数学分析9-3
- 格式:ppt
- 大小:2.37 MB
- 文档页数:40
!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&�+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!##$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。
§9-3 三相绕组的磁动势三相电流的表达式:⎪⎪⎭⎪⎪⎬⎫−=−==)240cos(2)120cos(2cos 2 t I i t I i tI i C B A ωωωI一、三相绕组的基波磁动势1.数学分析法()()()()111111cos cos cos 120cos 120cos 240cos 240A m B m C m f F t f F t f F t φφφωαωαωα==−−=−−1114(/)20.9m w w INk IN k pF p ϕπ==安极为每相绕组基波磁动势最大幅值。
11111111111111cos cos cos()cos()2211cos(120)cos(120)cos()cos(240)2211cos(240)cos(240)cos()cos(120)22A m m m B m m m C m m m f F t F t F t f F t F t F t f F t F t F t φφφφφφφφφωαωαωαωαωαωαωαωαωα==−++=−−=−++−=−−=−++−经积化和差:()()1111113cos cos 2A B C m f f f f F t F t φωαωα=++=−=−三相基波磁势:I 三相对称绕组通入三相对称电流产生的基波合成磁动势为幅值恒定的圆形旋转磁动势。
三相基波合成磁动势具有以下性质:1)极数:基波旋转磁动势的极数与绕组的极数相同;5)转向:三相基波合成磁动势的转向总是从电流超前的相绕组向电流滞后的相绕组方向转动。
4)转速:三相基波合成磁动势的转速与电流频率保持如下严格不变的关系:160f n p =3)幅值的位置:三相基波合成磁动势幅值位于处。
当某相电流达到最大时,基波合成磁动势的波幅刚好转到该相绕组的轴线上。
t αω=2)幅值:三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2倍。
为三相基波合成磁动势最大幅值。
数学分析第三版上册教学设计课程简介数学分析是数学中的一门重要课程,旨在培养学生良好的数学思维能力和分析问题的综合能力。
《数学分析第三版上册》是数学分析课程教材之一,本教学设计针对这本书,旨在帮助学生更好地掌握课程内容,提高学生的数学功底。
教学目标通过本教学设计,希望学生能够:1.熟悉数学分析的基本概念和公式;2.掌握数学分析中的常见证明方法;3.培养对数学问题的敏锐思维和分析能力;4.提高解决实际问题的能力。
教学内容本教学设计将按照《数学分析第三版上册》的章节顺序展开教学,包括以下内容:第一章实数系本章介绍实数系的概念、有理数与无理数的性质、实数的完备性等内容。
教学重点是实数的完备性证明,通过引入数的上界和下界的概念,证明了实数系的完备性。
第二章极限与连续本章介绍极限的概念、数列极限、函数极限和导数的概念。
教学重点是函数极限和连续函数的概念,以及判断函数连续性的方法。
第三章一元函数的导数本章介绍一元函数的导数,包括导数的定义、导数的基本性质、导数的几何意义。
教学重点是导数的定义和基本性质,通过一些关键例题的讲解,让学生掌握导数的计算方法。
第四章微分学的应用本章介绍微分学在极值、最大误差、函数图形等方面的应用。
教学重点是极值问题的求解方法,以及对实际问题的应用。
第五章不定积分本章介绍不定积分和基本积分公式等内容。
教学重点是不定积分的计算方法和基本积分公式的证明。
教学方法本教学设计采用以下教学方法:1.讲授法:通过授课、演示和讲解等方式,让学生了解数学分析的基本概念和公式;2.问题导向法:在讲授完每个章节的基本知识后,引导学生针对相关问题进行思考和讨论;3.分组讨论法:将学生分成小组,进行小组讨论,帮助学生加深对知识点的理解并提高解决问题的能力。
评估方法为评估学生的学习情况和教学效果,将采用以下评估方法:1.期中考试:考核学生对前三章知识的掌握程度;2.期末考试:考核学生对全部知识的掌握程度;3.课堂表现:评估学生在课堂上的参与度和表现,包括提问、讨论等;4.作业评估:评估学生完成的作业情况,以及学生在作业中展现的解决问题的能力。
交流绕组的磁动势§9-2 一相绕组的磁动势(1)一相绕组的磁动势为一空间位置固定、幅值随时间变化的脉振磁动势,脉振的频率等于电流的频率,脉振磁动势的幅值位于相绕组的轴线上。
(2)一相绕组的基波(或谐波)脉振磁动势可以分解成两个幅值相等。
转速相同,转向相反的旋转磁动势。
旋转电角速度w 恰恰等于角频率每分钟转数同步速n1(3)一相绕组的 v 次谐波磁动势表达式为:f ϕν =Fϕν=Fϕmνcosναcosωt cosνα=0.9νIwkp wνcosωt cosνα交流绕组的磁动势§9-3 三相绕组的磁动势研究对象为研究方便,把三相绕组的每一相用一个等效的单层整距集中绕组来代替,该等效绕组的匝数等于实际一相串联匝数w 乘以绕组因数kw1, kw1w 称为一相的有效匝数,三相绕组在空间互差120度电角度。
这是一对极电机的三相等效绕组示意图。
电流正方向+B +AYC A XZ α=0 B+C三相绕组的基波磁动势结论:三相基波合成磁动势具有以下性质1)三相对称绕组通入三相对称电流产生的基波合成磁动势为一幅值不变的旋转磁动势。
由于基波磁动势矢量的端点轨迹是一个圆形,故又称为圆形旋转磁动势。
2)三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2 倍,即F 1 =32Fϕm1= 1.35Iwkp w1(安/ 极)3)三相基波合成磁动势的转向取决于电流的相序和三相绕组在空间上的排列次序。
基波合成磁动势总是从电流超前的相绕组向电流滞后的相绕组方向转动,例如电流相序为A-B-C,则基波合成磁动势按A轴-B轴-C轴方向旋转,改变三相绕组中电流相序可以改变旋转磁动势的转向。
4)三相基波合成磁动势的转速与电流频率保持严格不变的关系,即该转速即为同步速。
5)当某相电流达到最大值时,基波合成磁动势的波幅刚好转到该相绕组的轴线上,磁动势的方向与绕组中电流的方向符合右手螺旋定则。
分析方法如果三相等效绕组里通过三相对称电流,则每相均产生一脉振磁动势;把三个相绕组的磁动势进行合成,即得三相绕组的合成磁动势。
第九章 定积分总练习题1、证明:若φ在[0,a]上连续,f 二阶可导,且f ”(x)≥0,则有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt). 证:设T 为[0,a]的一个分割,其分点为n ka , k=0,1,…,n, 即x k =nka. 由f ”(x)≥0知f 凸,∴f(∑=n1k k )(x φn 1)≤∑=n1k k ))(x f(φn 1.即∑=n 1k k n a ))(x f(φa 1≥f(na)(x φa 1n 1k k ∑=). ∵f, φ在[0,a]上都可积,且f 连续, ∴令n →∞,有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt).2、证明下列命题.(1)若f 在[a,b]上连续增,F(x)=⎪⎩⎪⎨⎧=∈⎰ a.x ,f(a)b].a,(x f(t)dt a -x 1xa , 则F 在[a,b]上增.(2)若f 在[0,+∞)上连续,且f(x)>0,则φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增.要使φ(x)在[0,+∞)上严格增,需要补充定义φ(0)=?证:(1)F ’(x)= ⎪⎩⎪⎨⎧=∈-⎰ a.x ,0b].a,(x a)-(x f(t)dt a -x f(x)2xa, 根据积分中值定理知,存在ξ∈(a,x),⎰xa f(t)dt =f(ξ)(x-a). 又f 在[a,b]上增, ∴F ’(x)=a-x )f(ξ-f(x)>0, x ∈(a,b],∴F ’(x)≥0, x ∈[a,b],∴F 在[a,b]上增.(2)任给x>0,有φ’(x)=2x0xx)f(t)dt (tf(t)dtf(x )f(t)dt x f(x )⎰⎰⎰- =2x0x0)f(t)dt (t)f(t)dt -(x f(x )⎰⎰.∵f(x)>0,∴(x-t)f(x)>0,∴⎰x0t)f(t)dt -(x >0,∴φ’(x)>0, x ∈(0,+∞),∴φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增. 又+→0x lim φ(x)=⎰⎰+→x 0x00x f(t)dttf(t)dt lim=f(x )x f(x )lim 0x +→=+→0x lim x=0, ∴只要补充定义φ(0)=c ≤0,则φ(x)在[0,+∞)上严格增.3、设f 在[0,+∞)上连续,且+∞→x lim f(x)=A. 证明:⎰+∞→x0x f(t)dt x1lim=A. 