万有引力定律和天体运动
- 格式:doc
- 大小:499.50 KB
- 文档页数:14
万有引力与天体运动的关系引力是自然界中一种基本的物理现象。
而万有引力则是描述天体之间相互作用的重要力量。
它是由于质量而产生的,是一种吸引力,使得天体之间相互靠拢。
万有引力的发现和研究对于理解天体运动以及宇宙演化有着重要的意义。
牛顿在17世纪提出了万有引力定律,他认为两个物体之间的引力与它们的质量成正比,与它们的距离的平方成反比。
这个定律可以简洁地表示为F=G*(m1*m2)/r^2,其中F是两个物体之间的引力,m1和m2是两个物体的质量,r是它们之间的距离,G是一个常数。
根据万有引力定律,天体之间的引力与它们的质量和距离有关。
质量越大,引力越大;距离越近,引力越大。
这就解释了为什么地球可以吸引住我们,而月球也可以吸引住地球。
地球质量大,所以对我们的引力很大;而月球离我们近,所以对我们的引力也很大。
万有引力还解释了为什么行星会围绕太阳运动。
太阳质量非常大,它的引力对行星的影响非常大,使得行星绕太阳运动。
行星离太阳越近,其运动速度越快;离太阳越远,其运动速度越慢。
这样,行星在太阳的引力和其自身的惯性作用下,形成了稳定的椭圆轨道。
除了行星绕太阳运动,万有引力还可以解释其他天体运动的现象。
例如,卫星绕地球运动、月球绕地球运动等。
所有这些运动都可以用万有引力定律来描述,而且都符合定律的预测。
除了描述天体运动,万有引力还可以解释天体之间的相互影响。
例如,当两个星系靠近时,它们之间的引力会使它们相互靠拢,甚至发生碰撞。
这样的引力交互作用对于理解星系演化和宇宙结构的形成有着重要的意义。
万有引力还可以解释为什么在宇宙中有星系、星云、恒星等天体的存在。
宇宙中的物质在引力的作用下逐渐聚集形成了这些天体。
而恒星的形成和演化也与引力密切相关,它们的质量和结构都受到引力的影响。
万有引力的研究不仅有助于我们理解宇宙的起源和演化,还对人类的生活产生了重要影响。
例如,卫星的轨道设计和导航系统的建立都依赖于对引力的准确理解和计算。
数学在天文学中的实际应用数学和天文学有着密不可分的关系,数学作为一门基础学科,为天文学提供了强大的工具和方法。
在天文学的研究中,数学被广泛运用,帮助科学家们解释和预测宇宙中的现象。
本文将深入探讨数学在天文学中的实际应用,展示数学在探索宇宙奥秘中的不可替代性。
一、引力定律和天体运动数学在天文学中的一个重要应用是描述天体之间的引力相互作用。
牛顿万有引力定律是描述这种相互作用的数学原理之一。
根据这一定律,两个物体之间的引力与它们的质量和距离的平方成正比。
科学家们利用数学计算引力的大小和方向,从而推断出天体之间的运动规律。
通过数学模拟,我们可以精确预测行星、卫星等天体的轨道。
正是因为数学的帮助,人类才能够准确预测日食、月食等天文现象的发生时间和位置。
数学为天文学提供了精密的工具,让我们更深入地了解宇宙的规律。
二、光的传播和星体光谱分析光的传播是天文学中另一个重要的数学应用。
光是天文学家们研究宇宙的主要工具之一,通过分析星体发出的光谱,我们可以了解星体的成分、温度、速度等重要信息。
数学帮助我们分析光的传播规律,解释光谱中的谱线,从而推断出星体的性质。
在恒星光谱分析中,数学方法被广泛运用。
科学家们利用数学计算光谱的各种参数,推断出恒星的质量、年龄、化学成分等重要信息。
数学模型的建立和应用,使我们能够深入探索宇宙中恒星的奥秘,推动天文学的发展。
三、引力透镜效应和暗物质研究数学在天文学中的又一个重要应用是研究引力透镜效应和暗物质。
引力透镜效应是爱因斯坦广义相对论的重要预言,通过引力透镜效应,我们可以间接探测到暗物质的存在。
数学帮助我们建立引力透镜模型,分析透镜图像,从而揭示暗物质的分布和性质。
暗物质是宇宙中的一个重要成分,占据了宇宙绝大部分的质量。
数学在暗物质研究中发挥着不可替代的作用,帮助科学家们推断暗物质的存在和性质。
通过数学模拟和计算,我们逐渐揭开暗物质的神秘面纱,拓展了我们对宇宙的认知。
总结数学在天文学中的应用是深远而广泛的,为科学家们探索宇宙提供了无尽的可能性。
高中物理天体运动公式大全1. 万有引力定律公式。
- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。
2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。
- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。
- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。
这个公式可以将GM用gR^2替换,方便计算。
4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。
- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。
5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。
