人教版数学九年级下册综合练习题(含答案)
- 格式:docx
- 大小:218.75 KB
- 文档页数:18
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
人教版数学九年级下册综合达标测试卷(本试题满分120分)一、选择题(本大题10小题,每小题3分,共30分)1. 若△ABC与△DEF的相似比为14,则△ABC与△DEF的周长比为()A. 14B.13C.12D.1162. 在△ABC中,∠C=90º,若cos B=32,则sin A的值为()A. 3B.33C.12D.323. 下列立体图形中,主视图是四边形的立体图形的个数是()A. 1B. 2C. 3D. 4第3题图第4题图第6题图4. 反比例函数y=kx在第一象限的图象如图所示,则k的值是()A. 1B. 2C. 3D. 45. 在阳光下,一块三角尺的投影不会是()A. 点B. 与原三角板全等的三角形C. 变形的三角形D. 线段6. 如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. EA EGBE EF= B.EG AGGH GD= C.AB BCAE CF= D.FH CFEH AD=7. 已知一次函数y1=ax+b与反比例函数y2=kx的图象如图所示,当y1<y2时,x的取值范围是()A. x<2B. x>5C. 2<x<5D. 0<x<2或x>5第7题图第8题图8. 如图,正方形OABC的边长为8,点P在边AB上,CP交对角线OB于点Q.若S△BPQ=19S△OQC,则OQ的长为()A. 6B. 62C. 1623D.1639. 如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座凉亭前的台阶上的点A处,测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知台阶A处到地面的高度AB为3 m,台阶AC的坡度为1∶3,且B,C,E三点在同一条直线上,则这棵树DE 的高度为()A. 6 mB. 7 mC. 8 mD. 9 m第9题图第10题图10. 已知两个反比例函数y=kx和y=1x在第一象限内的图象如图所示.点P在y=kx的图象上,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B.当点P在y=kx的图象上运动时,有下列结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当A是PC的中点时,B一定是PD的中点.其中一定正确的是()A. ①②③B. ②③④C. ①②④D. ①③④二、填空题(本大题7小题,每小题4分,共28分)11. 如图是由小正方体组成的几何体的三视图,则该几何体有__________个小正方体组成.第11题图第13题图第14题图第15题图12. 反比例函数y=kx与一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=__________.13. 如图,已知△ABC是等边三角形,D是边AB上一点,E为边BC上一点.若∠CDE=60°,AD=3,BE=2,则△ABC的边长为__________.14. 如图,在半径为5的⊙O中,弦AB=6,C是优弧AB上一点(不与点A,B重合),则cos C的值为__________.15. 如图,在□ABCD中,E是边AD的中点,EC交对角线BD于点F.若S△DEC=3,则S△BCF =__________.16. 在△ABC中,已知O为AC的中点,点P在边AC上.若5,tan A=12,∠B=120°,BC=23AP=__________.三、解答题(本大题8小题,共72分)17. (6分)计算:tan30°cos30°+sin 260°- sin 245°tan45°.18. (8分)如图,在8×6的网格图中,每个小正方形的边长均为1,点O 和四边形ABCD 的顶点均在小正方形的顶点上.(1)以点O 为位似中心,在网格图中作四边形A 1B 1C 1D 1与四边形ABCD 位似,且相似比为12; (2)根据(1)填空:OD 1∶D 1D=__________.第18题图 第19题图19 (8分)如图,一次函数的图象与x 轴,y 轴分别相交于A ,B 两点,且与反比例函数y=kx(k ≠0)的图象在第一象限交于点C.如果点B 的坐标为(0,2),OA=OB ,B 是线段AC 的中点. (1)求点A 的坐标及一次函数的解析式; (2)求点C 的坐标及反比例函数的解析式.20. (10分)学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数(个)与碟子的高度(厘米)的关系如下表:(1)当桌子上放有x 个碟子时,请写出此时碟子的高度h ;(用含x 的式子表示)(2)桌子上摆放碟子的三视图如图所示,厨房师傅想把所有的碟子整齐叠成一摞,求叠成一摞后的高度.第20题图 第21题图 第22题图21. (10分)如图,小东在教学楼距地面9 m 高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°.(1)求旗杆AB 的高;(结果精确到0.01 m ;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)碟子的个数 1 2 3 4 … 碟子的高度22+1.52+32+4.5…(2)升旗时,国旗上端悬挂在距地面2.25 m处.若国旗随国歌声冉冉升起,并在国歌播放45 s结束时到达旗杆顶端,求国旗匀速上升的速度.22. (10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC与BD相交于点E,且DC2=CE•CA. (1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD,交CD的延长线于点F.若PB=OB,CD=22,求⊙O的半径.23. (10分)如图,一次函数y=kx+b与反比例函数y=mx(x>0)的图象交于点P,与x轴交于点A(-4,0),与y轴交于点C(0,1),PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数的图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第23题图第24题图24.(12分)如图,在△ABC中,已知AB=AC=5 cm,BC=6 cm.点P从点B出发,沿BA方向匀速运动,速度为1 cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1 cm/s,且QD⊥BC,与AC,BC分别交于点D,Q.当直线QD停止运动时,点P也停止运动,连接PQ,设运动时间为t s(0<t<3).解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为S cm2,求S与t之间的函数解析式;(3)是否存在某一时刻,使S四边形APQD∶S△ABC=23∶45?若存在,求出t的值;若不存在,请说明理由.人教版数学九年级下册综合达标测试卷一、1. A 2. D 3. B 4. C 5. A 6. C 7. D 8. B 9. D 10. C 二、11. 5 12. -2 13. 9 14.4515. 416. 提示:延长AB ,构造含60º角的直角三角形.三、17. 解:原式+2⎝⎭-2⎝⎭×1=34. 18. 解:(1)如图所示,四边形A 1B 1C 1D 1即为所求.第18题图(2)119. 解:(1)因为OA=OB,B(0,2),所以A(-2,0).将点A(-2,0),B(0,2)代入y=kx+b,得202k bb-+=⎧⎨=⎩,,解得12.kb=⎧⎨=⎩,所以一次函数的解析式为y=x+2.(2)因为B是线段AC的中点,所以C(2,4).将点C(2,4)代入y=kx,得k=8,所以反比例函数的解析式为y=8x.20. 解:(1)由题意,得h=2+1.5(x﹣1)=1.5x+0.5.(2)由三视图可知共有12个碟子,所以叠成一摞的高度为1.5×12+0.5=18.5(cm).21. 解:(1)过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°.因为∠ACD=37°,∠DCB=45°,所以△CDB是等腰直角三角形.由题意,知CD=BD=9 m,所以AD=CD•tan37º≈9×0.75=6.75(m).所以AB=BD+AD=9+6.75=15.75(m).答:旗杆AB的高度为15.75 m.(2)由(1)及题意,得(15.75-2.25)÷45=0.3(m/s).答:国旗匀速上升的速度是0.3 m/s.22.(1)证明:因为DC2=CE•CA,所以DC CACE DC=.因为∠ACD=∠DCE,所以△CAD∽△CDE.所以∠CAD=∠CDE.所以BC DC=.所以BC=DC. (2)解:连接OC.设⊙O的半径为r.由(1),知CD CB=,所以∠BOC=∠BAD.所以OC∥AD.所以2PC PO rCD OA r===2.所以PC=2CD=42.因为四边形ABCD内接于⊙O,所以∠DAB+∠DCB=180º.又∠DCB+∠PCB=180º,所以∠PCB=∠DAB.因为∠CPB=∠APD,所以△PCB∽△PAD.所以PC PBPA PD=4262=,解得r=4.所以⊙O的半径为4.23. 解:(1)将C(0,1),A(-4,0)代入y=kx+b,得140bk b=⎧⎨-+=⎩,,解得141.kb⎧=⎪⎨⎪=⎩,所以一次函数的解析式为y=14x+1.因为AC=BC,CO⊥AB,所以BO=AO=4.所以B(4,0).因为PB⊥x轴,所以点P的横坐标为4.当x=4时,y=14×4+1=2.所以P(4,2).将点P(4,2)代入y=mx,得m=8.所以反比例函数的解析式为y=8x.(2)假设存在这样的点D,使四边形BCPD为菱形,连接DC与PB交于点E. 因为四边形BCPD为菱形,所以CE=DE=4.所以CD=8.将x=8代入y=8x,得y=1,所以D(8,1).所以反比例函数的图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).24. 解:(1)由题意,知BP=t,BQ=6﹣t.因为PQ∥AC,所以△BPQ∽△BAC.所以BP BQBA BC=,即656t t-=,解得t=3011.所以当t=3011s时,PQ∥AC.(2)过点A作AN⊥BC于点N,过点P作PM⊥BC于点M.因为AB=AC=5 cm,BC=6 cm,所以BN=CN=3 cm.所以AN=4(cm).因为AN⊥BC,PM⊥BC,所以AN∥PM.所以△BPM∽△BAN.所以BP PMBA AN=,即54t PM=,解得PM=45t.所以S△BPQ=12BQ·PM=12(6﹣t)•45t=225t-+125t.在Rt△ANC中,AN=4,CN=3,所以tan C=43.所以tan C=DQQC=43,即DQt=43,得DQ=43t.所以S△CDQ=12CQ·DQ=23t2.因为S△ABC=12BC·AN=12×6×4=12,所以S=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣23t2﹣221255t t⎛⎫-+⎪⎝⎭=﹣415t2﹣125t+12(0<t<3). (3)存在.由(2),知S四边形APQD=﹣415t2﹣125t+12,S△ABC=12,所以24121215512t t--+=2345,解得t1=2,t2=﹣11(舍去).所以当t的值为2时,S四边形APQD∶S△ABC=23∶45.。
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
人教版数学九年级全册综合练习题一、选择题1.如图,2016年里约奥运会,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=−x2+x(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为()米.A. 10B. 10C. 9D. 102.已知△ABC∽△DEF,面积比为9∶4,则△ABC与△DEF的对应边之比为( )A.3∶4B.2∶3C.9∶16D.3∶23.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为y cm2的无盖的长方体盒子,则y与x之间的函数关系式为()A.y=x2-70x+1200B.y=x2-140x+4800C.y=4x2-280x+4800D.y=4800-4x24.如图,∠B=90°,AB=BC=CD=DE,那么下列结论正确是( )A.∠1+∠2+∠3=135°B.△ABD∽△EBAC.△ACD∽△ECAD.以上结论都不对5.下面几何体的主视图是( )A.B.C.D.6.在同一直角坐标系中,函数y=-与y=ax+1(a≠0)的图象可能是( ) A.B.C.D.7.若反比例函数y=的图象位于第二、四象限内,则k的取值范围是( )A.k>-2B.k<0C.k>0D.k<-28.如图所示,矩形ABCD中,AB=9,BC=6,若矩形AEFG与矩形ABCD位似,位似比为,则C、F 之间的距离为( )A.B. 2C. 3D. 129.下列选项中,函数y=对应的图象为( )A.B.C.D.10.如图,△ABC中,∠A=92°,AB=9,AC=6,将△ABC按下列四种图示中的虚线剪开,则剪下的三角形与原三角形相似的有( )A. 4个B. 3个C. 2个D. 1个二、填空题11.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值为________.12.如图,已知△ABC的三个顶点均在正方形网格的格点上,则cos A的值为__________.13.若实数a,b满足a+b2=1,则a2+b2的最小值是________.14.两三角形的相似比为1∶4,它们的周长之差为27 cm,则较小三角形的周长为__________.15.在Rt△ABC中,∠C=90°,BC=2,AC=1,现给出下列结论:①sin A=;②cos B=;③tan A=2;④sin B=,其中正确的是____________.16.如图,已知圆锥的高AO等于圆锥的底面半径OB的倍,则∠α=________度.17.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A=__________.18.方程:(2x+1)(x-1)=8(9-x)-1的根为____________.19.若函数y=(k-2)是反比例函数,则k=______.20.如果一个二次函数图象的对称轴在y轴的右侧,且在对称轴右侧y随x的增大而减小,那么这个二次函数的解析式可以是________________(只要写出一个符合条件的解析式).三、解答题21.已知二次函数y=2x2+m.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_________y2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.22.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并测得OE=0.8 m,OF=3 m,求围墙AB的高度.23.