证:∵+∞→x lim f(x)=A ,∴任给ε>0,存在M>0,使当x>M 时,有|f(x)-A|<2ε,又当T>M 时,|A f(x)dx T 1T 0-⎰|=T1|⎰⎰-T 0T0Adx f(x )dx | =T1|⎰T0A]dx -[f(x )|≤⎰T 0dx |A -f(x)|T 1=⎰M 0dx |A -f(x)|T 1+⎰T M dx|A -f(x)|T 1 ≤⎰M 0dx |A -f(x)|T 1+2ε(1-TM). ∴只要取T 1=max{⎰M 0dx |A -f(x)|ε2, 2M},则 当T>T 1时,就有|A f(x)dx T 1T 0-⎰|<2ε+2ε=ε.∴⎰+∞→T 0T f(x)dx T 1lim =⎰+∞→x0x f(t)dt x 1lim =A.4、设f 是定义在R 上的一个连续周期函数,周期为p ,证明:⎰+∞→x0x f(t)dt x 1lim =⎰p 0f(t)dt p 1. 证:令x=p λ,y=λt,则⎰x0f(t)dt x1=⎰p λ0y) y)d(λ f(λp λ1=⎰p 0y)dy f(λp 1=⎰p 0 t)dt f(λp 1. 由f(t)=f(t+np), n 为任意正整数,又np)f(t lim n ++∞→= t)f(λlim λ+∞→,∴⎰+∞→x0x f(t)dt x 1lim =⎰+∞→p 0λ t)dt f(λp 1lim =⎰++∞→p 0n )dt np f(t p 1lim =⎰p 0f(t)dt p1.5、证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中只有一个是奇函数.证:设连续的奇函数f ,连续的偶函数g ,则它们的原函数分别为: F(x)=⎰x0f(t)dt +C ,G(x)=⎰x0g(t)dt +C.∵F(-x)=⎰-x 0f(t)d(t)+C=⎰x 0f(-t)d(-t)+C=-)f(t)d(-t x 0⎰+C=⎰x0f(t)dt +C=F(x), ∴连续的奇函数的一切原函数皆为偶函数又G(-x)=⎰-x0g(t)dt +C=⎰x 0g(-x )d(-t)+C=⎰x 0g(x )d(-t)+C=-⎰x0g(x )dt +C ≠-G(x), ∴仅当G(x)=⎰x 0g(t)dt 时,G(-x)=-⎰x0g(x )dt =-G(x), 即连续的偶函数的原函数中只有一个是奇函数.6、证明许瓦尔兹不等式:若f 和g 在[a,b]上可积,则 (⎰ba f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .证:若f 和g 在[a,b]上可积,则f 2,g 2,fg 都可积. 且对于任何t, (f+tg)2也可积.∵(f+tg)2≥0,∴⎰+b a 2tg)(f =⎰ba 2(x )dx f +2t ⎰ba f(x )g(x )dx +t2⎰ba2(x )dx g ≥0.∴二元一次方程的判别式△=4(⎰ba f(x )g(x )dx )2-4⎰ba 2(x )dx f ·⎰ba 2(x )dx g ≤0.∴(⎰b a f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .7、利用许瓦尔兹不等式证明:(1)若f 在[a,b]上可积,则(dx f(x )ba ⎰)2≤(b-a)⎰ba 2(x )dx f ; (2)若f 在[a,b]上可积,且f(x)≥m>0,则⎰ba f(x )dx ·⎰baf(x )dx≥(b-a)2; (3)若f,g 都在[a,b]上可积,则有闵可夫斯基不等式:21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰. 证:(1)记g(x)=1,∵f 和g 在[a,b]上可积,根据许瓦尔兹不等式,有 (dx f(x )ba ⎰)2 ≤⎰b a dx ·⎰b a 2(x )dx f =(b-a)⎰ba 2(x )dx f . (2)若f 在[a,b]上可积,且f(x)≥m>0,则f ,f1在[a,b]上也可积. 根据许瓦尔兹不等式,⎰b a f(x )dx ·⎰baf(x )dx ≥(⎰⋅b a dx f(x)1f(x))2=(b-a)2. (3)∵⎰+ba 2dx g(x ))(f(x )=⎰⎰⎰++ba 2ba ba 2(x )dxg f(x )g(x )dx 2(x )dx f≤⎰⎰⎰⎰+⎥⎦⎤⎢⎣⎡⋅+ba 221ba ba 22ba 2(x)dx g (x)dx g (x)dx f 2(x)dx f=221b a 221b a 2(x)dx g (x)dx f ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰. ∴21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰.8、证明:若f 在[a,b]上连续,且f(x)>0,则 ln ⎪⎭⎫⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1. 证:在[a,b]中插入n-1个等分点a=x 0<x 1<x 2<…<x n =b. 记f(x i )=y i >0,于是由平均值不等式na-b (y 1+y 2+…+y n )≥(b-a)n n 21y y y ⋯=(b-a)e )y ln y (ln n a-b a -b 1n 1⋯+⋅.两边取极限得:⎰ba f(x )dx =na-b limn +∞→(y 1+y 2+…+y n )≥(b-a)na -b lim n +∞→e)y ln y (ln na-b a -b 1n 1⋯+⋅=(b-a)e⎰balnf(x)dx a -b 1.∴⎰b a f(x)dx a -b 1≥e ⎰balnf(x)dx a -b 1,∴ln ⎪⎭⎫ ⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1.9、设f 为R +上的连续减函数,f(x)>0;又设a n =∑=n1k f(k)-⎰n1f(x )dx .证明:{a n }为收敛数列. 证:∵f 为R +上的连续减函数,∴a n =∑=n1k f(k)-⎰n1f(x )dx =∑=n 1k f(k)-∑⎰=+1-n 1k 1k k f(x )dx ≥∑=n 1k f(k)-∑=+1-n 1k k)-1f(k)(k =f(n)>0,即数列{a n }有下界,又a n+1-a n =f(n+1)-⎰+1n nf(x )dx ≤f(n+1)-⎰++1n n1)dx f(n =0.∴{a n }为递减数列. 由单调有界定理知{a n }收敛.10、证明:若f 在[a,b]上可积,且处处有f(x)>0,则⎰ba f(x )dx>0. 证:∵在[a,b]上处处有f(x)>0,∴使f(x)≤0的点只有有限个, 对[a,b]上任一分割T ,添加这些点为分点,则 在每一个小区间(x i ,x i+1)上恒有f(x)>0, ∴⎰+1i ix x f(x)dx>0, (i=0,1,…,n) 其中x 0=a, x n+1=b.∴⎰baf(x )dx =∑⎰=+ni 1i if(x )dx >0.。
数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。
12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。
数学分析课本(华师大三版)-习题及答案第六章第六章 微分中值定理及其应用一、 填空题1.若0,0>>b a 均为常数,则=⎪⎪⎭⎫⎝⎛+→xx x x b a 32lim ________。
2.若21sin cos 1lim 0=-+→x x b x a x ,则=a ______,=b ______。
3.曲线x e y =在0=x 点处的曲率半径=R _________。
4.设2442-+=x x y ,则曲线在拐点处的切线方程为___________。
5.=-+→xex xx 10)1(lim___________。
6.设)4)(1()(2--=x xx x f ,则0)(='x f 有_________个根,它们分别位于________区间;7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的__________=ξ;8.函数3)(x x f =与21)(x x g +=在区间[]2,0上满足柯西定理条件的_____=ξ;9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数2)(xe xf x=的单调减区间是__________;11.函数x x y 33-=的极大值点是______,极大值是A.没有实根B.有两个实根C.有无穷多个实根D.有且仅有一个实根5.已知)(x f 在0=x 处某邻域内连续,2cos 1)(lim 0=-→xx f x ,则在0=x 处)(x f ( )。