6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。
物理天体运动的基本公式
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r
地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
强调:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
万有引力定律揭示了天体运动规律1.引言1.1 概述在物理学的众多领域中,天体运动一直是一个受到广泛关注的研究方向。
人类对于天空中行星、卫星和其他天体的运动规律一直充满了好奇和追求。
而伟大的科学家艾萨克·牛顿的万有引力定律为我们揭示了天体运动的规律,成为了研究这一领域的基础。
万有引力定律是指:任何两个物体之间都存在着一种吸引力,这种吸引力的大小正比于两个物体的质量,并且与它们之间的距离的平方成反比。
也就是说,质量越大的物体之间的引力越强,而距离越远的物体之间的引力越弱。
这个简单而重要的定律,被广泛应用于研究天体运动。
它使我们能够更好地理解和预测天体的运动轨迹,从而推导出行星公转、卫星轨道和彗星轨迹等重要天体运动规律。
通过牛顿的万有引力定律,我们可以更深入地了解宇宙中天体之间的相互作用。
它不仅为我们提供了研究天体运动的理论基础,还揭示了宇宙中的一些奇妙现象,如行星之间的引力相互作用、星际尘埃的聚积形成行星等。
万有引力定律的重要性不仅在于它对于天体运动规律的揭示,还因为它对于人类探索和理解宇宙的进程起到了至关重要的作用。
它为我们提供了一种量化天体运动的手段,使得我们可以更加准确地研究和预测宇宙的变化和演化。
在本文中,我们将深入探讨万有引力定律的提出及其在揭示天体运动规律方面的作用。
同时,我们还将对万有引力定律的重要性和应用进行讨论,并展望它在未来研究中的潜在发展。
通过这些内容的探讨,我们可以更加全面地认识到万有引力定律对于理解和解释宇宙中的运动规律的重要性。
文章结构部分的内容应该包括文章的主要章节和每个章节的主要内容概述。
以下是文章结构部分的一个例子:文章结构:本篇长文主要分为引言、正文和结论三个部分。
1. 引言:引言部分主要包括概述、文章的结构和目的。
1.1 概述:本文将探讨万有引力定律揭示的天体运动规律。
万有引力定律是牛顿力学的基石,它描述了物体之间的相互吸引力与它们质量和距离的关系。
而天体运动规律指的是行星、卫星、彗星等天体的运动轨迹和行为规律。
第三章万有引力定律1.天体运动一、“地心说”和“日心说”之争【情境思考】托勒密和哥白尼分别是什么理论的代表人物?提示:托勒密提出“地心说”;哥白尼提出“日心说”。
1.地心说:地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动。
代表人物是托勒密。
2.日心说:太阳是宇宙的中心,是静止不动的,地球和其他行星都绕太阳运动。
代表人物是哥白尼。
二、开普勒行星运动定律知识点一对开普勒行星运动定律的认识1.从空间分布上认识:行星的轨道都是椭圆,不同行星轨道的半长轴不同,即各行星的椭圆轨道大小不同,但所有轨道都有一个共同的焦点,太阳在此焦点上。
因此开普勒第一定律又叫焦点定律。
2.对速度大小的认识:(1)如图所示,如果时间间隔相等,即t2-t1=t4-t3,由开普勒第二定律,面积S A=S B,可见离太阳越近,行星在相等时间内经过的弧长越长,即行星的速率越大。
因此开普勒第二定律又叫面积定律。
(2)近日点、远日点分别是行星距离太阳的最近点、最远点,所以同一行星在近日点速度最大,在远日点速度最小。
3.对周期长短的认识:(1)行星公转周期跟轨道半长轴之间有依赖关系,椭圆轨道半长轴越长的行星,其公转周期越长;反之,其公转周期越短。
(2)该定律不仅适用于行星,也适用于其他天体。
例如,绕某一行星运动的不同卫星。
(3)研究行星时,常数k与行星无关,只与太阳有关。
研究其他天体时,常数k只与其中心天体有关。
地球绕太阳公转形成了四季交替现象。
地球绕太阳运动是否遵循开普勒行星运动定律?提示:遵循。
【典例】(2021·成都高一检测)在2021年春节联欢晚会上,“天问一号”火星探测器系统总设计师孙泽洲现场宣布:“天问一号”成功被火星捕获,成为火星的人造卫星。
这也正式拉开了我国探索火星的序幕。
结合开普勒行星运动定律,我们可以判断下列对火星的说法正确的是( )A.太阳位于火星运行轨道的中心B.火星绕太阳运行速度的大小始终相等C.火星和地球公转周期之比的二次方等于它们轨道半长轴之比的三次方D.相同时间内,火星与太阳连线扫过的面积等于地球与太阳连线扫过的面积【解析】选C。
《万有引力定律与天体运动》教案第一章:引言1.1 课程简介本课程旨在帮助学生理解万有引力定律及其在天体运动中的应用。
我们将通过讲解、示例和练习,让学生掌握这一重要物理概念。
1.2 目标通过本章学习,学生将能够:描述万有引力定律的定义和特点。