如图,已知抛物线的顶点在第四象限,顶点到x轴的距离为3,抛物线与x轴交于原点O(0,0)及点A,且OA=4.(1)求该抛物线的解析式;(2)若线段OA绕点O顺时针旋转45°到OA′,试判断点A′是否在该抛物线上,并说明理由.24.柳市乐华电器厂对一批电容器质量抽检情况如下表:(1)从这批电容器中任选一个,是正品的概率是多少?(2)若这批电容器共生产了14000个,其中次品大约有多少个?25.解方程:(3x﹣1)2=6.26.如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64;cos 40°≈0.77;tan 40°≈0.84)27.在锐角△ABC中,AB=15,BC=14,S△ABC=84,求:(1)tan C的值;(2)sin A的值.28.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.答案解析1.【答案】D【解析】∵y=−x2+x=-(x2-x)=-(x-)2+,∴抛物线的顶点坐标是(,),∴运动员在空中运动的最大高度离水面为10+=10(米).2.【答案】D【解析】∵△ABC∽△DEF,面积比为9∶4,∴△ABC与△DEF的对应边之比3∶2.故选D.3.【答案】C【解析】由题意可得y=(80-2x)(60-2x)=4x2-280x+4800.4.【答案】C【解析】∵AB=BC,∠B=90°,∴∠1=45°.设AB=BC=CD=DE=1,则AC=,CE=2,∴=,==,∵∠ACD=∠ACE,∴△ACE∽△DCA,故选C.5.【答案】D【解析】主视图有3列,从左往右小正方形的个数为2,1,1故选D.6.【答案】B【解析】A.由函数y=-的图象可知,a>0,由y=ax+1(a≠0)的图象可知,a<0,故选项A错误.B.由函数y=-的图象可知,a>0,由y=ax+1(a≠0)的图象可知,a>0,且交y轴于正半轴,故选项B正确.C.y=ax+1(a≠0)的图象应该交y轴于正半轴,故选项C错误.D.由函数y=-的图象可知,a<0,由y=ax+1(a≠0)的图象可知,a>0,故选项D错误.故选B.7.【答案】D【解析】由题意,得k+2<0,解得k<-2,故选D.8.【答案】A【解析】连接AF、FC,∵矩形AEFG与矩形ABCD位似,∴A、F、C在同一条直线上,EF∥BC,∵AB=9,BC=6,∴AC==3,∵矩形AEFG与矩形ABCD位似,位似比为,∴CF=AC=,故选A.9.【答案】A【解析】∵y=中x≠0,∴当x>0时,y>0,此时图象位于第一象限;当x<0时,y>0,此时图象位于第二象限.故选A.10.【答案】C【解析】第一、二个图形中剪下的三角形与原三角形有两个角对应相等,故与原三角形相似;第三、四个图形中剪下的三角形与原三角形的对应边不成比例,故与原三角形不相似.故选C.11.【答案】3【解析】过点A作AB⊥x轴于点B,∵点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,∴tanα===.解得t=3.12.【答案】【解析】如图所示,连接BD,设每个小正方形边长为1,可得∠CDB=90°,BD=,AD=2,AB=,故cos A===.故答案为.13.【答案】【解析】∵a+b2=1,∴b2=1-a,∴a2+b2=a2+1-a=(a-)2+≥,∴当a=时,a2+b2有最小值.14.【答案】9 cm【解析】令较大的三角形的周长为x cm.小三角形的周长为(x-27) cm,由两个相似三角形对应中线的比为1∶4,得1∶4=(x-27)∶x,解之得x=36,x-27=36-27=9 cm.15.【答案】②③【解析】∵在Rt△ABC中,∠C=90°,BC=2,AC=1,∴AB=,∴①sin A===,故此选项错误;②cos B===,故此选项正确;③tan A==2,故此选项正确;④sin B===,故此选项错误.故答案为②③.16.【答案】60【解析】设圆锥的底面半径OB为x,则圆锥的高AO等于x. ∴tanα==,又∵tan 60°=,∴∠α=60°.17.【答案】【解析】如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC·AD=AB·CE,即CE==,sin A===,故答案为.18.【答案】-8或【解析】(2x+1)(x-1)=8(9-x)-1整理得2x2-x-1=72-8x-12x2+7x-72=0,则(x+8)(2x-9)=0,解得x1=-8,x2=.19.【答案】-2【解析】根据反比例函数的定义列出方程解出k的值即可.若函数y=(k-2)是反比例函数,则解得k=-2,故答案为-2.20.【答案】y=-x2+2x【解析】根据抛物线在对称轴的右侧,y随x的增大而减小,则a<0;根据二次函数图象的对称轴在y轴的右侧,->0,则b>0,即可得到解析式.21.【答案】解:(1)x=-2时,y1=2×(-2)2+m=4+m,x=3时,y=2×32+m=18+m,∵18+m-(4+m)=14>0,∴y1<y2;故答案为<;(2)∵二次函数y=2x2+m的图象经过点(0,-4),∴m=-4,∵四边形ABCD为正方形,又∵抛物线和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2-4的图象上,∴2n=2n2-4,解得n1=2,n2=-1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=8.【解析】(1)把两点的横坐标代入二次函数解析式求出纵坐标,再相减计算即可得解;(2)先把函数图象经过的点(0,-4)代入解析式求出m的值,再根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.22.【答案】解延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=0.8 m,OE=0.8 m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,=,解得x=4.4.经检验:x=4.4是原方程的解.答:围墙AB的高度是4.4 m.【解析】首先根据DO=OE=0.8 m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得=,然后代入数值可得方程,解出方程即可得到答案.23.【答案】解:(1)根据题意可知:抛物线的顶点坐标为(2,-3),设抛物线的解析式为y=a(x-2)2-3,由于抛物线经过原点,即4a-3=0,解得a=.故抛物线的解析式为y=(x-2)2-3;(2)设点A′坐标为(x,y),则直线OA′的解析式为y=-x①,根据旋转的性质可知:OA′=OA=4,即x2+y2=16②,由①②可得x=2,y=-2,即点A′坐标为(2,-2),把点A′坐标为(2,-2)代入解析式y=(x-2)2-3;-2≠(2-2)2-3,即点A′不在该抛物线上.【解析】(1)首先求出抛物线的顶点坐标,设抛物线的解析式为y=a(x-2)2-3,由于抛物线经过原点,进而求出a的值即可;(2)设点A′坐标为(x,y),先求出直线OA′的解析式,根据OA′=OA=4,求出点A′的坐标,进而判断点A′是否在该抛物线上.24.【答案】解:(1)六次抽查正品频率分别为:180÷200=0.9,390÷400=0.975,576÷600=0.96,768÷800=0.96,960÷1000=0.96,1176÷1200=0.98,所以正品概率估计为0.96;或(180+390+576+768+960+1176)÷(200+400+600+800+1000+1200)=;(2)其中次品大约有14000×=500个.【解析】(1)先计算出6次抽检的正品的频率,再估算其概率即可;(2)总数×次品的概率即为所求的次品数.25.【答案】解:由原方程,得3x﹣1=±,∴x=,∴x1=,x2=.【解析】原问题实际上是求3x﹣1的平方根.所以利用直接开平发法解方程即可26.【答案】解过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin ∠AOC·AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙.【解析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.27.【答案】解(1)过A作AD⊥BC于点D.∵S△ABC=BC·AD=84,∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14-9=5.在Rt△ADC中,AC==13,∴tan C==.(2)过B作BE⊥AC于点E.∵S△ABC=AC·EB=84,∴BE=,∴sin ∠BAC===.【解析】(1)过A作AD⊥BC于点D,利用面积公式求出高AD的长,从而求出BD、CD、AC的长,此时再求tan C的值就不那么难了.(2)同理作AC边上的高,利用面积公式求出高的长,从而求出sin A的值.28.【答案】解由题意可得△AEC∽△ADB,则=,故=,解得DB=43,答:小雁塔的高度为43 m.【解析】直接利用相似三角形的判定与性质得出=,进而得出答案.。
人教版九年级数学下册第二十六章综合测试卷02一、选择题(30分)1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是()A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是()A B C D3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是()A .0m n +<B .0m n +>C .m n <D .m n>4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是()A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则()A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是()A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是()A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2c y x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是()A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为()A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为()A .4B .3C .2D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________.13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______.17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C .(1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。
人教版九年级下册数学全册综合复习练习试卷一.选择题(共10小题,每小题2分,共20分)1.反比例函数y=的图象生经过点(1,﹣2),则k的值为()A.﹣1 B.﹣2 C.1 D.2【答案】B【精准解析】解:∵反比例函数y=的图象生经过点(1,﹣2),∴k=1×(﹣2)=﹣2.故选B.2.如图,点A(1.5,3)在第一象限,OA与x轴所夹的锐角为α,tanα=()A.1 B.1.5 C.2 D.3【答案】C【精准解析】解:根据题意得:tanα==2;故选:C.3.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【答案】B【精准解析】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选B.4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【答案】D【精准解析】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【答案】B【精准解析】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.6.一个三角形三遍的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6 B.9 C.10 D.15【答案】B【精准解析】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选B.7.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F.若AF=2,则对角线AC的长为()A.4 B.5 C.6 D.8【答案】C【精准解析】解:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故选:C.8.在同一平面直角坐标系中,函数y=mx+m与y=﹣(m≠0)的图象可能是()A.B.C.D.【答案】B【精准解析】解:方法一:A、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m 中,与y轴相交于正半轴,则常数项m>0,y随x的增大而增大,则一次项系数m>0,三个m 不同号,故选项错误;B、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m<0,三个m同号,故选项正确;C、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于正半轴,则常数项m>0,y随x的增大而减小,则一次项系数m<0,三个m不同号,故选项错误;D、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m>0,三个m不同号,故选项错误.故选B.方法二:①当m>0时,一次函数y=mx+m的图象过第一、二、三象限,符合一次函数图象的只有A选项,反比例函数y=﹣的图象过点第二、四象限,符合反比例函数图象的有C,D选项,∴同时符合的一次函数和反比例函数图形的选项没有;②当m<0时,一次函数y=mx+m的图象过第二、三、四象限,符合一次函数图象的只有B选项,反比例函数y=﹣的图象过点第一、三象限,符合反比例函数图形的有A,B选项,∴同时符合一次函数图象和反比例函数图象的选项是B,故选B.9.反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【答案】D【精准解析】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.10.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论正确的是()①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.A.①②③B.①②④C.①③④D.