A.不可导B.可导且2)0('=fC.取得极大值D.取得极小值6.设函数)(x f 在区间[)+∞,1内二阶可导,且满足条件0)1()1(='=f f ,1>x 时0)(<''x f ,则xx f x g )()(=在[)+∞,1内( )A .必存在一点ε,使0)(=εfB .必存在一点ε,使0)(='εfC .单调减少 D. 单调增加7.设)(x f 有二阶连续导数,且0)0(='f ,1)(lim 0=''→xx f x ,则( )A .)0(f 是)(x f 的极大值 B.)0(f 是)(x f 的极小值 C .())0(,0f 是曲线)(x f y =的拐点D .)0(f 不是)(x f 的极值,())0(,0f 也不是曲线)(x f y =的拐点8.若)(x f 和)(x g 在0x x =处都取得极小值,则函数)()()(x g x f x F +=在0x x =处( )A .必取得极小值 B.必取得极大值 C.不可能取得极值 D.是否取得极值不确定 9.设)(x y y =由方程03223=+-by y ax x 确定,且1)1(=y ,1=x 是驻点,则( )A.3==b aB.25,23==b aC.21,23==b a D.3,2-=-=b a 10.曲线22)3()1(--=x x y 的拐点的个数为( ) A.0 B.1 C.2 D.3 11.)(),(x g x f 是大于0的可导函数,且0)(')()()('<-x g x f x g x f ,则当b x a <<时有( )A .)()()()(x g b f b g x f > B.)()()()(x g a f a g x f > C.)()()()(b g b f x g x f > D.)()()()(a g a f x g x f > 12.曲线()()211arctan212+-++=x x x x e y x的渐近线有( )A .1条 B.2条 C.3条 D.4条 13.q x x x f ++=2)(3的O 点的个数为( ) A .1 B.2 C.3 D.个数与q 有关 14.曲线⎪⎪⎩⎪⎪⎨⎧+==111t b t x 则曲线( )A .只有垂直渐近线 B.只有水平渐近线 C .无渐近线 D.有一条水平渐近线和一条垂直渐近线15.设)(x f y =为0sin =-'+''x e y y 的解,且0)(0='x f ,则)(x f 有( )A .0x 的某个邻域内单调增加B .0x 的某个邻域内单调减少C .0x 处取得极小值D .0x 处取得极大值 16. 罗尔定理中的三个条件;)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =是)(x f 在),(b a 内至少存在一点ξ,使得0)(='ξf 成立的( ).)(A 必要条件)(B 充分条件)(C 充要条件 )(D 既非充分也非必要17. 下列函数在],1[e 上满足拉格朗日中值定理条件的是( ). )(A );ln(ln x)(Bxln ;)(Cxln 1;)(D)2ln(x -;18. 若)(x f 在开区间),(b a 内可导,且21,x x 是),(b a 内任意两点,则至少存在一点ξ使得下式成立( ). )(A )()()()(2112ξf x x x f x f '-=- ),(b a ∈ξ; )(B)()()()(2121ξf x x x f x f '-=- 21x x <<ξ)(C )()()()(1221ξf x x x f x f '-=- 21x x <<ξ )(D)()()()(1212ξf x x x f x f '-=-21x x <<ξ19. 设)(x f y =是),(b a 内的可导函数,x x x ∆+,是),(b a 内的任意两点,则( ) . )(A x x f y ∆'=∆)()(B 在x x x ∆+,之间恰有一个ξ,使得x f y ∆'=∆)(ξ )(C 在x x x ∆+,之间至少存在一点ξ,使得x f y ∆'=∆)(ξ )(D 对于x 与x x ∆+之间的任一点ξ,均有x f y ∆'=∆)(ξ20.若)(x f 在开区间),(b a 内可导,且对),(b a 内任意两点21,x x 恒有21212)()()(x x x f x f -≤-,则必有( ). )(A 0)(≠'x f )(Bxx f =')( )(Cxx f =)()(Dcx f =)((常数)21. 已知函数)4)(3)(2)(1()(----=x x x x x f ,则方程)(x f '0=有( ).)(A 分别位于区间)4,3(),3,2(),2,1(内的三个根; )(B 四个根,它们分别为4,3,2,14321====x x x x;)(C 四个根,分别位于);4,3(),3,2(),2,1(),1,0( )(D 分别位于区间)4,1(),3,1(),2,1(内的三个根;22. 若)(x f 为可导函数,ξ为开区间),(b a 内一定点,而且有)()(,0)(≥'->x f x f ξξ,则在闭区间],[b a 上必总有( ).)(A 0)(<x f)(B)(≤x f)(C)(≥x f)(D)(>x f23. 若032<-b a,则方程0)(23=+++=c bx ax xx f ( ).)(A 无实根)(B 有唯一实根)(C 有三个实根 )(D 有重实根24. 若)(x f 在区间],[+∞a 上二次可微,且,0)(,0)(<'>=a f A a f 0)(≤''a f (a x >),则方程0)(=x f 在],[+∞a 上( ).)(A 没有实根)(B 有重实根)(C 有无穷多实根)(D 有且仅有一个实根25. 设)()(lim 0x g x f x x →为未定型, 则)()(lim 0x g x f x x ''→存在是)()(lim 0x g x f x x →也存在的( ).)(A 必要条件)(B 充分条件)(C 充要条件)(D 既非充分也非必要条件26. 指出曲线23x x y -=的渐近线( ).)(A 没有水平渐近线,也没有斜渐近线; )(B3=x 为垂直渐近线,无水平渐近线;)(C 既有垂直渐近线,又有水平渐近线; )(D 只有水平渐近线.27 曲线)2)(1(1arctan212+-++=x x x x ey x的渐近线有( ).)(A 1条 ; )(B 2条 ; )(C 3条 ;)(D 4条 ;28. 函数x x a x f 2cos 21cos )(-=在3π=x 取得极值,则=a( )。
《数学分析》(三)――参考答案及评分标准一. 计算题(共8题,每题9分,共72分)。
1.求函数11(,)f x y y x =在点(0,0)处的二次极限与二重极限。
解:11(,)f x y y x =+=,因此二重极限为0。
……(4分)因为011x y x →+与011y y x→+均不存在,故二次极限均不存在. ……(9分)2. 设(),()y y x z z x =⎧⎨=⎩ 是由方程组(),(,,)0z xf x y F x y z =+⎧⎨=⎩所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dzdx.解: 对两方程分别关于x 求偏导:, ……(4分). 解此方程组并整理得()()()()y y x y z F f x y xf x y F F dz dx F xf x y F '⋅+++-='++。
……(9分)3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程222z z zz x x y x ∂∂∂++=∂∂∂∂. 设,,22y x y x y w ze μν+-=== (假设出现的导数皆连续)。
解:z 看成是,x y 的复合函数如下:,(,),,22y w x y x yz w w e μνμν+-====. ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。
整理得:2222w ww μμν∂∂+=∂∂∂. ……(9分)4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省?解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: 222S rh r ππ=+表,()()(1)0x yz dzdy f x y xf x y dx dx dy dz F F F dx dx ⎧'=++++⎪⎪⎨⎪++=⎪⎩约束条件: 21r h π=。
……(3分) 构造Lagrange 函数:22(,,)22(1)F r h rh r r h λππλπ=++-。
《数学分析(二)》题库及答案一、填空1、⎰=+11- 251dx xx ____________。
2、⎰∞+-= 02dx xe x ____________。
3、=++++⋅+⋅ )1(1321211n n ___________。
4、⎰∞+∞=+ - 2______1xdx。
5、_______)15)(45(11161611=++-++⋅+⋅ n n 。
6、幂级数∑∞=--11)1(n nn nx 的收敛域为______ 。
二、单项选择题1、设)(x f 是),(b a 上的连续函数,则在),(b a 上)(x f 必有___________。
A .导函数 B .原函数 C .最大值 D .最小值2、设)(x f 在),(+∞-∞上有连续的的导数)(x f ',则___________。
A .⎰+='c x f dx x f )2(21)2( B .⎰+='c x f dx x f )2()2( C .⎰+='c x f dx x f )()2( D . ⎰=')2(2))2((x f dx x f3、设)(x f 是),(+∞-∞上非零的连续奇函数,则⎰=xdt t f x F 0)()(是___________。
A .奇函数B .偶函数C .非奇非偶函数D .可能是奇,也可能是偶函数 4、设函数)(x f 在],[b a 上可积,则)(x f 在],[b a 上______ 。
A .存在原函数B .有界C .连续D .可导 5、若0lim =∞→n n a ,则数项级数∑∞=1n na______ 。