解释万有引力定律在天体运动中的应用。
1.3 教学方法采用讲解、示例和练习相结合的方式进行教学,鼓励学生提问和参与讨论。
第二章:万有引力定律2.1 定律定义牛顿的万有引力定律指出,任何两个物体都相互吸引,吸引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
2.2 定律公式F =G (m1 m2) / r^2其中,F表示两个物体之间的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
2.3 教学方法通过示例和练习,让学生理解并掌握万有引力定律的定义和公式。
第三章:天体运动3.1 圆周运动天体运动中最常见的是圆周运动。
地球围绕太阳的运行、卫星围绕地球的运行都是圆周运动的例子。
3.2 向心力圆周运动中的向心力是由万有引力提供的。
万有引力使得天体沿着一定的轨道运行,这个轨道通常是椭圆形的。
3.3 教学方法通过示例和练习,让学生理解圆周运动和向心力的概念。
第四章:地球的运动4.1 地球的自转地球自转是指地球围绕自己的轴线旋转。
这个旋转产生了昼夜变化。
4.2 地球的公转地球公转是指地球围绕太阳运行。
这个运行产生了四季变化和昼夜长短的变化。
4.3 教学方法通过示例和练习,让学生理解地球自转和公转的概念。
5.1 本章回顾本章学习了万有引力定律和天体运动的基本概念。
学生需要通过练习题来巩固所学知识。
5.2 练习题请列出本章的学习目标,并给出与这些目标相关的练习题。
第六章:万有引力在天体运动中的应用6.1 行星运动定律开普勒定律描述了行星围绕太阳运动的规律。
其中,开普勒第三定律揭示了行星轨道半长轴与其公转周期的平方成正比。
6.2 引力势能在天体运动过程中,引力势能的改变与动能的改变相等。
物理天体运动轨道
物理天体的运动轨道可以根据万有引力定律和牛顿力学的运动定律进行描述。
根据这些定律,我们可以得出以下几种常见的天体运动轨道:
1. 圆轨道:圆轨道是最简单的天体运动轨道,天体围绕中心点以恒定的速度运动。
这种运动轨道适用于天体之间距离较近且质量相对较小的情况。
2. 椭圆轨道:椭圆轨道是最常见的天体运动轨道,如行星绕太阳的运动轨道。
椭圆轨道的特点是绕焦点做椭圆运动,太阳位于椭圆的一个焦点上。
3. 抛物线轨道:抛物线轨道适用于天体的速度等于或接近逃逸速度的情况。
在这种轨道上,天体的运动路径呈抛物线形状。
4. 双曲线轨道:双曲线轨道适用于天体的速度大于逃逸速度的情况。
在这种轨道上,天体的运动路径呈双曲线形状。
需要注意的是,以上的轨道描述基于简化的条件和假设。
在实际情况中,天体运动还受到其他因素的影响,如其他天体的引力、相对论效应等,这可能导致复杂的轨道形状和运动规律。
因此,在描述具体的天体运动轨道时,需要考虑更多的因素和精确的计算方法。
万有引力定律和天体运动的动力学万有引力定律是牛顿力学的基石之一,揭示了天体运动的基本规律。
它准确地描述了两个物体之间的引力作用,并为解释地球绕太阳的运动、卫星绕行星的运动等提供了重要的理论基础。
本文将深入探讨万有引力定律和天体运动的动力学。
一、万有引力定律的基本原理万有引力定律是牛顿在1687年提出的,被视为自然科学的里程碑之一。
它的表述如下:两个物体之间存在相互吸引的力,这个力的大小与它们的质量成正比,与它们之间的距离成反比。
具体可以表示为:F =G * (m1 * m2) / r^2其中,F表示物体之间的引力大小,m1和m2分别表示两个物体的质量,r表示它们之间的距离,G为引力常量。
二、万有引力定律的应用1. 行星运动:万有引力定律为解释行星绕太阳的运动提供了基本框架。
根据万有引力定律,行星和太阳之间的引力使得行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上。
同时,根据牛顿第二定律,行星在受到的引力作用下,会出现向心力,使得行星的轨道平衡稳定。
2. 卫星轨道:万有引力定律也可以解释卫星绕行星的运动。
同样,根据牛顿第二定律,卫星在受到引力的作用下,会出现向心力,使得卫星按照固定轨道绕行星运动。
根据万有引力定律的数学表达式,科学家们可以准确计算出卫星的轨道参数,以确保卫星在轨道上运行的稳定性。
3. 潮汐现象:万有引力定律还可以解释地球上的潮汐现象。
太阳和月亮对地球产生引力,这种引力会对海洋和陆地产生作用。
具体而言,引力会使得海洋产生潮汐现象,同时还会对地球的自转速度产生微小的影响。
三、天体运动的动力学天体运动的动力学研究着眼于解释天体运动的规律和运动轨迹。
在万有引力定律的基础上,科学家们提出了一系列的天体运动定律和理论模型。
1. 开普勒定律:开普勒是德国天文学家,他的研究成果为解释行星运动提供了重要的依据。
开普勒定律总结了行星运动的三个基本规律:行星轨道是椭圆、太阳在椭圆焦点上、行星与太阳连线的面积相等。
万有引力定律与天体运动万有引力定律是物理学中最基础、最重要的定律之一,它描述了物体之间存在的万有引力以及天体的运动规律。
该定律由英国科学家牛顿在17世纪形成,并为后来的物理学发展奠定了坚实的基础。