①②③④【答案】C【精准解析】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴,∵点E是AB的中点,∴AE=BE,∴,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE═=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故选C.二.填空题(共10小题,每小题2分,共20分)11.已知C是线段AB上一点,若=,则=.【答案】【精准解析】解:∵C是线段AB上一点,=,∴=,即=.故答案为.12.如图是某超市楼梯示意图,若BA与CA的夹角为α,∠C=90°,AC=6米,则楼梯高度BC为米.【答案】6tanα【精准解析】解:在Rt△ABC中,=tanα;即=tanα,BC=6tanα米.故答案为6tanα.13.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.【答案】4m【精准解析】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.14.在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k 的值为.【答案】2【精准解析】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.15.在△ABC中,∠A,∠B都是锐角,cosA=,sinB=,则△ABC的形状是.【答案】等边三角形【解析】解:∵cosA=,sinB=,∴∠A=60°,∠B=60°.∴∠C=60°.则△ABC是等边三角形.16.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为千米.(参考数据:≈1.732,结果保留两位有效数字)【答案】1.8【解析】解:过点A作AD⊥BC于点D.设AD=x,则BD=x.∵△ACD是等腰直角三角形,∴CD=AD=x.∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,∴15×=5,∴BC=5.∴x+x=5.∴x=≈1.8(千米).即仓库到公路的距离为1.8千米.17.若α为锐角,且3tan2α﹣4tanα+3=0,则α的度数为.【答案】60°或30°【解析】解:∵α为锐角,∴tanα=x(x>0),则由原方程,得3x2﹣4x+3=0,∴x==,∴x1=,x2=;当x1=,即tanα=时,α=60°;当x2=,即tanα=时,α=30°;综上所述,α的度数为60°或30°;故答案是:60°或30°.18.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线y=的图象上,若OA=1,则点C的坐标为.【答案】(,)【解析】解:过A作AE⊥OB于E,过C作CF⊥BD于F,∵△OAB是等边三角形,∴∠AOB=∠OAB=60°,OB=OA=1,∴OE=,AE=,∴k=,∴双曲线的解析式为y=,设等边三角形CBD的边长为2a,∴BF=a,CF=a,∴C(1+a,a),∴(1+a)•a=,∴a=,(负值舍去),∴C(,).故答案为:(,).19.如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1,B1B2,…,B n﹣2B n﹣1,B n﹣1B n在同一条直线上,连接AB n 交A n﹣2B n﹣1于点P,则PB n﹣1的值为.【答案】【解析】解:∵△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,∴∠AB1B=∠PB n﹣1B,∴AB1∥PB n﹣1,∴PB n B n﹣1∽△AB n B1,∴=,∵AB1=AB=2,B1B n=n﹣1,B n B n﹣1=1,∴=,∴PB n﹣1=.故答案为:.20.如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD 交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=.【答案】4或12【解析】解:连接OE、OG、DG,如图,GO的延长线交AD于H,∵BE和BG为⊙O的切线,∴BG=BE,OB平分∠GBE,OG⊥BC,而BC∥AD,∴GH⊥AD,∴EH=DH,易得四边形CDHG为矩形,∴CG=DH,∴DE=2CG,∵∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,∴BE=BG=DE,∴AE=CG,四边形BGDE为菱形,在Rt△ABE中,∵sin∠ABE==,∴∠ABE=30°,∴∠EBD=∠CBD=30°,∴BC=6,BD=12,∴BE=DE=BG=4,当=时,△PBG∽△EBD,即=,解得PB=4;当=时,△PBG∽△DBE,即=,解得PB=12,综上所述,BP的长为4或12.故答案为4或12.三.解答题(共10小题,每小题6分,共60分)21.(1)计算sin245°+cos30°•tan60°(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.【答案】解:(1)sin245°+cos30°•tan60°=+=2;(2)∵∠B=90°﹣∠A=90°﹣60°=30°,tanB==,∴AC=3•tanB=3tan30°=3×=.22.已知点P(﹣2,3)在反比例函数y=(k为常数,且k≠0)的图象上.(1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A(﹣1,﹣3),并说明理由.【答案】解:(1)∵将P(﹣2,3)代入反比例函数y=,得3=,解得,k=﹣6.∴反比例函数表达式为:y=﹣;(2)反比例函数图象不经过点A.理由是:∵将x=﹣1代入y=,得y=6≠﹣3,∴反比例函数图象不经过点A.【解析】(1)直接把点P(﹣2,3)代入反比例函数y=,求出k的值即可;(2)把点A (﹣1,﹣3)代入反比例函数的解析式进行检验即可.23.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.【答案】解:△ABF∽△DEF.①选择:△ABF∽△DEF理由:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABF=∠E,∠A=∠FDE,∴△ABF∽△DEF.②选择:△EDF∽△ECB理由:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠C=∠FDE.又∵∠E=∠E,∴△EDF∽△ECB.③选择:△ABF∽△CEB理由:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C.∴∠ABF=∠E.∴△ABF∽△CEB.【解析】选择△ABF∽△DEF,根据四边形ABCD是平行四边形可知AB∥CD,再由平行线的性质得出∠ABF=∠E,∠A=∠FDE,据此可得出结论.24.如图,已知∠A=36°,线段AB=6.(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(2)求(1)中菱形对角线AC的长.(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)【答案】解:(1)如图,菱形ABCD为所求作的图形.(2)连接BD交AC于点O.∵四边形ABCD是菱形,∴BD⊥AC,AC=2AO.在Rt△ABO中,∠A=36°,AB=6.∵cos∠BAO=,∴AO=AB•cos36°≈4.85.∴AC=2AO≈9.7.【解析】(1)根据菱形的性质画出图形即可;(2)连接BD交AC于点O,根据菱形的性质可知BD⊥AC,AC=2AO,再由锐角三角函数的定义即可得出结论.25.近年来交通事故发生率逐年上升,交通问题成为重大民生问题,鄱阳二中数学兴趣小组为检测汽车的速度设计了如下实验:如图,在公路MN(近似看作直线)旁选取一点C,测得C到公路的距离为30米,再在MN上选取A、B两点,测得∠CAN=30°,∠CBN=60°;(1)求AB的长;(精确到0.1米,参考数据=1.41,=1.73)(2)若本路段汽车限定速度为40千米/小时,某车从A到B用时3秒,该车是否超速?【答案】解:(1)作CD⊥MN于D,如图所示:则CD=30米,在Rt△CBD中,BC===20≈34.6(米),又∵∠CBN=60°,∠CAN=30°,∴∠ACB=60°﹣30°=30°=∠CAN,∴AB=BC=34.6米;(2)∵40千米/小时≈11.1米/秒,34.6÷3≈11.53(米/秒),11.1<11.53,∴该车是超速.(1)作CD⊥MN于D,则CD=30米,在Rt△CBD中,由三角函数求出BC=【解析】≈34.6(米),由三角形的外角性质求出∠ACB=∠CAN,得出AB=BC=34.6米即可;(2)求出汽车的速度,即可得出答案.26.如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.(1)求点C的坐标;(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.【答案】解:(1)∵点B的坐标为(0,﹣3),∴点C的纵坐标为﹣3,把y=﹣3代入y=﹣得,﹣3=﹣,解得x=5,∴点C的坐标为(5,﹣3);(2)∵C(5,﹣3),∴BC=5,∵四边形ABCD是正方形,∴AD=5,设点P到AD的距离为h.∵S△PAD=S正方形ABCD,∴×5×h=52,解得h=10,①当点P在第二象限时,y P=h+2=12,此时,x P==﹣,∴点P的坐标为(﹣,12),②当点P在第四象限时,y P=﹣(h﹣2)=﹣8,此时,x P==,∴点P的坐标为(,﹣8).综上所述,点P的坐标为(﹣,12)或(,﹣8).【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标y P=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为y P=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).27.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【答案】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.【解析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.28.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.【答案】解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【解析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.29.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB 于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.30.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【答案】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【解析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.训练小能手1.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣3x的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.5【答案】D【解析】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.2.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】解:如图所示几何体的左视图是.故选:B.3.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯【答案】A【解析】解:用光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.4.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3S C.4S D.9S【答案】D【解析】解:∵△ABC与△DEF位似,∴=()2=,∴△ABC的面积=9S.故选D.5.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.【答案】4【解析】解:连结AC,如图,∵四边形ABCD为菱形,∴AC与BD互相垂直平分,∵BD∥x轴,∴AC⊥x轴,∴A点坐标为(2,2),∴k=2×2=4.故答案为4.6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:EF2=CD•BF.【答案】(1)证明:如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.∵∠BEF=∠EHF=90°,∠BFE=∠EFH,∴△BEF∽△EHF,∴EF2=HF•BF,∴EF2=CD•BF.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE ≌△HFE,再由全等三角形的对应边相等即可得出CD=HF,证明∴△BEF∽△EHF,得出对应边成比例,即可得出结论.例7.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x﹣1),把C(0,2)代入得:2=a(0+2)(0﹣1),解得a=﹣1,∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∴二次函数的解析式为:y=﹣x2﹣x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),设直线AC的解析式为:y=kx+b,把A(﹣2,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(﹣1,0);②如图2,由勾股定理得:BC==,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1﹣,0),M3(1+,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,∵M4在x轴的负半轴上,∴M4(﹣,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(﹣1,2),②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,易得直线CM的解析式为:y=x+2,则,解得:P2(﹣,﹣),综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).【解析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.。
