理得x2﹣19x﹣120=0解得x=24或x=﹣5(不合题意,舍去)故这种水果今年每千克的平均批发价是24元.(2)设每千克的平均售价为m元,依题意由(1)知平均批发价为24元,则有w=(m﹣24)(×180+300)=﹣60m2+4200m﹣66240整理得w=﹣60(m﹣35)2+7260∵a=﹣60<0∴抛物线开口向下∴当m=35元时,w取最大值即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元【知识点】二次函数的应用24.【解答】解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.【知识点】菱形的性质、旋转的性质、等边三角形的判定与性质25.【解答】解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO===tanα,则sinα=,cosα=,AC=,则CD==10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=,故抛物线的表达式为:y=x2﹣3x+4,过点P作PH⊥EF,则EH=EF=2,cos∠PEH=,解得:PE=5,设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,解得x=或2,则点P(,)或(2,1).【知识点】二次函数综合题。
2019年初中毕业升学考试(山东潍坊卷)数学【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 在这四个数中,最大的数是()
A. B. C. D.
2. 如图所示几何体的左视图是()
3. 2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”,第二次全国残疾人抽样调查结果显示,我国26岁精神残疾儿童约为11.1万人,11.1万用科学记数法表示为()
A. B. C.1.11×105 D.
4. 下列汽车标志中不是中心对称图形的是()
5. 下列计算正确的是()
A.
B.
C.
D.
6. 不等式组的所有整数解的和是()
A.2 B.3 C.5 D.6
7. 如图,AB是的弦,AO的延长线交过点B的的切线于点C,如果∠ABO=20°,则
∠C的度数是()
A.70° B.50° C.45° D.20°
8. 若式子有意义,则一次函数的图象可能是()
9. 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,
以大于的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是()
A.2 B.4 C.6 D.8
10. 将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()
A.()
B.()
C.()
D.()
11. 如图,有一块边长为6cm的正三角形纸板,在它的的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()
A. B. C. D.
12. 已知二次函数的图象如图所示,顶点为(-1,0),下列结论:abc<0;; a>2;>0.其中正确结论的个数是
()
A.1 B.2 C.3 D.4
二、填空题
13. “植树节”时,九年级一班6个小组的植树棵树分别是:5,7,3,x,6,4,已知这组数据的众数是5,则该组数据的平均数是.
14. 如图,在等腰梯形ABCD中,AD//BC,BC=50,AB=20,∠B=60°,则AD= .
15. 因式分【解析】.
16. 观光塔是潍坊市的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是
m.
17. 如图,正△ABC的边长为2,以BC边上的高为边作正,△ABC与公共部分的面积记为;再以正边上的高为边作,与公共部分的面积记为;......,以此类推,则= .(用含n 的式子表示).
18. 正比例函数(m>0)的图象与反比例函数()的图象交于点
A(n,4)和点B,AM y轴,垂足为M,若△ABM的面积为8,则满足的实数x的取值范围是.
三、解答题
19. (本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器,一商场
抓住商机,从厂家购进A、B两种型号家用净水器共160台,A型号家用净水器进价是150
元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元,(1)求A、B两种型号家用净水器各购进多少台?
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净
水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛
利润=售价-进价)
20. (10分)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并
按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
21. 阅读本数n(本)123456789人数(名)126712x7y1td
22. (10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
23. (11分)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择
骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设
线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s (米).
(1)①当t=2分钟时,速度v= 米/分钟,路程s= 米;
②当t=15分钟时,速度v= 米/分钟,路程s= 米.
(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;
(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.
24. (12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
25. (14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△AP C面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
参考答案及解析第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】。