本文将通过介绍万有引力定律的基本概念、公式推导、应用实例等方面,深入探讨万有引力定律与天体运动之间的关系。
一、万有引力定律的基本概念万有引力定律是牛顿力学的重要组成部分,它表明任何两个物体之间都存在引力的相互作用。
根据该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
其中,引力的大小用F表示,质量分别为m1和m2的两个物体之间的距离用r表示。
万有引力定律的表达式如下:F =G * m1 * m2 / r^2其中,G为万有引力常量,其值约为6.67 × 10^-11 N·m^2/kg^2。
万有引力定律是一个矢量关系,方向与两物体之间直线连接的方向相同,即引力是沿着物体之间连线的方向。
二、万有引力定律的公式推导万有引力定律的公式推导是基于牛顿第二定律和牛顿运动定律,其过程相对复杂,涉及到引力场、势能、力的合成等知识。
在这里,为了保持文章的连贯性和简洁性,略去具体的数学推导过程。
三、万有引力定律与天体运动的关系万有引力定律对于解释天体运动和宇宙中一系列现象具有重要的作用。
首先,根据牛顿的第一定律,物体将保持匀速直线运动,直到外力作用改变其状态。
在此基础上,万有引力定律解释了太阳系行星的椭圆轨道运动。
行星围绕太阳运行,其轨道可近似看作椭圆,太阳位于椭圆的一个焦点上。
同时,根据牛顿的第三定律,行星与太阳之间的引力大小相等,方向相反。
这样,行星在引力作用下沿椭圆轨道运动。
其次,万有引力定律还解释了地球上的重力现象。
地球表面的物体受到地球吸引力的作用,不断地向地心方向运动,形成了地球上的重力。
地球的引力是万有引力定律在地球尺度上的应用,它对地球上的物体产生的作用力与物体的质量成正比。
牛顿万有引力定律与天体运动在我们的日常生活中,我们常常能够感受到地球的引力。
当我们举起一颗苹果,它会落回地面;当我们行走在地面上时,我们能够感受到地球对我们的吸引力。
这就是一个简单的例子,说明了引力的存在和作用。
引力是一个广泛存在于整个宇宙中的力量,而牛顿的万有引力定律正是揭示了这一力量背后的科学原理。
牛顿的万有引力定律是物理学中最基本的定律之一,它被广泛应用于解释天体运动。
根据这个定律,任何两个物体之间都会存在引力,而这个引力的大小与这两个物体的质量和它们之间的距离有关。
简单来说,万有引力定律可以表示为F = G * (m1 * m2) / (r^2),其中F表示两个物体之间的引力,G是一个常数,m1和m2分别是这两个物体的质量,而r代表它们之间的距离。
应用牛顿的万有引力定律,我们可以解释许多天体运动的现象。
首先,我们可以解释为什么地球和其他行星围绕太阳运行。
根据万有引力定律,太阳对地球和其他行星产生了引力,而这个引力使它们保持在太阳的引力场中,并围绕着太阳运动。
这就是我们所熟知的行星公转。
除了行星的公转,牛顿的万有引力定律还可以解释其他许多天体运动。
例如,根据这个定律,我们可以解释为什么天体之间会产生潮汐现象。
地球和月球之间的引力使得海洋发生周期性的涨潮和退潮。
这种现象在我们的生活中非常常见,而万有引力定律能够很好地解释其中的原因。
除了潮汐现象,万有引力定律还可以解释彗星的轨道。
彗星是一种由冰、尘埃和岩石组成的天体,在它们的运动过程中,受到太阳的引力作用,使得它们围绕太阳形成椭圆轨道。
这一现象同样可以用牛顿的万有引力定律来解释。
然而,尽管牛顿的万有引力定律在解释天体运动中获得巨大成功,它在特殊的情况下并不完全准确。
例如,在极端的高速运动或强引力场下,爱因斯坦的广义相对论更准确地描述了物体的运动和引力场的性质。
但是,在大多数情况下,牛顿的万有引力定律仍然是我们理解和解释天体运动的重要工具。
牛顿的万有引力定律不仅揭示了天体运动背后的科学原理,还赋予了人类对宇宙的更深入认识。
第12讲万有引力与天体运动一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的相等.3.开普勒第三定律:所有行星的轨道的的三次方跟的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成,与它们之间距离的二次方成.2.公式:(其中引力常量G=6.67×10-11 N·m2/ kg2).3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成运动.2.动力学分析:(1)由万有引力提供,即F向=G Mmr2=man=m v2r=mω2r=m(2πT)2r.(2)在星球表面附近的物体所受的万有引力近似等于,即G Mmr2=mg(g 为星球表面的重力加速度).【辨别明理】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.()(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.()(3)近地卫星距离地球最近,环绕速度最小.()(4)地球同步卫星根据需要可以定点在北京正上空.()(5)极地卫星通过地球两极,且始终和地球某一经线平面重合.