人教版数学九年级下册综合练习题一、选择题1.计算tan 60°+|-3sin 30°|-cos245°的结果等于()A. 1 B. 2 C. 3 D. 42.下列各点中,在函数y=-图象上的是()A. (-2,-4) B. (2,3) C. (-1,6) D.3.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A. 3B.C. 3或D. 4或4.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 6个B. 7个C. 8个D. 9个5.如图所示的几何体,其俯视图是()A. B. C. D.6.下列四个立体图形中,主视图为矩形的有()A. 1个 B. 2个 C. 3个 D. 4个7.在Rt△ABC中,∠C=90°,在下列条件中不能解直角三角形的是()A.已知a和A B.已知c和b C.已知A和B D.已知a和B8.手鼓是鼓中的一个大类别,是一种打击乐器.如图是我国某少数民族手鼓的轮廓图,其俯视图是()A. B. C. D.9.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N(次)与时间s(分)的函数关系图象大致是( )A.B. C. D.10.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定二、填空题11.已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD 的面积为______________.12.圆柱的体积是100,圆柱的底面积S与高h的关系式是________________.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.如图,在平面直角坐标系xOy中,直线y=x+3与坐标轴交于A、B两点,坐标平面内有一点P(m,3),若以P、B、O三点为顶点的三角形与△AOB相似,则m=________.15.在Rt△ABC中,∠C=90°,AC=5,BC=12,则sin A=______________.16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为_________ cm2.(结果可保留根号).17.若函数y=4x与y=的图象有一个交点是,则另一个交点坐标是__________________.18.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.19.如果物体的俯视图是一个圆,该物体可能是________.(写两种可能)20.如图,A(2,1),B(1,-1),以O为位似中心,按比例尺1∶2,把△AOB放大,则点A的对应点A′的坐标为____________.三、解答题21.我们知道:选用同一长度单位量得两条线段AB、CD的长度分别是m,n,那么就说两条线段的比AB∶CD=m∶n,如果把表示成比值k,那么=k,或AB=kCD.请完成以下问题:(1)四条线段a,b,c,d中,如果______________,那么这四条线段a,b,c,d叫做成比例线.(2)已知==2,那么=__________,=________;(3)如果=,那么=成立吗?请用两种方法说明其中的理由.(4)如果===m,求m的值.22.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式; (2)蓄电池的电压是多少?(3)完成下表:(4)如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变电阻应控制在什么范围?24.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.25.如图,已知A(-4,2),B(-2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,画出平移后的图形;(2)若△ABC内部有一点P(a,b),则平移后它的对应点Pl的坐标为__________;(3)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.26.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后解答相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.(1)求证:△C′D′E′是等边三角形;(2)求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,且DE:EF=1∶2.27.如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连接ED并延长交AB于F,交AH于H.(1)求证:AH=CE; (2)如果AB=4AF,EH=8,求DF的长.28.如图,O为△ABC内一点,点D,E,F分别为OA,OB,OC的中点,求证:△DEF∽△ABC.答案解析1.【答案】D【解析】tan 60°+|-3sin 30°|-cos245°=×+3×-2=3+-=4.故选D.2.【答案】C【解析】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.3.【答案】C【解析】∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=.故选C.4.【答案】B【解析】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.5.【答案】D【解析】从上边看是一个同心圆,内圆是虚线,故选D.6.【答案】B【解析】长方体主视图为矩形;球主视图为圆;圆锥主视图为三角形;圆柱主视图为矩形;因此主视图为矩形的有2个,故选B.7.【答案】C【解析】∵已知a和A,在Rt△ABC中,∠C=90°,∴∠B=∠C-∠A,c=,b=c sin B.故选项A错误.∵已知c和b,在Rt△ABC中,∠C=90°,∴a=,sin A=,sin B=.故选项B错误.∵在Rt△ABC中,∠C=90°,已知A和B,∠A+∠B=∠C=90°,∴只能知道直角三角形的三个角的大小,而三条边无法确定大小.故选项C正确.∵已知a和B,在Rt△ABC中,∠C=90°,∴∠A=∠C-∠B,c=,b=c sin B.故选项D错误.故选C.8.【答案】A【解析】从上边看是一个同心圆,故选A.9.【答案】D【解析】正常人做激烈运动停止下来后心跳次数随着时间的延长由快到慢逐渐趋向安静时正常心跳次数,即此段时间心跳次数N(次)与时间s(分)成反比例关系,所以其图象大致是选项D中的图象.10.【答案】A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.11.【答案】【解析】如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A,根据矩形和双曲线的对称性,可得B,D,由两点间距离公式,可得AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为.12.【答案】S=【解析】根据等量关系“圆柱底面积=圆柱体积÷圆柱高”即可列出关系式.由题意,得底面积S关于高h的函数关系式是S=.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】±4或±【解析】∵直线y=x+3与坐标轴交于A、B两点,∴点A(-4,0),点B(0,3),∵P(m,3),∵∠AOB=∠OBP=90°,∴当=时,△AOB∽△PBO,∴BP=OA=4,∴m=±4;当=时,△AOB∽△OBP,∴BP==,∴m=±.15.【答案】【解析】如图所示,∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.16.【答案】(360+75)【解析】根据该几何体的三视图知道其是一个六棱柱,∵其高为12 cm,底面半径为5 cm,∴其侧面积为6×5×12=360 cm2密封纸盒的底面积为(5+10)××2×2=75cm2,∴这个密封纸盒的表面积为(75+360) m2;故答案为(360+75).17.【答案】【解析】正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么关于原点的对称点为.故答案为.18.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.19.【答案】圆柱或球体【解析】如果物体的俯视图是一个圆,该物体可能是圆柱或球体.20.【答案】(4,2)或(-4,-2)【解析】∵以O为位似中心,按比例尺1∶2,把△AOB放大,∴点A的对应点A′的坐标为(2×2,2×1)或(-2×2,-2×1),即(4,2)或(-4,-2).21.【答案】解(1)四条线段a,b,c,d中,如果a∶b=c∶d,那么这四条线段a,b,c,d叫做成比例线段;(2)∵==2,∴a=2b,c=2d,∴==3,==3.(3)如果=,那么=成立.理由如下:证明一:∵=,∴-1=-1,即-=-,∴=;证明二:设==k,那么a=kb,c=kd,∵==k-1,==k-1,∴=;(4)①当x+y+z=0时,y+z=-x,z+x=-y,x+y=-z,∴m为其中任何一个比值,即m==-1;②x+y+z≠0时,m===2.所以m=2或-1.【解析】(1)根据成比例线段的定义作答;(2)由==2,得a=2b,c=2d,代入计算即可求解;(3)利用等式的性质两边减去1即可证明;设==k,那么a=kb,c=kd,代入即可证明;(4)可分x+y+z=0和x+y+z≠0两种情况代入求值和利用等比性质求解.22.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.23.【答案】解(1)电流I是电阻R的反比例函数,设I=,∵图象经过(9,4),∴4=,解得k=4×9=36,∴I=;(2)蓄电池的电压是4×9=36;(3)填表如下:(4)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在3.6欧以上的范围内.【解析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(9,4),利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;(4)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.24.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC的长即可.25.【答案】解(1)如图所示,△A1B1C1即为所求;(2)∵△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,∴点P(a,b)的对应点P1的坐标为(a+4,b-1),【解析】(1)根据向右平移4个单位再向下平移1个单位得到△A1B1C1,画出平移后的图形即可;(2)根据向右平移4个单位再向下平移1个单位,可知横坐标增加4,纵坐标减小1;(3)根据以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2即可.26.【答案】(1)证明∵E′C′∥EC,E′D′∥ED,∴△OCE∽△OC′E′,△ODE∽△OD′E′,∴CE∶C′E′=OE∶OE′,DE∶D′E′=OE∶OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O,∴CE∶C′E′=DE∶D′E′,∠CED=∠C′E′D′,∴△CDE∽△C′D′E′,∵△CDE是等边三角形,∴△C′D′E′是等边三角形;(2)解画法:①在△ABC内画矩形D′E′F′G′,使点D′在AB上,点G′在AC上,且D′E′∶D′G′=1∶2;②连接AE′并延长,交BC于点E,连接AF′并延长交BC于点F,过点E作ED∥E′D′交AB于点D,过点F作FG∥F′G′,交AC于点G;③连接DG,则矩形DEFG是△ABC的内接四边形.【解析】(1)根据作法可知:E′C′∥EC,E′D′∥ED,可证得△OCE∽△OC′E′,△ODE∽△OD′E′,根据相似可证得对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似,可证得△CDE∽△C′D′E′,即可得结果;(2)类似(1)的作法.27.【答案】(1)证明∵AH∥BE,D是AC的中点,∴△ADH≌△CDE,∴AH=CE.(2)解∵AB=4AF,AH∥BE,∴AF∶AB=HF∶HE=1∶4,∴HF=EH=2,∵AH∥BE,D是AC的中点,∴点D也是EH的中点,即HD=EH=4,∴FD=HD-HF=2.【解析】(1)由于点D是AC的中点,AH∥CE,由平行线的性质知,可推出△ADH≌△CDE,故可得AH=CE;(2)由平行线分对应线段成比例的性质知,AF∶AB=HF∶HE=1∶4,求得HF的值,由AH∥BE,D 是AC的中点可得,点D也是EH的中点,求得HD的值,故有FD=HD-HF.28.【答案】证明∵D、E、F分别是OA、OB、OC的中点,∴DE=AB,EF=BC,DF=AC,即==,∴ABC∽△DEF.【解析】先根据三角形中位线性质得到DE=AB,EF=BC,DF=AC,则可利用三组对应边的比相等的两个三角形相似得到结论.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二十六章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