A .收敛B .发散C .收敛且和为零D .可能收敛,也可能发散 6、若反常积分⎰∞+ 12)(dx x f 收敛,则⎰∞+ 1)(dx x f ______ 。
A .发散B .条件收敛C .绝对收敛D .可能收敛,也可能发散。
三.判断对错1.若)(x f 在(a 、b )内可微,则⎰+=c x f x df )()(。
第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{,对它的各项依次用“+”号连结起来的表达式}n u ""++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为,其中称为数项(1)的通项. ∑∞=1n nun u 数项级数(1)的前项之和,记为,称之为(1)的前项部分和,简称为部分和.n ∑==nk kn uS 1n 定义2 若级数(1)的部分和数列{}n S 收敛于(即S S S n n =∞→lim ),则称级数(1)收敛,并称为(1)的和,记为.若S ∑∞==1n nuS {}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<++++++p n n n u u u "21.2 级数收敛的必要条件:若级数∑收敛,则∞=1n na0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质若级数与都收敛,是常数,则收敛,且∑∞=1n nu∑∞=1n nvd c ,(∑∞=+1n n ndv cu)()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数收敛的充要条件是部分和数列∑∞=1n nu{}n S 有界.2 比较判别法 设与是两个正项级数,若存在正整数,当时,都有,则∑∞=1n nu∑∞=1n nvN N n >n n v u ≤(1)若收敛,则∑收敛;∑∞=1n nv∞=1n nu(2)若发散,则∑发散.∑∞=1n nu∞=1n nv3 比较原则的极限形式 设和是两个正项级数,且∑∞=1n n u ∑∞=1n n v l v u nnn =∞→lim,则(1)当+∞<<l 0时,和∑具有相同的敛散性;∑∞=1n nu∞=1n nv(2)当时,若∑收敛,则收敛;0=l ∞=1n nv∑∞=1n nu(3)当时,若发散,则发散.+∞=l ∑∞=1n nv∑∞=1n nu4 设∑和是两个正项级数,且∞=1n n a ∑∞=1n n b 0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若收敛,则∑收敛;∑∞=1n nb∞=1n na(2)若发散,则发散.∑∞=1n na∑∞=1n nb5 比式判别法(达朗贝尔判别法) 设是正项级数,若及常数,有∑∞=1n nu00>∃N 0>q(1)当时,0N n >11<≤+q a a n n ,则级数收敛;∑∞=1n n u (2)当时,0N n >11≥+n n a a ,则发散.∑∞=1n n u 6 比式判别法极限形式 设为正项级数,且∑∞=1n n u q u u nn n =+∞→1lim,则(1)当时,收敛;1<q ∑∞=1n nu(2)当若时,∑发散;1>q +∞=q ∞=1n nu(3)当时失效.1=q 当比式极限不存在时,我们有 设为正项级数.∑∞=1n nu(1)若1lim1<=+∞→q u u n n n ,则级数收敛;(2)若1lim1>=+∞→q u u nn n ,则级数发散.7 根式判别法(柯西判别法) 设为正项级数,且存在某正整数及正常数l ,∑∞=1n nu0N (1)若对一切,成立不等式0N n >1<≤l u nn ,则级数收敛;∑∞=1n n u (2)若对一切,成立不等式0N n >1≥n n u ,则级数∑发散.∞=1n nu8 根式判别法极限形式 设为正项级数,且∑∞=1n nul u n n n =∞→lim ,则(1)当时级数收敛; 1<l (2)当时级数发散. 1>l 9 柯西积分判别法设为[上非负递减函数,那么正项级数与反常积分同时收f )∞+,1()∑∞=1n n f ()∫∞+1dx x f敛或同时发散.10 拉贝判别法 设为正项级数,且存在某正整数及常数∑∞=1n nu0N r ,(1)若对一切,成立不等式0N n >111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n ,则级数∑收敛;∞=1n n u (2)若对一切,成立不等式0N n >111≤⎟⎟⎠⎞⎜⎜⎝⎛−+n n u u n ,则级数发散.∑∞=1n n u 注 拉贝判别法中(1)111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n 可转化为nru u n n −≤+11,1>r 收敛; (2)r u u n n n ≤⎟⎟⎠⎞⎜⎜⎝⎛−+11可转化为nru u n n −≥+11,1≤r 发散. 11 拉贝判别法极限形式若r u u n n n n =⎟⎟⎠⎞⎜⎜⎝⎛−+∞→11lim ,则有 (1)当1>r 时,收敛;∑∞=1n nu(2)当1<r 时,发散.∑∞=1n nu四 一般项级数1 莱布尼兹判别法 若交错级数,,满足下列两个条件:()∑∞=−−111n n n u 0>n u (1)数列{单减; }n u (2),0lim =∞→n n u 则收敛.∑∞=1n nu注 若交错级数满足莱布尼兹判别法,则其余项满足()∑∞=−−111n n n u ()x R n ()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数,若∑∞=1n nu∑∞=1n nu收敛,则称绝对收敛;若收敛,而∑∞=1n nu∑∞=1n nu∑∞=1n nu发散,则称是条件收敛的.∑∞=1n nu显然,若绝对收敛,则一定收敛,反之不真.∑∞=1n nu∑∞=1n nu绝对收敛级数的性质: (1)重排性:若∑绝对收敛,其和为,则任意重排后所得级数亦绝对收敛,且有相同的和数.∞=1n nuS 此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ).(2)级数的乘积 若和都绝对收敛,其和分别为∑∞=1n nu∑∞=1n nvA 和B ,则其乘积按任意方式排列所得的级数也绝对收敛,且其和为∑∞=1n n u ∑∞=⋅1n nvAB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{单减收敛于零,的部分和数列有界,则级数收敛.}n a ∑∞=1n nbnn n ba ∑∞=1注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证.(2)阿贝尔判别法:若数列{单调有界,∑收敛,则级数收敛.}n a ∞=1n nbnn n ba ∑∞=1五、常用于比较判别法的已知级数(1)几何级数∑,∞=1n nq1<q 收敛,1≥q 发散;(2)级数−p ∑∞=11n p n ,时收敛,1>p 1≤p 发散; (3)()∑∞=2ln 1n pn n ,时收敛,1>p 1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性. (1)∑∞=+111n nx,; 0>x (2)∑∞=1sinn nx,. R x ∈解(1)10<<x ,,0→n x 0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nn x x ⎟⎠⎞⎜⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n nx 收敛. (2)当时收敛,当时,发散. 0=x 0≠x 例2 已知∑收敛.∞=12n na(1)判定()∑∞=+−1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎟⎠⎞⎜⎝⎛++≤+⋅−,与∑∞=12n n a ∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+−1)]11ln(1[n n n ;(东北师大)(2)∑++++−)]!1!21!111([n e ";(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎟⎠⎞⎜⎝⎛−1cos 1n pn π,() 0>p (5)∑∞=1!n n n nn a ();e a a ≠>,0(6)()∑∞=−−+11312n n n ;(7)∑∞=−>−+111)0()2(n nna aa;(8)∑∫∞=+104411n n dxx ;(9)∑∞=⎟⎠⎞⎜⎝⎛−−−21111n n n n ; (10)()()∑∞=+2ln ln 1n n nn n ;(11)∑∞=3ln n pnn(); 0>p (12)()()∑∞=++11ln 11n pn n ();(0>p 1=p 为大连理工) (13)()∑∞=+++1!2!!2!1n n n "; (14)()∑∞=⎦⎤⎢⎣⎡−+111ln n p n n (); 0>p (15)()()∑∞=⋅−11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎟⎠⎞⎜⎝⎛−2ln 1n nn n p (); 0>p(18)()()()∑∞=+++12111n nnx x x x "0≥x (); (19)()∑∞=+−⋅−+211ln1n pn n nn (); 0>p (20)()∑∞=⎟⎠⎞⎜⎝⎛++−110310021n nnn n ;(21)()()∑∞=−+−211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23)"+−−−+−−+−+2222222222; (24)()[]∑∞=−11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+−11n nn n;(中科院2002)(27)∑−nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++−=+−=+−=∑∑∑===n c n n n k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于""++++=++++−<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1"+++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1nn n n n n n n <+=++++++++<", 由比较原则知其收敛.