()(6)发射火星探测器的速度必须大于11.2 km/s.()考点一万有引力及其与重力的关系例1 (多选)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=F02.假设第三次在赤道平面内深度为R2的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=F04 B.F3=15F04C.F4=0D.F4=F04■题根分析1.万有引力与重力的关系地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向,如图12-1所示.图12-1(1)在赤道处:G MmR2=mg1+mω2R.(2)在两极处:G MmR2=mg2.(3)在一般位置:万有引力G MmR2等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即G MmR2=mg.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g(不考虑地球自转):mg=G MmR2,得g=GMR2.(2)在地球上空距离地心r=R+h处的重力加速度g':mg'=G Mm(R+ℎ)2,得g'=GM(R+ℎ)2,所以gg'=(R+ℎ)2R2.■变式网络变式题1 (多选)火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器,如图12-2所示.火箭从地面起飞时,以加速度g02竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R,升到某一高度时,测试仪器对平台的压力刚好是起飞时压力的1727,此时火箭离地面的高度为h,所在位置重力加速度为g,则()图12-2A.g=2g03B.g=4g09C.h=RD.h=R2变式题2 假设地球是一半径为R、质量分布均匀的球体,一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为()A.1-dR B.1+dRC.(R-dR )2D.(RR-d)2变式题3 假设地球可视为质量均匀分布的球体.已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G,则地球的密度为()A.3π(g0-g)GT2g0B.3πg0GT2(g0-g)C.3πGT2D.3πg0GT2g考点二天体质量及密度的计算(1)利用卫(行)星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mmr2=m4π2T2r,解得M=4π2r3GT2;ρ=MV=M43πR3=3πr3GT2R3,R为中心天体的半径,若为近地卫星,则R=r,有ρ=3πGT2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r及运行周期T,就可以算出中心天体的质量M.若再知道中心天体的半径,则可算出中心天体的密度.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G,天体密度ρ=MV =M43πR3=3g4πGR.例2[2017·北京卷]利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离变式题1 我国成功地进行了“嫦娥三号”的发射和落月任务,进一步获取月球的相关数据.该卫星在月球上空绕月球做匀速圆周运动时,经过时间t,卫星的路程为s,卫星与月球中心连线扫过的角度是θ弧度,引力常量为G,月球半径为R,则可推知月球密度的表达式是()A.3t 2θ4πGs3R3B.4θπR3Gt23s3C.3s 34θπGt2R3D.4πR3Gs33θt2变式题2 已知“慧眼”卫星绕地球做匀速圆周运动,其轨道半径为r,运动周期为T,地球半径为R,引力常量为G,则下列说法正确的是()A.“慧眼”卫星的向心加速度大小为4π2rT2B.地球的质量大小为4π2R3GT2C.地球表面的重力加速度大小为4π2RT2D.地球的平均密度大小为3πGT2■要点总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①由万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r和周期T,可得中心天体的质量M=4π2r3GT2,并据此进一步得到该天体的密度ρ=MV =M43πR3=3πr3GT2R3(R为中心天体的半径),尤其注意当r=R时,ρ=3πGT2.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G ,天体密度ρ=MV=M43πR3=3g4πGR.