人教版数学九年级下册 第二十八章 锐角三角函数 单元练习含答案人教版数学九年级下册 第二十八章 锐角三角函数 单元练习1. 在Rt △ABC 中,若∠ACB =90°,AC =2,BC =3,则下列各式中成立的是( )A .sinB =23 B .cos B =23C .tan B =23D .sin A =23 2. 如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点,且AE ∶BE =4∶1,EF ⊥AC 于点F ,连接BF ,则tan ∠CFB 的值是( )A.33B.233C.533 D .5 33. 为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是( )A.117B .4 C.14 D.417 4. 计算4sin60°-3tan30°的值为( ) A.3 B .23C .33D .05. 计算sin 245°+cos 245°的值为( ) A .2 B .1 C .0 D .36. sin α=0.231 6,cos β=0.231 6,则锐角α与锐角β之间的关系是( )A .α=βB .α+β=180°C .α+β=90°D .α-β=90°7. 在△ABC 中,∠C =90°,下列各式中不正确的是( )A .b =a ·tanB B .a =b ·cosAC .c =b sinBD .c =acosB 8. 如图,小雅家(图中点O 处)门前有一条东西走向的公路,现测得有一水塔(图中点A 处)在她家北偏东60°方向500 m 处,那么水塔所在的位置到公路的距离AB 长是( )A .250 mB .250 3 m C.500 33 m D .250 2 m 9. 王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,已知水平距离BD =10 m ,楼高AB =24 m ,则树CD 的高度为( )A .(24-1033)m B .(24-103) m C .(24-53) m D .9 m10. 河堤横断面如图所示,堤高BC =6 m ,迎水坡AB 的坡比为1∶3,则AB的长为( )A.12 m B.4 3 m C.5 3 m D.6 3 m11. 使用计算器计算:sin52°18′≈________.(精确到0.001)12. 已知cosβ=0.741 6,利用计算器求出β的值约为________.(精确到1°)13. 计算:(1+sin 40°)(1-cos 50°)+sin240=________14. 计算:(4cos30°sin60°)2+(-2)-1-( 2 017-2 018)0=________15. 在Rt△ABC中,∠C=90°,c=10,b=53,则∠A=________,S△ABC=________.16. 在Rt△ABC中,CA=CB,AB=92,点D在BC边上,连接AD,若tan∠CAD=13,则BD的长为________.17. 在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是________.18. 在等腰三角形ABC中,∠A=30°,AB=8,则AB边上的高CD的长是________.19. 计算:(1) sin30°+cos45°;(2) sin260°+cos260°-tan45°.20. 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.21. 如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sinA,cosA,tanA的值.22. 如图(1),在Rt△ABC中,∠C=90°,AB= 6人教版九年级数学下册第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt△ABC中,∠C=90°,AB=8,BC=5,那么下列式子中正确的是( A )A.sin A=58 B.cos A=58 C.tan A=58 D.以上都不对2.若cos A=32,则∠A的大小是( A )A.30°B.45°C.60°D.90°3.已知在Rt△ABC中,∠C=90°,sin A=37,BC=4,则AB的长度为( D )A.43 B.74 C.8103 D.2834.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是( C )A.sinα=cosαB.tan C=2C.sinβ=cosβD.tanα=16.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2 海里的点A 处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12.16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB 内.理由:作AD ⊥BC 于点D ,∵∠C =50°,AC =20 cm ,∴AD =AC ·sin50°=20×0.8=16 cm ,CD =AC ·cos50°=20×0.6=12 cm , ∵BC =18 cm ,∴DB =BC -CD =18-12=6 cm ,∴AB =AD 2+BD 2=162+62=292, ∵17=289<292,∴王浩同学能将手机放入卡槽AB 内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教版九年级数学下册第二十八章 锐角三角函数 单元测试题(含答案)一、选择题(本大题共7小题,每小题4分,共28分)1.如图1,在Rt △ABC 中,∠C =90°,BC =1,tan A =12,则下列判断正确的是( )A .∠A =30°B .AC =12C .AB =2D .AC =22.在△ABC 中,∠A ,∠C 都是锐角,且sin A =32,tan C =3,则△ABC 的形状是( )图1A .直角三角形B .钝角三角形C .等边三角形D .不能确定3.如图2,直线y =34x +3与x 轴,y 轴分别交于A ,B 两点,则cos ∠BAO 的值是( )图2A.45B.35C.43D.544.如图3,一河坝的横断面为梯形ABCD ,AD ∥BC ,AB =CD ,坝顶BC 宽10米,坝高BE 为12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )图3A .26米B .28米C .30米D .46米5.如图4,某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/时的速度沿北偏西60°方向航行23小时到达B 处,那么tan∠ABP 的值为( )图4A.12B .2 C.55D.2 556.如图5,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB长为半径画弧,两弧在AB的下方交于点E,连接AE,DE,则∠EAD的余弦值是()图5A.312 B.36 C.33 D.327.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔是本市现存最古老的建筑.如图6,测绘师在离铁塔10米的点C处测得塔顶A的仰角为α,他又在离铁塔25米的点D处测得塔顶A的仰角为β.若tanαtanβ=1,点D,C,B在同一条直线上,则测绘师测得铁塔的高度约为(参考数据:10≈3.162)()图6A.15.81米B.16.81米C.30.62米D.31.62米二、填空题(本大题共7小题,每小题4分,共28分)8.计算:cos30°+3sin30°=________.9.若α为锐角,且tan(α+20°)=33,则α=_____________.10.如图7所示的网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是________.图711.如图8,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了________米.图812.如图9,菱形ABCD 的周长为20 cm ,且tan ∠ABD =43,则菱形ABCD 的面积为________cm 2.图913.如图10所示,在△ABC 中,AB =AC ,∠A =45°,AC 的垂直平分线与AB ,AC 分别交于点D ,E ,连接CD .如果AD =1,那么tan ∠BCD =________.图1014.如图11所示,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos E =________.图11三、解答题(本大题共4小题,共44分)15.(8分)计算:|-3|+3tan30°-12-(2020-π)0.16.(10分)如图12,在▱ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE的值.图1217.(12分)如图13,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C,B之间选择一点D(C,D,B三点共线),测得旗杆顶部A的仰角为75°,且CD=8 m.(1)求点D到CA的距离;(2)求旗杆AB的高.图1318.(14分)如图14,皋兰山某处有一座信号塔AB,山坡BC的坡度为1∶3,现为了测量塔高AB,测量人员选择山坡C处为一测量点,测得∠DCA=45°,然后他沿着山坡向上行走100 m到达点E处,再测得∠FEA=60°.(1)求山坡BC的坡角∠BCD的度数;(2)求塔顶A到CD的铅直高度AD(结果保留整数,参考数据:3≈1.73,2≈1.41).图14答案1.D2.C3.A4.D5.A6.B7.A[8.[答案] 39.[答案] 10°10.[答案] 1 211.[答案] 100 12.[答案] 24 13.[答案] 2-114.[答案] 1 215.解:原式=3+3×33-2 3-1=3-2 3.16.解:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,DC∥AB,∴∠DEA=∠EAB.∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE=10,∴BC=10.∵62+82=102,即CE2+BE2=BC2,∴∠BEC=90°.(2)∵四边形ABCD是平行四边形,∴AB=DC=CE+DE=16.∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE =AB 2+BE 2=162+82=8 5, ∴cos ∠DAE =cos ∠EAB =AB AE =168 5=2 55.17.解:(1)如图,过点D 作DE ⊥AC 于点E ,则DE =CD ·sin45°=8×22=4 2(m).答:点D 到CA 的距离为4 2人教版九年级数学下册 第28章 锐角三角函数 单元检测试卷(有答案) 一、单选题(共10题;共30分)1.在 中, ∠ ° , 若cosB=,则sinA 的值为 ( )A. B.C.D.2.在 中, ∠ °, ∠ °,AB=5,则BC 的长为( ) A. 5tan40° B. 5cos40° C. 5sin40° D. °3.sin60°的值等于( )A.B.C.D.4.已知在R t △ABC 中,∠C = 90°,∠A = ,AB = 2,那么BC 的长等于 A. B. C.D.5.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧上的一点,则cos ∠APB 的值是( )A. 45°B. 1C.D. 无法确定 6.在Rt △ABC 中,如果∠C=90°,AB=10,BC=8,那么cosB 的值是( ) A.B.C.D.7.sin30°+tan45°﹣cos60°的值等于( )A. B. 0 C. 1 D. - 8.如图,菱形OABC 在平面直角坐标系中的位置如图所示,若sin ∠AOC=,OA=5,则点B的坐标为( )A. (4,3)B. (3,4)C. (9,3)D. (8,4)9.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.10.如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm2二、填空题(共10题;共30分)11.在△ABC中,∠C=90°,若tanA= ,则sinB=________.12.如图,在Rt△ABC中,斜边BC上的高AD=4,,则AC=________.13.计算:2cos60°﹣tan45°=________.14.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= ,必定成立的是________.15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为________.16.如图,在△ABC中,∠C=90°,AC=2,BC=1,CD是AB上的高,则tan∠BCD的值是________.17.如图,正方形ABCD的边长为12,点O为对角线AC、BD的交点,点E在CD上,tan∠CBE= ,过点C作CF⊥BE,垂足为F,连接OF,将△OCF绕着点O逆时针旋转90°得到△ODG,连接FG、FD,则△DFG的面积是________.18.如图,在8×4的正方形网格中,每个小正方形的边长都是1,若△ABC的三个顶点都在图中相应的格点上,则tan∠ACB=________ .19.如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG 的长为________.20.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则cos∠MCN=________.三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).25.如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.26.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A 处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).27.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)28.如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】C4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】513.【答案】014.【答案】②15.【答案】16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】三、解答题21.【答案】解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH= = =8,∴tanB= = = .22.【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2,x2+(2x)2=(4)2,x=4.答:河床面的宽减少了4米.23.【答案】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD= ,则AD=AC•sin∠ACD=250 ≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.24.【答案】解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN= =0.75,∴= ,解得:x=1 ≈1.3.经检验:x=1 是原分式方程的解25.【答案】.解:过点A作AE⊥CD于点E,过点B作BF⊥CD,交CD的延长线于点F,则四边形ABFE为矩形,所以AB=EF,AE=BF,由题意可知AE=BF=1 100-200=900(米人教版九年级下册第二十八章锐角三角函数单元练习题(含答案)一、选择题1.在△ABC中,若tan A=1,sin B=,你认为最确切的判断是( )A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形2.在△ABC中,∠A,∠B都是锐角,且cos A=,sin B=,则△ABC是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin ∠C>sin ∠D;②cos ∠C>cos ∠D;③tan ∠C>tan ∠D中,正确的结论为( )A.①②B.②③C.①②③D.①③4.