(3)24342sin 3→⎟⎠⎞⎜⎝⎛nnn⇒ 收敛;(4)21021~cos 12≤<⇒⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛−p n n pp ππ发散,21>p 收敛; (5)()()e a n n a n n a n n a nn n n n →⎟⎠⎞⎜⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,发散; e a >(6)()131312<→−+n n n⇒收敛;或()()∑∑∑∞=−∞=∞=−−+=−+111113131232n n n n n n n n ,收敛;或()1131312−−≤−+n nn ,收敛;(此乃正项级数)(7)220222121211)ln 2((lim )21()(lim )21()2(lim a x a a na a n a a x x x nnn nnn =−=−=−+−+→−∞→−∞→⇒收敛; 注:利用的Maclaurin 展开式估计分子的阶. x a (8)204421110nxdxdxx a n n n =≤+=<∫∫⇒ 收敛; (9)()nn n nn n n n n n −=−−=−−−111111=n n −231⇒收敛; 或⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛+++=⎟⎠⎞⎜⎝⎛−=−−n o n n n n n n 11111111111⎟⎠⎞⎜⎝⎛+++=23231111n o n n n ⇒⎟⎠⎞⎜⎝⎛+=−−−=2323111111n o n n n n a n (∞→n )收敛;∑∞=⇒1n n a (10)()()()()nenn n n nn n nn nnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,nn n p 1ln ≥()发散; 3>n ⇒ 当时,1>p ()()21211ln 1ln −−+⋅=p p p nnn n n ,当充分大时, n ()1ln 21<−p n n ⇒ ()2111ln −+≤p p nn n ⇒收敛.或当时,1>p 0ln 1ln 1ln 121<−=⋅−⋅=′⎟⎠⎞⎜⎝⎛+−p p p pp x x p x xpx x x x x (),即单减.由柯西积分判别法知原级数收敛.3>x (12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,,易知当1≥x 1=p 时,发散,时亦发散,而时收敛.()∫∞+1dx x f 10<<p 1>p (13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n "()收敛; 3≥n ⇒(14)由泰勒公式(皮亚诺余项形式)得:()()()⎟⎠⎞⎜⎝⎛+⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+p p n p n p n n o n n n 221121111ln ()⎟⎠⎞⎜⎝⎛+⋅−−=p p p nn o n n 2211211,当绝对收敛,1>p 121≤<p 条件收敛,210≤<p 发散. 注 能否利用()()p np n n n 1~11ln −⎟⎟⎠⎞⎜⎜⎝⎛−+⇒()∑∞=⎟⎟⎠⎞⎜⎜⎝⎛−+111ln n p n n 收敛?(此法仅用于正项级数).(15)()()()()⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛+−=+⋅++=⋅−+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎟⎠⎞⎜⎝⎛+++−=+++−=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当较大时,,n 2ln e n >()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln −⎟⎠⎞⎜⎝⎛−(), ∞→n 从而可以估计,于是可讨论pn nu −~n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=∞→∞→∞→n n p n n p n n p n u n n np n n pn ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛++−=−∞→n n p n p n n n 1ln 1ln 1ln 11lim1()[]x px x px xx ln ln 1ln 1lim0−+=→ ()0ln 1ln ln lim 220=++−=→xpx x x x x p x 故,,所以当时收敛,当1lim =∞→n pn u n p n n u −~1>p 1≤p 时发散.(18)当时级数显然收敛; 0=x 当时,,故收敛;10<<x n n x u <当时,1=x nn u ⎟⎠⎞⎜⎝⎛=21,收敛;当时,1>x ()()()112111111−−<+<+++=n n n nn x x x x x x u ",收敛.(19)()()())(12121~1112∞→⋅=++=−+n nn nn nn p p ppp, )(2~12~121ln 11ln∞→−+−⎟⎠⎞⎜⎝⎛+−+=+−n n n n n n , 所以,211121~p p n n a +−⋅−)(∞→n ,由此易得:时收敛,0>p 0≤p 时发散. 注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎟⎠⎞⎜⎝⎛++−n n n n n nn,绝对收敛. (21)()()()()()111111111−+−−=−−−−=−+−=n n n n n n u nnnnn n , ()()()0121112112221<−−−=−−−⋅=′⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−x x x x x x xx x () 1>x 由莱布尼兹判别法,()∑∞=−−211n nn n 收敛,而∑∞=−111n n 发散,故原级数发散. (22)当,发散,,绝对收敛,当0≤p 1>p 10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos −⎟⎠⎞⎜⎝⎛+=++++x xn nx x x x ",()π,0∈x ,有界.(23)法一:212sin24sin24cos22πππ====a ,322sin 24cos 1222ππ=⎟⎠⎞⎜⎝⎛−=−=a ,4332sin 22cos 224cos 122222πππ=−=⎟⎠⎞⎜⎝⎛+−=−−=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎟⎠⎞⎜⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ"",收敛.法二:记21=A ,222+=A ,2223++=A ,……则,于是2→n A 121222lim 222lim 222lim lim 22111<=−+−=−+−=−+−=→→−−∞→+∞→x x x x A A a a x x n n n nn n ,收敛.