考点三黑洞与多星系统1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视天体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统 三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力 的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力例3 天文学家们推测,超大质量黑洞由另外两个超大质量黑洞融合时产生的引力波推射出该星系核心区域.在变化过程中的某一阶段,两个黑洞逐渐融入到新合并的星系中央并绕对方旋转,这种富含能量的运动产生了引力波.假设在合并前,两个黑洞互相绕转形成一个双星系统,如图12-3所示,若黑洞A 、B 的总质量为1.3×1032 kg ,球心间的距离为2×105 m ,产生的引力波周期和黑洞做圆周运动的周期相当,则估算该引力波周期的数量级为(G=6.67×10-11 N ·m 2/kg 2) ( )图12-3A .10-1sB .10-2sC .10-3sD .10-4s变式题 [2018·江西新余二模] 天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是 ( )图12-4A.它们两两之间的万有引力大小为16π4l49GT4B.其中一颗星的质量为3GT 24π2l3C.三颗星的质量可能不相等D.它们的线速度大小均为2√3πlT■要点总结多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动的天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动的向心力往往是由多个星的万有引力的合力提供. (3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.完成课时作业(十二)。
万有引力定律与天体运动知识总结一、开普勒行星运动定律1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。
K= k 取决于中心天体3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。
k= ,[r 为轨道半径]二、万有引力定律F 引=2rMm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径)2. 距离星体某高度处:F ’引 ≈G’ =mg ’3. 其它星体与地球重力加速度的比值四、星体(行星 卫星等)匀速圆周运动 状态描述1. 假设星体轨道近似为圆.2. 万有引力F 引提供星体圆周运动的向心力FnF n =r mv 2F n=22T mr 4π F n = m ω²r Fn=F 引 r mv 2=2r Mm G =22Tmr 4π = m ω²rr GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 23T a 23T rGM r T 324π=,r 越大,T 越大。
3. 计算中心星体质量M1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离2)根据环绕星体的圆周运动状态量,F 引=Fn 2r MmG =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρρ=v m =323R G T r 3π [v=3r 34π] 若r≈R ,则ρ=2GT3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式)第一宇宙速度(环绕速度):s km v /9.7=;第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=;第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。
天体判断三看法
判断天体的三个方法是:看其是不是宇宙的恒定发光体;看其是不是宇宙物质;
看其是不是宇宙中运动着的物质。
1.天体是指宇宙空间的物质的存在形式,包括星云、恒星、行星、卫星、彗星、流星
体、太阳系小天体、银河系以及宇宙尘埃和星际气体等。
2.天体之间的万有引力作用是天体运动的主要原因。
天体之间的距离远大于天体之间
的万有引力作用,因此天体的运动状态是相对稳定的。
3.天体的运动状态是由其自身的质量和速度决定的。
根据牛顿的万有引力定律,天体
之间的万有引力与它们之间的距离成平方反比关系,与它们之间的质量的乘积成正比。
因此,天体的运动状态是相对稳定的。
4.天体的运动状态是由其自身的质量和速度决定的。
根据牛顿的万有引力定律,天体
之间的万有引力与它们之间的距离成平方反比关系,与它们之间的质量的乘积成正比。
因此,天体的运动状态是相对稳定的。
5.天体的运动状态是由其自身的质量和速度决定的。
根据牛顿的万有引力定律,天体
之间的万有引力与它们之间的距离成平方反比关系,与它们之间的质量的乘积成正比。
因此,天体的运动状态是相对稳定的。