如图,小明为测量一条河流的宽度,他在河岸边相距80 m的P和Q两点分别测定对岸一棵树R的位置,R在Q的正南方向,在P东偏南36°的方向,则河宽( )A.80tan 36°B.80tan 54°C.D.80tan 54°5.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的有( )A.①②③B.①②④C.①③④D.②③④二、填空题6.在△ABC中,若|cos A|+(1-tan B)2=0,则△ABC的形状是________________.7.△ABC中,AB=AC=5,BC=8,那么sin B=__________.8.如图,某山坡AB的坡角∠BAC=30°,则该山坡AB的坡度为__________.9.在△ABC中,∠C=90°,sin A=,BC=12,那么AC=__________.10.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A =;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)三、解答题11.对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α);若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.12.如图,某公园内有座桥,桥的高度是5米,CB⊥DB,坡面AC的倾斜角为45°,为方便老人过桥,市政部门决定降低坡度,使新坡面DC的坡度为i=∶3.若新坡角外需留下2米宽的人行道,问离原坡角(A点处)6米的一棵树是否需要移栽?(参考数据:≈1.414,≈1.732)13.若α,β为直角三角形的两个锐角,若cosα=,求sinβ的值.14.如图,△ABC中,∠B=60°,∠C=75°,AC=3,求AB的长.15.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)16.在Rt△ABC中,∠C=90°,∠A=30°,a=5,解这个直角三角形.17.已知三角函数值,求锐角(精确到1″).(1)已知sinα=0.501 8,求锐角α;(2)已知tanθ=5,求锐角θ.18.如图,长方形广告牌架在楼房顶部,已知CD=2 m,经测量得到∠CAH=37°,∠DBH=60°,AB=10 m,求GH的长.(参考数据:tan 37°≈0.75,≈1.732,结果精确到0.1 m)答案解析1.【答案】B【解析】∵tan A=1,sin B=,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选B.2.【答案】B【解析】由∠A,∠B都是锐角,且cos A=,sin B=,得A=B=30°,C=180°-A-B=180°-30°-30°=120°,故选B.3.【答案】D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin ∠C>sin ∠D,故①正确;cos ∠C<cos ∠D,故②错误;tan ∠C>tan ∠D,故③正确,故选D.4.【答案】A【解析】∵R在P东偏南36°的方向,∴∠QPR=36°,tan 36°=,∵PQ=80,∴QR=tan 36°PQ=80tan 36°,故选A.5.【答案】D【解析】∵∠C=90°,AB=2BC,∴AC=BC,①sin A==;②cos B==;③tan A==;④tan B==,正确的有②③④,故选D.6.【答案】锐角三角形【解析】由题意得:cos A-=0,1-tan B=0,解得cos A=,tan B=1,∴∠A=60°,∠B=45°.∴∠C=180°-60°-45°=75°.∴△ABC是锐角三角形.7.【答案】【解析】过A作AD⊥BC于D,∵AB=AC=5,BC=8,∴∠ADB=90°,BD=BC=4,由勾股定理得AD==3,∴sin B==.8.【答案】【解析】根据坡度等于坡角的正切值即可得到结果.根据题意,得该山坡AB的坡度为tan 30°=.9.【答案】5【解析】在△ABC中,∠C=90°,∵sin A==,BC=12,∴AB=13,∴AC==5.10.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.11.【答案】解∵三角形的三个内角的比是1∶1∶4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,-,将代入方程,得4×2-m×-1=0,解得m=0,经检验-是方程4x2-1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2-m×-1=0,解得m=0,经检验不是方程4x2-1=0的根.综上所述:m=0,∠A=30°,∠B=120°.【解析】分三种情况进行分析:①当∠A=30°,∠B=120°时;②当∠A=120°,∠B=30°时;③当∠A=30°,∠B=30°时,根据题意分别求出m的值即可.12.【答案】解不需要移栽,理由:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=5米,在Rt△BCD中,新坡面DC的坡度为i=∶3,即∠CDB=30°,∴DC=2BC=10米,BD=BC=5米,∴AD=BD-AB=(5-5)米≈3.66米,∵2+3.66=5.66<6,∴不需要移栽.【解析】根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度角所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB的长,由DB-AB求出AD的长,然后将AD+2与6进行比较,若大于则需要移栽,反之不需要移栽.13.【答案】解∵α,β为直角三角形的两个锐角,∴sinβ=cos (90°-β)=cosα=.【解析】根据互余两角三角函数的关系进行解答.14.【答案】解过点C作CD⊥AB于点D,∵∠B=60°,∠C=75°,∴∠A=45°,在△ADC中,AC=3,∵sin A=,∴AD=sin 45°×3=3=CD,在△BDC中,∠DCB=30°,∵tan ∠BCD=,∴BD=tan 30°×3=,∴AB=+3.【解析】过点C作CD⊥AB于点D,先根据三角形内角和定理计算出∠A=45°,在Rt△ADC 中,利用∠A的正弦可计算出CD,进而求得AD,然后在Rt△BDC中,利用∠B的余切可计算出BD,进而就可求得AB.15.【答案】解如图作CH⊥AD于H.设CH=x km,在Rt△ACH中,∠A=37°,∵tan 37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35 km,∴E处距离港口A有35 km.【解析】如图作CH⊥AD于H.设CH=x km,在Rt△ACH中,可得AH==,在Rt△CEH 中,可得CH=EH=x,由CH∥BD,推出=,由AC=CB,推出AH=HD,可得=x +5,求出x即可解决问题.16.【答案】解在Rt△ABC中,∠B=90°-∠A=60°,∵tan B=,∴b=a×tan B=5×tan 60°=5,由勾股定理,得c==10.【解析】直角三角形的两个锐角互余,并且Rt△ABC中,∠C=90°则∠A=90-∠B=60°,解直角三角形就是求直角三角形中出直角以外的两锐角,三边中的未知的元素.17.【答案】解(1)∵sinα=0.501 8,∴α≈30.119 1°.∴a≈30°7′9″;(2)∵tanθ=5,∴θ=78.690 0°≈78°41′24″.【解析】利用计算器进行计算即可,然后将结果化为度分秒的形式即可.18.【答案】解延长CD交AH于点E,如图所示:根据题意得CE⊥AH,设DE=x m,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan 37°=,tan 60°=,∴AE=,BE=,∵AE-BE=AB,∴=10,即-=10,解得x≈5.8,∴DE=5.8 m,∴GH=CE=CD+DE=2 m+5.8 m=7.8 m.答:GH的长为7.8 m.【解析】首先构造直角三角形,设DE=x m,则CE=(x+2)m,由三角函数得出AE和BE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的长.。
人教版九年级数学下册全册综合测试题一、选择题(每小题3分,共30分)1.已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A. y=﹣12xB. y=﹣2xC. y=2xD. y=1x【答案】B 【解析】试题解析:设反比例函数图象设解析式为y=kx,将点(-1,2)代入y=kx得,k=-1×2=-2,则函数解析式为y=-2x.故选B.2.下列几何体的主视图既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:先判断主视图的形状,再根据轴对称图形与中心对称图形的概念求解.A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.考点:1.中心对称图形;2.轴对称图形;3.简单几何体的三视图.3.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为B(-1,0),则sinα的值是()A.25B.55C.35D.45【答案】D 【解析】如图:过点A 作垂线AC ⊥x 轴于点C . 则AC =4,BC =3,故由勾股定理得AB =5. sin B =AC AB =45.故选D.4.如图,反比例函数y 1=1k x 和正比例函数y 2=k 2x 的图象交于A(-1,-3)、B(1,3)两点.若1kx>k 2x ,则x 的取值范围是( )A. -1<x <0B. -1<x <1C. x <-1或0<x <1D. -1<x <0或x >1【答案】C 【解析】 【详解】解:已知1k x>k 2x ,即可知12y y >, 观察图象可知,当x <-1或0<x <1时12y y >, 故选C 5.若函数m 2y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A. m <﹣2 B. m <0C. m >﹣2D. m >0【答案】A 【解析】 ∵函数m 2y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大, ∴m+2<0,解得:m <﹣2.故选A .6.在△ABC 中,2(2cos 2)|1tan |0A B -+-=,则△ABC 一定是( ) A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形【答案】D 【解析】试题分析:根据非负数的性质可得:2cosA=2,tanB=1,解得:∠A=45°,∠B=45°,则∠C=90°,则△ABC 是等腰直角三角形.7.小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有( )A. 3个B. 4个C. 5个D. 6个【答案】B 【解析】试题分析:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块, 则构成该几何体的小立方块的个数有4个; 故选B .考点: 由三视图判断几何体.8.如图,某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两棵树在坡面上的距离AB 为( )A. 5cosαB.5cos aC. 5sinαD.5sin a【答案】B 【解析】 【分析】运用余弦函数求两树在坡面上的距离AB 即可.【详解】解:由于相邻两树之间的水平距离为5米,坡角为α,则两树在坡面上的距离AB=5 cos.故选B.【点睛】此题主要考查了坡度坡角问题,正确掌握三角函数关系是解题关键.9.如图,已知第一象限内的点A在反比例函数y=2x的图象上,第二象限内的点B在反比例函数y=kx的图象上,且OA⊥OB,cosA=3,则k的值为( )A. -3B. -6C. -4D. -23【答案】C【解析】【分析】过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=2x上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.【详解】过A作AE⊥x轴,过B作BF⊥x轴.∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°.∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO.∵∠BFO=∠OEA=90°,∴△BFO∽△OEA.Rt△AOB中,cos∠BAO=AOAB3设AB3OA=1,根据勾股定理得:BO2,∴OB:OA2:1,∴S△BFO:S△OEA=2:1.∵A 在反比例函数y=2x上,∴S △OEA =1,∴S △BFO =2,则k =﹣4. 故选C .【点睛】本题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k 的几何意义,熟练掌握相似三角形的判定与性质是解答本题的关键. 10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足13CF FD =,连接AF 并延长交⊙O 于点E ,连接AD ,DE ,若CF =2,AF =3,给出下列结论:①△ADF ∽△AED ;②FG =2;③tan E =5;④S △DEF =45.其中正确的是( )A. ①②③B. ②③④C. ①②④D. ①③④【答案】C 【解析】试题解析:①∵AB 是⊙O 的直径,弦CD ⊥AB , ∴»»AD AC =,DG=CG , ∴∠ADF=∠AED ,∵∠FAD=∠DAE (公共角), ∴△ADF ∽△AED ; 故①正确; ②∵13CF FD =,CF=2, ∴FD=6, ∴CD=DF+CF=8, ∴CG=DG=4, ∴FG=CG-CF=2; 故②正确;③∵AF=3,FG=2, ∴=∴在Rt △AGD 中,tan ∠ADG=AG DG =∴tan ∠E=4; 故③错误;④∵DF=DG+FG=6,=,∴S △ADF =12DF•AG=12×∵△ADF ∽△AED , ∴2ADF AED S AF S AD=V V (),37ADE =V , ∴S △AED∴S △DEF =S △AED -S △ADF故④正确. 故选C .二、填空题(每小题3分,共24分)11.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________. 【答案】上午8时 【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题. 12.已知△ABC 与△DEF 相似且面积比为9︰25,则△ABC 与△DEF 的相似比为_____________. 【答案】3∶5 【解析】试题解析:∵△ABC与△DEF相似且面积比为9:25,∴△ABC与△DEF的相似比为3:5.故答案为3:5.13.若∠A为锐角,且cos A=14,则∠A的范围是___.【答案】60°<∠A<90°【解析】试题解析:∵0<14<12,又cos60°=12,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cosA=14时,60°<∠A<90°.故答案为60°<∠A<90°.14.