(24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧−++++−12221111111n nn n n " 注意到通项中共有项,其中前项之和和后12+n n 1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<−+++<−+<+=" ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+" 因此()nn n n n 211111112222<−+++++<+" 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当时,则当时收敛,1=p 1>q 1≤q 时发散,此时级数的敛散性等同于无穷积分()∫∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得 ()∫∞+2ln ln ln q x x x dx ()∫+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>−=+∞==−+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当时发散,时收敛,事实上,1<p 1>p 当时,1<p ()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=−(n 充分大) 当时,1>p ()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+−−+<⋅=p q p p q p n n n n n n n n n . (26)由 及发散知级数发散.∑−1n(27)由于{单调有界,}n arctan ∑−nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+−−++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=−122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=−11sin 1(n n n α.(南京理工2004) 提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,n从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当由比式判别法知其收敛; 1>a (6)利用的Taylor 公式讨论. x sin 例4 讨论级数∑∞=11n pn的敛散性.分析:,柯西准则,发散;1=p 1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数收敛,则∑∞=12n n a ∑∞=1n nn a 收敛;(淮北煤师院2004) (2)若,则发散,而∑收敛;(南开大学2001)0lim ≠=a na n n∑∞=1n na∞=12n na(3)若是收敛的正项级数,则当∑∞=1n n a 21>p 时,级数∑∞=1n p n na 收敛(中科院2002). 分析:(1)⎟⎠⎞⎜⎝⎛+≤22121n a n a n n ; (2)01≠→=a na na n n ,发散,而∑收敛; ∑∞=1n n a ∞=12n na (3)同(1).或:由Cauchy 不等式211221111⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设是单调递减数列,试证明: 0>n u (1)若0lim ≠=∞→c u n n ,则∑∞=+−11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+−11)1(n nn u u 发散. 证(1)由单调有界定理知,再由极限的柯西收敛准则知:0>≥c u n 0,0>∃>∀N ε,当,有+∈∀>Z p N n ,εc u u p n n <−+,又单调递减,所以,当时,有n u +∈∀>Z p N n ,ε<−≤−++−+−+−+++++np n n p n p n n n n n u u u u u u u u u )1()1()1(1121",由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121−=−≥−++−+−+++−+++++pn n p n p n n p n p n n n n n u uu u u u u u u u u ",令得上式右端的极限为,由柯西准则知∞→p ∞+∑∞=+−11)1(n nn u u 发散. 例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当为正项级数时,∑na1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知为发散的一般项级数,试证明∑∞=1n n a ∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n n n a a ,由阿贝尔判别法知收敛,矛盾.∑∞=1n na例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数发散.令n n na ∑∞=−1)1(nn a a a u ++⋅+=11111121",.,2,1"=n试问级数∑是否收敛,并说明理由.∞=1n nu证 级数收敛.这是因为:由级数发散和正项数列单调减少知,且由单调有界定理知,于是∑∞=1n nun n na ∑∞=−1)1({}n a 0lim >=∞→a a n n a a n ≥nn n n aa a a a u )11()1(111111121+=+≤++⋅+=", 由比较原则知收敛.∑∞=1n nu例9(北方交通大学1999)已知.,2,1,,01"=≤>+n a a a n n n 讨论级数"""++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→"21lim ,由柯西根式判别法知,当时收敛,当时发散,当1>a 1<a 1=a 时,例10(中国矿大北研部)设,0>n a n n a a a S +++="21,级数.试证:∞=∑∞=1n na(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nnS a 收敛.(东北师大) 证 (1),,于是0>n a ↑n S pn n p n pn n k kpn n k k k S S S a S a ++++=++=−=≥∑∑111. 而,故,从而当充分大时,∞=∑∞=1n n a +∞=++∞→p n p S lim p 21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤−=⎟⎟⎠⎞⎜⎜⎝⎛−+=+≤∑∑∑=−=−=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ",…,试问是否一定收敛?为什么?∑∞=1n n a 解 不一定.如级数∑∞=11n n,有 )(01121110∞→→+<++++++<n n p p n n n "; 但∑∞=11n n 发散.例12(上海交大) 若 1lim 1sin 2=⎟⎟⎠⎞⎜⎜⎝⎛⋅∞→n nn n a n ,则级数是否收敛?试证之.∑∞=1n n a 解 由于11sin2→−nn n na (∞→n ),而()432sin 21sin2110−⋅−−≤=<−−nnn n n nn (n 充分大),由比较判别法知∑∞=−11sin2n nn n收敛,再由比较判别法知收敛.∑∞=1n na例13 设且单减,试证与同时敛散.0>n a ∑∞=1n na∑∞=122n nn a 证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()()""++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a "和∑∞=1n na()()()"""++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a "知两级数具有相同的敛散性.例14 若正项级数收敛,且(∑∞=1n nan n nb a n a e a e++=",2,1=n ).证明 (1)∑收敛;(华东师大)∞=1n nb(2)∑∞=1n nna b 收敛.(北京理工大学2003)证 解出得:n b ()0ln lim >−=∞→n a n n a eb n,而收敛,故当n 充分大时,∑∞=1n n a nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎟⎟⎠⎞⎜⎜⎝⎛−++++=−n nn n n a a a a a a e n"!3!21ln ln 32()n n n a o a a =++"32!3121~, 即 0lim=∞→nn n a b ,由级数收敛得∑∞=1n n a ∑∞=1n nn a b收敛. 例15 研究级数∑∞=121n nx 的敛散性,这里是方程n x x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎟⎠⎞⎜⎝⎛+−+∈ππππn n x n 2,12,()22111−<n x n ,,收敛. 1>n 例16 设,,11=u 22=u 21−−+=n n n u u u ().