如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与___________是位似图形,相似比是_________.【答案】△A′B′C′;7∶4.【解析】试题解析:∵A′B′∥AB,B′C′∥BC,∴△ABC∽△A′B′C′,∴A B B OAB BO'''=,B C OBBC OB'''=,∠A′B′O=∠ABO,∠C′B′O=∠CBO,∴A B B CAB BC='''',∠A′B′C′=∠ABC,∴△ABC∽△A′B′C′,相似比=AB:A′B′=OA:OA′=(4+3):4+=7:4.15.如图,点P,Q,R是反比例函数y=2x的图象上任意三点,P A⊥y轴于点A,QB⊥x轴于点B,RC⊥x轴于点C,S1,S2,S3分别表示△OAP,△OBQ,△OCR的面积,则S1,S2,S3的大小关系是_____________.【答案】S 1=S 2=S 3 【解析】分析:本题考查的是反比例函数的k 的几何意义.解析:根据反比例函数的k 的几何意义, S 1=1,,S 2=1,,S 3=1. 故答案为S 1=S 2=S 3.16.某河道要建一座公路桥,要求桥面离地面高度AC 为3 m ,引桥的坡角∠ABC 为15°,则引桥的水平距离BC 的长是__ __m .(精确到0.1 m ;参考数据:sin 15°≈0.258 8,cos 15°≈0.965 9,tan 15°≈0.267 9)【答案】11.2 【解析】试题解析:Rt △ABC 中,∠ABC=15°,AC=3, ∴BC=AC÷tan15°≈11.2(米).17.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于点M ,N ,给出下列结论:①△ABM ≌△CDN ;②AM =13AC ;③DN =2NF ;④S △AMB =12S △ABC .其中正确的结论是____.(填序号)【答案】①②③ 【解析】 【分析】本题先结合平行四边形性质,根据ASA 得出△ABM ≌△CDN ,从而得出DN=BM ,AM=CN ;再由三角形中位线得出CN=MN ,BM=DN=2NF ,即可判断结果 【详解】解:在▱ABCD 中,AD ∥BC ,AD=BC , 又E 、F 分别是边AD 、BC 的中点, ∴BF ∥DE ,BF=DE ,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AMB=∠ANF=∠DNC,∵∠BAM=∠DCN,AB=CD,∴△ABM≌△CDN;E是AD的中点,BE∥DF,∴M是AN的中点,同理N是CM的中点,∴AM=13 AC,∵DN=BM=2NF;∴S△AMB=12S△ABC不成立,∴正确的结论是①②③.【点睛】解答本题的关键是熟练掌握平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.18.如图,在已建立直角坐标系的4×4的正方形方格纸中,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似(C点除外),则格点P的坐标是_____.【答案】(1,4)或(3,4)【解析】【详解】试题分析:如图,此时AB对应P1A或P2B,且相似比为1:2,故点P的坐标为:(1,4)或(3,4).三、解答题(共66分)19.先化简,再求代数式的值.222()111a aa a a ++÷+--,其中a=tan60°﹣sin30°. 【答案】原式=2(1)(2)13•(1)(1)1a a a a a a a -++-=+-+(3分)当a= tan600- 2sin3001212⨯=时, (6分)原式=分)【解析】 【分析】根据分式的运算法则,先进行化简,根据特殊锐角三角函数值求出a,再代入化简式子.【详解】解:原式()()()()2a 2a 2a 1a 1a 1a 1a 13a⎡⎤-+-=+⋅⎢⎥+-+-⎢⎥⎣⎦ ()()3a a 1a 1a 13a -=⋅+-,1a 1=+,a tan60=o o Q2=1=,∴原式===. 【点睛】本题考核知识点:分式混合运算,特殊锐角三角函数值.解题关键点:掌握分式运算法则,熟记特殊三角函数值.20.如图,反比例函数的图象经过点A 、B ,点A 的坐标为(1,3),点B 的纵坐标为1,点C 的坐标为(2,0). (1)求该反比例函数的表达式; (2)求直线BC 的表达式.【答案】(1)y=3x ;(2) y =x -2 【解析】 试题分析:(1)把点A 的坐标代入反比例函数的解析式,即可求解;(2)根据(1)中的解析式求得点B 的坐标,再进一步运用待定系数法求得一次函数的解析式.试题解析:(1)设所求反比例函数的解析式为k y x=(k≠0). ∵点A (1,3)在此反比例函数的图象上,∴k 31=,解得k=3. ∴所求反比例函数的解析式为3y x =. (2)设直线BC 的解析式为y=k 1x+b (k 1≠0).∵点B 的反比例函数3y x =的图象上,点B 的纵坐标为1,设B (m ,1), ∴31m=,解得m=3.∴点B 的坐标为(3,1). 由题意,得1113k b{02k b =+=+,解得:1k 1{b 2==-.∴直线BC 的解析式为y x 2=-.考点:1.反比例函数与一次函数的交点问题;2. 待定系数法的应用;3.曲线上点的坐标与方程的关系. 21.一艘观光游船从港口A 以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C 处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)【答案】54小时【解析】【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题22.已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.(1)求k的值和边AC的长;(2)求点B的坐标.【答案】解:(1)∵点C(1,3)在反比例函数y=的图象上∴把C(1,3)代入上式得;3=∴k=3∵sin∠BAC=∴sin∠BAC==∴AC=5;(2)∵△ABC是Rt△,∴∠DAC=∠DCB 又∵sin∠BAC=∴tan∠DAC=∴又∵CD=3∴BD=∴AB=1+=∴B(,0)【解析】试题分析:(1)本题需先根据C点的坐标在反比例函数y=kx的图象上,从而得出k的值,再根据且sin∠BAC=35,得出AC的长.(2)本题需先根据已知条件,得出∠DAC=∠DCB,从而得出CD的长,根据点B的位置即可求出正确答案.试题解析:(1)∵点C (1,3)在反比例函数y=k x 的图象上, ∴3=1k,解得k=3,∵sin ∠BAC=35∴sin ∠BAC=3AC =35∴AC=5;∴k 的值和边AC 的长分别是:3,5.(2)①当点B 点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC=∠DCB ,又∵sin ∠BAC=35,∴tan ∠DAC=34,∴34BDCD ,又∵CD=3,∴BD=94,∴OB=1+94=134,∴B (134,0);②当点B 在点A 左边时,如图,作CD⊥x轴于D.∵△ABC是直角三角形,∴∠B+∠A=90°,∠B+∠BCD=90°,∴∠DAC=∠DCB,又∵sin∠BAC=35,∴tan∠DAC=34,∴34 BDCD,又∵CD=3,∴BD=94,BO=BD-1=54,∴B(-54,0)∴点B的坐标是(-54,0),(134,0).考点:1.解直角三角形;2.待定系数法求反比例函数解析式.23.如图,楼房CD旁边有一池塘,池塘中有一电线杆BE高10米,在池塘边F处测得电线杆顶端E的仰角为45°,楼房顶点D的仰角为75°,又在池塘对面的A处,观测到A,E,D在同一直线上时,测得电线杆顶端E的仰角为30°.(1)求池塘A,F两点之间的距离;(2)求楼房CD的高.【答案】(1)AF=3+10)米;(2)DC=(10+3米.【解析】试题分析:(1)分别解Rt △ABE 与Rt △BEF ,可得AB 与BF 的大小.AF=AB+BF ;(2)设CD=x .在Rt △FCD 中,可得CF 的值,根据相似三角形的性质,可得比例关系求解.试题解析:(1)在Rt △ABE 中,∵∠A=30°,BE=10, ∴33BE AB = ∴AB=103 在Rt △EBF 中,∵∠BFE=45°,∴BF=BE=10,∴AF=10+103;(2)∵BE=10,∠A=30°,∴AB=103,设CD=x ,设CD=x .则CF=7523x tan =︒+. ∵∠EBA=∠DCA=90°,∠A=30°,∴△ABE ∽△ACD ,由相似三角形的性质可得:AB BE AC CD=, 即10310=103+10+23xx +,解得x=10+53.答:AF 间的距离为(10+103)米,楼房CD 的高为(10+53)米.24.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O . M 为AD 中点,连接CM 交BD 于点N ,且1ON =.(1)求BD 的长;(2)若DCN∆的面积为2,求四边形ABNM的面积.【答案】(1)6;(2)5.【解析】【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到S△MND:S△CND=1:4,可得到△MND面积为1,△MCD面积为3,由S平行四边形ABCD=AD•h,S△MCD=MD•h=AD•h,=4S△MCD,即可求得答案.【详解】(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴MD DN BC BN=,∵M为AD中点,所以BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3, ∴BD=2x=6;(2)、∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为1,∴△MCD面积为3,设平行四边形AD边上的高为h,∵S平行四边形ABCD=AD•h,S△MCD=12MD•h=14AD•h,∴S平行四边形ABCD=4S△MCD=12,∴S△ABD=6,∴S四边形ABNM= S△ABD- S△MND =6-1=5.【点睛】本题考查相似三角形的性质与判定,解题的关键是熟悉相似三角形的判定与性质与平行四边形的性质.25.如图,点B在线段AC上,点D,E在AC的同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD =3,AB =5,点P 为线段AB 上的动点,连接DP ,作PQ ⊥DP ,交直线BE 于点Q ,当点P 与A ,B 两点不重合时,求DP PQ 的值. 【答案】(1)详见解析;(2)35. 【解析】 试题分析:(1)根据同角的余角相等求出∠1=∠E ,再利用“角角边”证明△ABD 和△CEB 全等,根据全等三角形对应边相等可得AB=CE ,然后根据AC=AB+BC 整理即可得证;(2)过点Q 作QF ⊥BC 于F ,根据△BFQ 和△BCE 相似可得BF QF BC CE =,然后求出QF=53BF ,再根据△ADP 和△FPQ 相似可得AD AP PF QF=,然后整理得到(AP-BF )(5-AP )=0,从而求出AP=BF ,最后利用相似三角形对应边成比例可得DP AP PQ QF=,从而得解. 试题解析:(1)∵BD ⊥BE ,∴∠1+∠2=180°-90°=90°,∵∠C=90°,∴∠2+∠E=180°-90°=90°,∴∠1=∠E ,∵在△ABD 和△CEB 中,190E A C AD BC ︒∠∠⎧⎪∠∠⎨⎪⎩====,∴△ABD ≌△CEB (AAS ),∴AB=CE ,∴AC=AB+BC=AD+CE ;(2)如图,过点Q 作QF ⊥BC 于F ,则△BFQ ∽△BCE , ∴BF QFBC CE =,即 35BFQF=,∴QF=53BF ,∵DP ⊥PQ ,∴∠APD+∠FPQ=180°-90°=90°, ∵∠APD+∠ADP=180°-90°=90°, ∴∠ADP=∠FPQ ,又∵∠A=∠PFQ=90°,∴△ADP ∽△FPQ , ∴ADAPPF QF =, 即35APAP BF QF =-+,∴5AP-AP 2+AP•BF=3•53BF ,整理得,(AP-BF )(AP-5)=0, ∵点P 与A ,B 两点不重合, ∴AP≠5,∴AP=BF ,由△ADP ∽△FPQ 得,DP APPQ QF =,∴35DPPQ =.。
人教版数学九年级下册综合练习题、选择题1. 计算.tan 60 丰 3sin 30 |cos 245 °勺结果等于( A.1B . 2C . 3D .462. 下列各点中,在函数y =—图象上的是()△ ABC 中,AC = 6, AB = 4,点D 与点A 在直线BC 的同侧,且 / ACD= Z ABC, CD = 2,点E 是线段BC 延长线上的动点,当 △ DCE 和厶ABC 相似时,线段 CE 的长为()4C. 3或 3D. 4 或.4. 已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小 正方体的个数是(6个 7个 8个 9个A . (— 2,— 4)B . (2,3)C . (— 1,6)3.如图, A . B . C . D . A . 35. 如图所示的几何体,其俯视图是()6•下列四个立体图形中,主视图为矩形的有( )7•在Rt △ ABC 中,/ C = 90 °在下列条件中不能解直角三角形的是8•手鼓是鼓中的一个大类别,是一种打击乐器•如图是我国某少数民族手鼓的轮廓图,其俯视图是二、填空题1y =的图象上,且点 A 的横坐标是2,则矩形ABCD的面积为 _______________ .12. 圆柱的体积是100,圆柱的底面积 S 与高h 的关系式是 ____________________ 13. A ABC 中,/ C = 90° BC = 5, AC = 3,那么 sinB = __________ .A .已知a 和AB. 已知c 和bC. 已知A 和BD. 已知a 和 B9•一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后, 心跳次数 N (次)与时间s (分)的函数关系图象大致是(10•点 A(1,y i )、 B (3,y 2)是反比例函数 y 1、y 2的大小关系是( )A . y 1> y 2B . y 1= y 2C . y 1 v y 2D .不能确定11.已知矩形ABCD 的四个顶点均在反比例函数 A .B .D .( )B . D ..B .y =图象上的两点,则•A -一 3 一、一14. 如图,在平面直角坐标系xOy中,直线y=-x+ 3与坐标轴交于A、B两点,坐标平面内有一点O三点为顶点的三角形与△ AOB相似,贝U m =15. 在Rt△ ABC 中,/ C= 90 ° AC= 5, BC= 12,贝sinA= ________________ .16. 如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为2________ c m •(结果可保留根号).n卜J L 1 LU17. 若函数y= 4x与y£的图象有一个交点是伶,则另一个交点坐标是______________________________18. 在Rt △ ABC 中,/ C= 90 ° BC= 10,若厶ABC 的面积为罟°,则/A= __________ .19. 如果物体的俯视图是一个圆,该物体可能是___________ .(写两种可能)20. 如图,A(2,1), B(1 , - 1),以O为位似中心,按比例尺 1 : 2,把△ AOB放大,则点A的对应点A的坐标为 _____________ .21. 我们知道:选用同一长度单位量得两条线段AB、CD的长度分别是m, n,那么就说两条线段的AB比AB : CD= m : n,如果把表示成比值k,那么k,或AB= kCD•请完成以下问题:(1) 四条线段a, b, c, d中,如果 _________________ ,那么这四条线段a, b, c, d叫做成比例线.a c a +b L 4- d(2) 已知==2,那么 = ---------------------- ,-= --------------- ;a c a -bc - d⑶如果=,那么—成立吗?请用两种方法说明其中的理由.+ v y + z z + x⑷如果 = = =m,求m的值.z x y22. 如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD其中一边AB靠墙,墙长为12 m .设AD的长为xm, DC的长为ym.(1)求y与x之间的函数关系式;⑵若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.23. 已知蓄电池的电压为定值,使用蓄电池时,电流1(单位:A)与电阻只单位:Q是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式;(2)蓄电池的电压是多少?(3) 完成下表:⑷如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变电阻应控制在什么范围?24. 如图,两座建筑物的水平距离BC= 30 m,从A点测得D点的俯角a为30°测得C点的俯角3为60°求这两座建筑物的高度.25. 如图,已知A( - 4,2),B( —2,6),C(0,4)是直角坐标系平面上三点.(1)把厶ABC向右平移4个单位再向下平移1个单位,得到△ A1B1C1,画出平移后的图形;⑵若△ ABC内部有一点P(a,b),则平移后它的对应点PI的坐标为__________ ;⑶以原点0为位似中心,将△ ABC缩小为原来的一半,得到△ A2B2C2,请在所给的坐标系中作出所26. 如图,用下面的方法可以画 △ AOB 的内接等边三角形,阅读后解答相应问题.画法:①在△ AOB 内画等边三角形 CDE 使点C 在OA 上,点D 在OB 上;②连接OE 并延长,交 AB 于点E',过点 E 作EC'// EC,交 OA 于点C',作 ED7/ ED,交 OB 于点D';③连接CD',贝U △ C D 7是厶AOB 的内接等边三角形. ⑴求证:△ CD 'E 是等边三角形;⑵求作:内接于已知 △ ABC 的矩形 DEFG 使它的边 EF 在BC 上,顶点 D , G 分别在 AB , AC 上, 且 DE : EF = 1 : 2.27. 如图,△ ABC 中,D 是AC 的中点,E 是BC 延长线上一点,过 A 作AH / BE ,连接ED 并延长交 AB 于F ,交AH 于H.28. 如图,O ABC 内一点,点 D , E, F 分别为OA , OB , OC 的中点,求证: △ DEI AABC⑵如果AB = 4AF , EH= 8,求DF 的长.有满足条件的图形.答案解析1. 【答案】D【解析】\/5tan 60 ° 3sin 30 ° cos1 245= ■...■ x ;_,+ 3=4.x —故选D.2. 【答案】C【解析】A. T (—2) X —4) = 8二6 ,•••此点不在反比例函数的图象上,故本选项错误;B • T 2 X3= 6斗6, •此点不在反比例函数的图象上,故本选项错误;C. T (—1) X= —6,•此点在反比例函数的图象上,故本选项正确;D • ••[】X3=—工―6, •此点不在反比例函数的图象上,故本选项错误.故选C.3. 【答案】C【解析】•/△ DCE和厶ABC相似,/ ACD= Z ABC, AC= 6, AB= 4, CD= 2,•••/ A= Z DCE1解得,CE= 3或CE=.故选C.4. 【答案】B【解析】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+ 2+ 1 = 7个.故选B.5. 【答案】D【解析】从上边看是一个同心圆,内圆是虚线,故选D.4 6 4 6 即=或 = 2 GE CE 2 6. 【答案】B【解析】长方体主视图为矩形;球主视图为圆;圆锥主视图为三角形;圆柱主视图为矩形;因此 主视图为矩形的有2个, 故选B. 7. 【答案】C【解析】T 已知a 和A ,在Rt △ ABC 中,/ C = 90° , , , a•••/ B = / C —/ A , c = , b = csi nB. 故选项A 错误.•••已知 c 和 b ,在 Rt △ ABC 中,/ C = 90°故选项B 错误.•••在 Rt △ ABC 中,/ C = 90° 已知 A 和 B , / A +/ B = Z C = 90° •-只能知道直角三角形的三个角的大小,而三条边无法确定大小. 故选项C 正确.•••已知 a 和 B ,在 Rt △ ABC 中,Z C = 90°• Z A = Z C — Z B , c =, b = csinB.故选项D 错误•故选C. 8. 【答案】A【解析】从上边看是一个同心圆, 故选A. 9. 【答案】D【解析】正常人做激烈运动停止下来后心跳次数随着时间的延长由快到慢逐渐趋向安静时正常心 跳次数,即此段时间心跳次数 N (次)与时间s (分)成反比例关系,所以其图象大致是选项 D 中的图象.10. 【答案】A【解析】•••反比例函数y =中的9>0,XABCD AC CE AB ~C E AC ■,■■-经过第一、三象限,且在每一象限内y随x的增大而减小,又••• A(1, y”、B(3, y2)都位于第一象限,且 1 < 3, •y1> y2,故选A.•矩形 ABCD 的面积=AB>AD= .- X ... 一 = ^— 12・【答案】S =,…13.【答案】二对【解析】•••在△ ABC 中,/ C = 90° BC = 5, AC =3, ••• AB =丿 __=.j 、「.一;=.丙, AC 33^j34• sinB = AB 14.【答案】±4或土【解析】•••直线y = .x + 3与坐标轴交于 A 、B 两点,••点 A(- 4,0),点 B(0,3),11.【答案】 15 A 在反比例函数y 「的图象上,且点A 的横坐标是2,可得【解析】如图所示,根据点 根据矩形和双曲线的对称性, 可得 由两点间距离公式,可得 AB =,2 【解析】根据等量关系 圆柱底面积=圆柱体积 铜柱高”即可列出关系式.由题意,得底面积 S 关于高h 的函数关系式是S=N•- P(m,3),•••/ AOB=/ OBP= 90° •••当兰=四时,BP OBOA OB••• BP= OA= 4, • m =±1;当〒二时,【解析】如图所示,C= 90° AC= 5, BC= 12,• AB「= 13, SinA=-16. 【答案】(360+ 75 )【解析】根据该几何体的三视图知道其是一个六棱柱,••其高为12 cm,底面半径为5 cm,•其侧面积为6X5X12= 360 cm2密封纸盒的底面积为'(5+ 10) X ■ X2X2= 75. cm2, •这个密封纸盒的表面积为(75. + 360) m2;故答案为(360 + 75.).17. 【答案】【解析】正比例函数y= 4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么-•:「关于原点的对称点为-,-二故答案为-:.-118. 【答案】60 °50丹【解析】••在Rt△ ABC中,/ C= 90° BC= 10,若△ ABC的面积为石苗,101 50 10 f- BC 辰S= AC BC= , • , AC= .. . '■, tanA= := = I ■. = < , •・/ A= 60 .Z nJ J /lLi ---------------------------315.【答案】1213△ AOB s^ PBO,△AOB sA OBP,19. 【答案】圆柱或球体【解析】如果物体的俯视图是一个圆,该物体可能是圆柱或球体.20. 【答案】(4,2)或(-4,— 2)【解析】•••以0为位似中心,按比例尺 1 : 2,把厶AOB 放大,•••点 A 的对应点 A'的坐标为(2 >2,2 >1)或(—2X2,— 2X1),即(4,2)或(—4,— 2).21. 【答案】解 (1)四条线段a , b , c , d 中,如果a : b = c : d ,那么这四条线段 a , b ,c ,d 叫做 成比例线段;a c⑵• = = 2,二 a = 2b , c = 2d ,a +b 2b + bc +d 2d + d.= =3, = - =3.a c a-bc -d(3)如果=,那么 =.成立•理由如下:a c证明一:•••=,u c abed—1 = — 1 即.—=—,a c设==k ,那么 a = kb , c = kd ,b d kb - b c-d kd -d=k — X ; = =k —1,a-b c -d.=.; ⑷①当x + y + z = 0时,y + z =— x , z + x =— y , x + y =— z ,•m 为其中任何一个比值,即 m = =— 1;② x + y + z ^0 时,证明二: fiy + z + £ + x + x + y 2(x + y + 2)m= = 一2.x + y + z x + y + z所以m = 2或一1.【解析】(1)根据成比例线段的定义作答;c= 2d,代入计算即可求解;⑵由一一二一2,得a—2b,(3)利用等式的性质两边减去1即可证明;设:一一k,那么a = kb, c= kd,代入即可证明;⑷可分x+ y+ z= 0和x+ y+ 两种情况代入求值和利用等比性质求解.6022. 【答案】解⑴由题意,得xy= 60,即y=.•所求的函数关系式为60 y=..r60⑵由y=,且x, y都是正整数, x 可取1,2,3,4,5,6,10,12,15,20,30,60 ,又••• 2x + y w 26,0< y< 12•••符合条件的有x= 5 时,y = 12; x= 6 时,y= 10; x= 10 时,y= 6.答:满足条件的围建方案有AD= 5 m, DC= 12 m或AD= 6 m, DC= 10 m或AD= 10 m, DC= 6 m. 【解析】(1)由面积=长X宽,列出y与x之间的函数关系式;⑵由AD与DC均是正整数知,x、y的值均是60的因数,所以x= 1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m, AB边长不超过12 m ,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.k23. 【答案】解(1)电流I是电阻R的反比例函数,设1=,•••图象经过(9,4),k• 4=:,解得k= 4X9= 36 ,35(2) 蓄电池的电压是4X9= 36;(3) 填表如下:33•••「10••• R 濾.6,即用电器可变电阻应控制在 3.6欧以上的范围内.【解析】⑴先由电流I是电阻R的反比例函数,可设1='〔,将点(9,4),利用待定系数法即可求出n这个反比例函数的解析式;(2) 根据电压=电流浊阻即可求解;(3) 将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;⑷将K 1代入(1)中所求的函数解析式即可确定电阻的取值范围.24. 【答案】解延长CD,交AE于点E,可得DE丄AE,在Rt△ AED 中,AE= BC= 30 m , / EAD= 30°• ED= AEtan 30 = 10. m,在Rt△ ABC中,/ BAC= 30° BC= 30 m,• AB= 30. m,则CD= EC— ED= AB— ED= 30. —10 . = 20. m./E|-1w C【解析】延长CD,交AE于点E,可得DE丄AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC— ED求出DC的长即可.1 ,1 ,⑵•••△ ABC 向右平移4个单位再向下平移 1个单位,得到 △ A i BiG ,•••点P(a , b)的对应点P i 的坐标为(a + 4, b — 1),【解析】 ⑴根据向右平移4个单位再向下平移1个单位得到△ A i B i C i ,画出平移后的图形即可;(2)根据向右平移4个单位再向下平移i 个单位,可知横坐标增加 4,纵坐标减小i ;⑶根据以原点0为位似中心,将 △ ABC 缩小为原来的一半,得到 △ A 2B 2C 2即可.26. 【答案】 ⑴证明•••EC'// EC, ED 7/ ED,•••△ OC0A OCE ', △ ODE ^A OD 'E‘,• CE : C'E'= OE : OE', DE : D 'E '= OE : OE', / CEO= Z CE O , / DEO = Z D E O ,• CE : C'E'= DE : D 'E ; Z CED= Z C E D ;•••△ CDE^A C D 'E :• △ CDE 是等边三角形,• △ CD 'E 是等边三角形;⑵解 画法:①在△ ABC 内画矩形 D 'EF 'G ',使点 D 在AB 上,点 G 在AC 上,且 D 'E : D G = i : 2; ② 连接AE 并延长,交 BC 于点E ,连接AF 并延长交BC 于点F ,过点E 作ED// E D 交AB 于点D , 过点F 作FG// F'G ',交AC 于点G ;③ 连接DG,则矩形DEFG 是厶ABC 的内接四边形.【解析】 ⑴根据作法可知:E C '// EC, E D '// ED ,可证得△ OC0A OC E : △ ODE^^ OD E ',根据相 似可证得对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似, 可证得△ CD0A CD E ',即可得结果;⑵类似(i)的作法.27. [答案】(i)证明•/ AH / BE, D 是AC 的中点,• △ ADH BA CDE,• AH = CE⑵解 •/AB = 4AF , AH // BE ,• AF : AB = HF : HE = i : 4,1• HF = EH = 2, • AH // BE D 是AC 的中点,•••点D也是EH的中点,即HD= EH= 4,••• FD= HD—HF= 2.【解析】⑴由于点D是AC的中点,AH// CE由平行线的性质知,可推出△ ADH BA CDE故可得AH = CE⑵由平行线分对应线段成比例的性质知,AF:AB= HF:HE= 1 : 4,求得HF的值,由AH / BE, D 是AC的中点可得,点D也是EH的中点,求得HD的值,故有FD= HD —HF.28. 【答案】证明T D、E、F分别是OA、OB、OC的中点,1 1 1• DE= AB, EF= BC, DF= AC,2 2 2DE EF DF即 = = ,AB BC AC ?••• ABB A DEF【解析】先根据三角形中位线性质得到DE= AB, EF= ' BC, DF= AC,则可利用三组对应边的比无££相等的两个三角形相似得到结论.。