问收敛吗?3≥n ∑∞=−11n nu解 由于03323233211211111<−=−=−=−+−−+−+++n n n n n n n n n n n u u u u u u u u u u u (); 3>n 所以 321111≤=+−−+n n n n u u u u (由的前若干项预测);由比式判别法知其收敛. n u 例17 设,证明级数 0>n a ()()()∑∞=+++121111n nna a a a " 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211""()()()()()()()"""++++++++−=+++++=321321212121111111111a a a a a a a a a a a a()()()()()()n n a a a a a a a ++++++++−=1111111121321"" ()()()1111121<+++−=n na a a a "即部分和有界,所以收敛.例18(上海师大)证明:级数:"+⎟⎠⎞⎜⎝⎛+++−⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛+−4131211713121151211311是收敛的.解 这是交错级数,且()()⎟⎠⎞⎜⎝⎛++++−+=⎟⎠⎞⎜⎝⎛+++−=n n n n n n a n 12111212121211121""111121112112111221121+=⎟⎠⎞⎜⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛−++=n a n n n n n n "", ()()0ln 1211211121→++−=⎟⎠⎞⎜⎝⎛+++−=n n n c n n n a ε". 由莱布尼兹判别法知收敛.∑∞=1n na例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑; (2)),min(nnb a ∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取,则1−==n b a n n ∑),min(nn b a 发散;若取,,则n n a )1(1−+=1)1(1+−+=n n b 0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为. n n n a b a ≥),max(思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则收敛.∑nw提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212"+==∫+−n dx x x n x n nn n 证明收敛.∑∞=−−11)1(n nn x 提示:12212111−+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设收敛,∑∞=1n na0lim =∞→n n na .证明:.∑∑∞=∞=+=−111)(n n n n na a an 证 记级数的前n 项和为,则∑∞=−−11)(n n na an n S 12113221)()(2)(++−+++=−++−+−=n n n n n na a a a a a n a a a a S "",而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以∑∑∞=∞=+=−111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数收敛于A .证明:级数收敛,并求其和.∑∞=1n na∑∞=+−11)(n n na an 思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数收敛,证明:级数收敛.∑∞=−−11)(n n na an ∑∞=1n na思考题7(安徽大学2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−+1212)(n n n a a证明:收敛.∑∞=1n na思考题8(华东师大2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−−1212)(n n n a a证明:收敛.∑∞=1n na例21(吉林大学)证明级数"+−++−++−+611119141715121311发散到正无穷.证 记.,2,1,141241341"=−−−+−=n n n n a n 则nnna n 1)331(3142−=−>,而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为,故.n n n S S S 31323>>+++∞=∞→n n S lim 注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. }n S 思考题9(武汉大学1999)级数""+−−+++−+−nn 21)12(1514131211222 是否收敛?为什么?提示:考察. n S 2例22 证明:级数收敛的充分必要条件是:对于任意的正整数序列{和正整数数任意子序列{,都有∑∞=1n na}k p }k n .0)(lim 11=++++++∞→k k k k p n n n k a a a "证 必要性.设级数收敛,则由柯西收敛准则得:∑∞=1n na,0,0>∃>∀N ε当时,,都有N n >+∈∀Z p ε<++++++p n n n a a a "21,从而当时,,于是对于任意的正整数序列N k >N n k >{}k p ,有ε<++++++k k k k p n n n a a a "11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a "充分性.反证法.若发散,则,使得∑∞=1n na+∈∃>∃>∀>∃Z p N n N ,,0,00ε021ε≥++++++p n n n a a a ",特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ",{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ",如此下去,得一正整数子序列{和正整数序列}k n {}k p ,恒有011ε≥++++++k k k k p n n n a a a ",这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+−−1111n np n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=−1sin)1(n nnx(内蒙古大学); (3))0()23()1(12>−+−∑∞=x n n n xn(复旦大学1997). 解(1)当时,不趋于0,发散; 0≤p n u 当时,原级数绝对收敛; 1>p 当时,10≤<p ()∑∞=−−1111n p n n收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→−−+−p np n n n(∞→n );故原级数条件收敛.(2)当时绝对收敛,当0=x 0≠x 时,不妨设,则0>x 0>∃N ,当时,有N n >20π<<x ,且nxsin关于单减趋于0,由莱布尼兹判别法知其收敛. n 又因为)(1sin)1(∞→→−n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛.(3)当时,数列0>x ⎭⎬⎫⎩⎨⎧−+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 ,所以222423n n n n <−+<xx n x x nn n n 2221)23()1(41≤−+−<,从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛. 思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛. 思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn .(1)证明:级数绝对收敛;∑∞=+−01)(n n n x x(2)求级数之和.∑∞=+−11)(n n n x x例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在的某邻域内有二阶连续导数,且0=x ()0lim 0=→x x f x .证明:级数∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛.证 由()0lim=→xx f x 得,()00=f ()00=′f ,()x f 在0=x 某邻域内的二阶泰勒展式为()()()()()22212100x x f x x f x f f x f θθ′′=′′+′+=,10<<θ 由连续知,,有()x f ′′0>∃M ()M x f ≤′′,从而有2121nM n f ⋅≤⎟⎠⎞⎜⎝⎛ 故∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛. 思考题12 证明:(1)(华南理工大学2005)设是偶函数,在)(x f 0=x 的某个领域中有连续的二阶导数, 则级数.2)0(,1)0(=′′=f f ∑∞=−1)11((n n f 绝对收敛.(2)(浙江大学2004)设函数在区间)(x f )1,1(−内具有直到三阶的连续导数,且,0)0(=f .0)(lim 0=′→x x f x 则∑∞=2)1(n n nf 绝对收敛.例25 设()单调,且级数0>n a ",2,1=n ∑∞=11n n a 收敛,讨论级数()∑∞=++−111n nn a a n"是条件收敛还是绝对收敛.解 由于且单调,故0>n a 01→na ↑⇒n a ()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅−=<+++⋅−++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n "" 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑收敛,且级数绝对收敛,则级数收敛.∞=1n nb(∑∞=−−11n n na a)∑∞=1n nn ba 证 设n nb b b S +++="21,则1−−=n n n S S b ,于是由收敛知:,∑∞=1n nb0>∃M M S n ≤,.由收敛知:",2,1=n (∑∞=−−11n n n a a )0>∀ε,01>∃N ,1,N m n >∀,有ε<−++−+−−+−111m m n n n n a a a a a a ",又收敛,对上述{}n S 0>ε,,02>∃N 2N n >∀,,有2N m >ε<−m n S S ,取{}1,max 21+=N N N ,于是,当时,N m n >,m m n n n n b a b a b a +++++"11()()()1111−++−−++−+−=m m m n n n n n n S S a S S a S S a "[]()11121−−+++−+−+−++−+−≤n m n n m m m n n n n S S a a a M a a a a a a M "εM 3<.由柯西收敛准则知级数∑收敛.∞=1n nn ba 另证收敛⇒∑∞=1n nb0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<∑++=pn n k kb1.记,,则∑++==in n k ki bS 1p i ,,2,1"=ε<i S ,p i ,,2,1"=.由绝对收敛得其部分和有界,即,有(∑∞=−−11n n na a)0>∃MM a aS mn n nm ≤−=′∑=−11,",2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++−+−++++++=+−++−+−≤∑113222111"p n p a S M ++≤ε又M a a a a a a a p n p n p n +<−++−+=−+++01010",从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数绝对收敛,则级数也绝对收敛.∑∞=1n na∑∞=+++121)(n n na a a a"证 记,则由绝对收敛知收敛,所以{有界,即,有n n a a S ++="1∑∞=1n na∑∞=1n na}n S 0>∃M .,2,1,"=≤n M S n 于是有n n n a M a a a a ≤+++)(21",由绝对收敛知级数∑也绝对收敛.∑∞=1n na∞=+++121)(n n na a a a"思考题14(华中科技2004)设,求级数之和.)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ∑−+)(1n n nx x a提示:1−−=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑都收敛,则级数绝对收敛.∞=1n n nx a∑∞=1n n a 分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{,使得级数发散,于是问题转化为:从}n x ∑n nx a∑+∞=n a 出发,构造出满足条件的数列{.联想例10中(1)的结论立明.}n x证 假设∑∞=1n n a 发散,记其前项和为,则n n S +∞=∞→n n S lim .取210=ε,,,由0>∀N N n >∃+∞=∞→n n S lim 得 210lim<=∞→mn m S S ,从而当充分大()时,有m n m >21<m n S S ,于是0221121ε=>−≥+++++=++m n m m m n n n n S S S S a S a S a ", 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且发散,这与题目的条件矛盾,故命题成立.∑∞=1n n n x a 思考题15(中国人民大学2000)若正项级数发散,则存在收敛于0的正数序列,使得级数发散.∑∞=1n na{}n b ∑∞=1n n n b a 例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为,将其分成两项 n S −++=nn n S S S , 其中分别表示前n 项和中所有正项之和与负项之和.证明:极限−+nnS S ,−+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=−=≥111212cos 21121sin sin n n n n n n n n n n ,右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→−∞→−=−−+=∑=−+−+−n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim −=−=−+=−∞→−−−+∞→−+∞→nnn n n n n n n n n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数,使它满足:∑∞=1n na(1)∑收敛; (2)∞=1n na ⎟⎠⎞⎜⎝⎛≠n o a n 1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下: "+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎟⎠⎞⎜⎝⎛≠n o a n 1,同时 +∞<≤+≤=∑∑∑∑=≤==nk n k nk nk k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数""+−++−+−−n n a a a a a a 2124321 ()0>n a 部分和为,可见只要构造一个级数,使得,同时使和一个收敛,另一个发散即可.为此可构造级数如下:∑∑==−−=n k k nk k n a aS 121122∑∞=1n n a 0→n a ∑∞=−112k k a∑∞=12k ka()""+−−+−+−+−nn 21121514131211222. 例32(南开大学1999)已知级数收敛,问级数和是否必收敛?说明理由.∑∞=1n na∑∞=12n na∑∞=13n na解 未必收敛.如级数∑∞=−1)1(n nn收敛,但发散.令∑∞=12n na"+−−−+−−+−=∑∞=33333331331331331312212212111n n a""+−−−−+项k k k k k k k k k k k11113。
数学分析第四版上册答案第一章环境建立1.1 算术基础在数学分析中,我们需要对数学中的基本运算进行复习和巩固。
这包括四则运算、乘方和开方等。
在本节中,我们将回顾这些基本算术技巧,并解答一些相关问题。
1.1.1 四则运算四则运算是我们进行数学计算的基本方法。
它包括加法、减法、乘法和除法。
在本节中,我们将通过一些例题来练习四则运算,并解答相应的问题。
例题1.1.1计算下列算式的结果:a) 2 + 3 * 4b) (5 - 2) * 7c) 10 / 5 + 3d) 8 - 6 / 2解答:a) 2 + 3 * 4 = 2 + 12 = 14b) (5 - 2) * 7 = 3 * 7 = 21c) 10 / 5 + 3 = 2 + 3 = 5d) 8 - 6 / 2 = 8 - 3 = 5计算下列算式的结果:a) 5 + 6 * 2 - 3b) 8 / 2 * (4 + 3)c) 7 - 4 / 2 + 5 * 3解答:a) 5 + 6 * 2 - 3 = 5 + 12 - 3 = 14 - 3 = 11b) 8 / 2 * (4 + 3) = 4 * 7 = 28c) 7 - 4 / 2 + 5 * 3 = 7 - 2 + 15 = 201.1.2 乘方与开方乘方和开方是我们在数学中经常用到的运算符。
乘方表示多次相乘,开方则相反,表示求一个数的平方根。
在本节中,我们将练习一些乘方和开方的计算,并解答相关问题。
例题1.1.3计算下列算式的结果: a) 2^3b) 4^0.5c) (23)2d) (32)3解答:a) 2^3 = 2 * 2 * 2 = 8 b) 4^0.5 = √4 = 2 c) (23)2 = 8^2 = 64 d) (32)3 = 9^3 = 729计算下列算式的结果:a) √9b) √(4^2)c) √(3^2 + 4^2)d) (√2 + 1)^2解答:a) √9 = 3 b) √(4^2) = √16 = 4 c) √(3^2 + 4^2) = √(9 + 16) = √25 = 5 d) (√2 + 1)^2 = (1.414 + 1)^2 = 2.414^2 = 5.8291.2 方程与不等式在数学分析中,方程和不等式是我们经常遇到和解决的问题。