圆与勾股定理的证明
- 格式:ppt
- 大小:344.50 KB
- 文档页数:5
描述:已知以点O为圆心的圆,过圆心O作一直径AB,圆上一点C,过点C做一AB上的高CD。
D为垂直点。
连接OC。
AO=OB=OC=r,AC=a,BC=b,OD=r2,BD=r3.,CD=d..
讨论勾股定理证明直径所对圆周角为90度是否正确。
由等面积法,得ab=2rd,一。
由勾股定理得a平方+b平方=(2r)平方
2*一+二,得三a+b=2根号下(r平方+rd)
二-2一,得a-b=2根号下(r平方-rd)
a=根号下(r平方+rd)+根号下(r平方-rd)式七
b=根号下(r平方+rd)-根号下(r平方-rd)式八
又,由已知条件,
得r平方=r2平方+d平方,式十一
b平方=d平方+r3平方,式十二
r=r2+r3,式十三。
r3=r-r2.
代入式十二,得式十四
b平方=d平方+(r-r2)平方
式十一-式十四,得r方-b方=r2方-(r-r2)方
r2方=r方-d方,r2=根号(r方-d方)
所以r方-b方=r方-d方-(r-根号下(r方-d方))方,式十五。
由式七,式八
b方=r方+rd+r方-rd-2根号((r方+rd)(r方-rd))
故2r方+2r根号下(r方-d方)=2r方-2根号((r方+rd)(r方-rd))
所以根号下(r方-d方)=-根号下(r四次方-r方d方)显然错误。
故运用勾股定理,。
证得直径所对圆周角90度错误。
勾股定理用圆证明方法嘿,咱今儿来聊聊勾股定理用圆证明的法子哟!你说这勾股定理啊,那可真是数学里的大宝贝呀!好多人都知道它,可不见得都晓得怎么用圆来证明它呢。
咱先画个直角三角形,就把它的三条边分别叫做 a、b、c 吧,其中c 就是斜边哟。
然后呢,咱以这个直角三角形的三条边为直径分别画三个半圆。
你看看,这三个半圆多有意思呀!就好像三个小伙伴,各自有着自己的地盘。
这时候,咱就得好好观察观察啦。
你瞧,以斜边 c 为直径的那个半圆的面积,是不是等于以另外两条边 a 和 b 为直径的两个半圆面积之和呀?哎呀呀,这可不是随便说说的哟!咱可以算一算呀,半圆的面积不就是圆面积的一半嘛。
那以 a 为直径的半圆面积就是π(a/2)²÷2,同理,以 b 为直径的半圆面积就是π(b/2)²÷2。
而以 c 为直径的半圆面积就是π(c/2)²÷2。
经过一番计算,你就会发现,哇塞,真的就是π(a/2)²÷2 + π(b/2)²÷2 = π(c/2)²÷2 呀!这不就证明了勾股定理嘛!你说神奇不神奇?这就好像是在玩一个拼图游戏,把这些半圆拼拼凑凑,就得出了这么重要的结论。
其实数学里好多东西都这样,乍一看好像挺难的,但是只要咱静下心来,好好琢磨琢磨,就会发现其中的奥秘呀。
就像这个用圆证明勾股定理,不就是一个很好的例子嘛。
咱在生活中不也经常会遇到一些看似很难的事情嘛,但是只要咱有耐心,有方法,去一点点研究,去尝试,总能找到解决的办法呀。
你想想看,要是没有这种探索精神,那咱能发现这么多有趣的知识和规律吗?那得多无聊呀!所以说呀,遇到难题别害怕,就像对待这个勾股定理一样,勇敢地去挑战它,说不定就能有意外的收获呢!这就是勾股定理用圆证明的方法啦,是不是很有趣呀?希望大家都能喜欢数学,在数学的海洋里尽情遨游哟!。
利用与圆有关的几何知识证明勾股定理作者:侯美琦来源:《中学生数理化·学研版》2014年第05期摘要:勾股定理是世界上最伟大的定理之一,千百年来,人们对它的证明趋之若鹜,才使它反复被人论证,本文利用与圆有关的几何知识证明勾股定理。
关键词:勾股定理证明方法一、勾股定理概述《周髀算经》卷上之一记载:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度。
夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。
故折矩,以为句广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所生也。
”意思是说,直角三角形的直角边为3和4时,斜边必为5. 书中还记载了陈子关于勾股定理的一般叙述:测日高,“若求邪至日,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”,这说明了这时中国已掌握了一般性的勾股定理。
古今中外,证明勾股定理的方法非常多,一位叫卢米斯(E.S.Loomis)的数学家搜集各种证明方法,于 1940 年出版《毕达哥拉斯命题》(The Pythagorean Proposition)一书,收集了367 种证法。
1978 年一位叫刘毓璋的先生在台湾出版名为《易经之数理思想》的著作,在第一章“商高定理”中给出他“搜集及自己创造发明”的证明方法 85 种。
我国古代陈子的解释给出了勾股定理的算法化证明,数学家赵爽第一个用代数方法,根据面积相等,通过计算证得定理;西方数学家以毕达哥拉斯、欧几里得为代表的一批数学家从公理本身出发,借助演绎推理创立了第一流的数学。
二、用与圆有关的几何知识证明定理方法一:利用切割线定理证明.分析:在RtΔABC中,以B为圆心, CB为半径作圆交AB于D,交BE的延长线于E,如图1。
由切割线定理,得方法二:利用三角形的外接圆证明.分析:圆中的托勒密定理是指圆内接四边形两条对角线的乘积等于对边乘积之和.如图2,连接易知四边形为矩形,由托勒密定理,得所以:方法三:利用三角形内切圆证明.分析:如图3,作设圆的半径为r,连接利用面积相等有,方法四:利用三角形的旁切圆证明.分析:以根据面积相等有,以上证明只是众多方法中的冰山一角,笔者会继续研习新的证明方法。
勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状.∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH 是一个边长为b―a 的正方形,它的面积等于. ∴ ∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC =180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P.∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90º,QP∥BC,∴∠MPC = 90º,∵ BM⊥PQ,∴∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º.∵∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴∠QBM = ∠ABC,又∵∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法4】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,Array交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ΔFAB ≌ΔGAD,∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积∴ 222b a c += ,即 222c b a =+.【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA. ∴ DH = BC = a ,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE. ∴ HT = AE = a. ∴ GH = GT ―HT = b ―a. 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC. ∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC. 即 27S S =.过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC. 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++ =2c ,即 222c b a =+.【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB.在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法9】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++, ∴ 222c b a =+.。
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF 。
∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º。
∴ ∠HEF = 180º―90º= 90º。
∴ 四边形EFGH 是一个边长为c 的 正方形。
它的面积等于c 2。
∵ Rt ΔGDH ≌ Rt ΔHAE ,∴ ∠HGD = ∠EHA 。
∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º。
又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º。
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +。
∴()22214c ab b a +⨯=+. ∴ 222c b a =+。
【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上。
过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a. ∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b(b 〉a) ,斜边长为c 。
【勾股定理证明】勾股定理的16种证明方法勾股定理的证明是论证数学的发端,它是历史上第一个把形与数联系起来的定理,即第一个把几何与代数联系起来的定理,也是数学家认为探索外星文明与外星人沟通的最好“语言”。
勾股定理导致希伯索斯无理数的发现,引发了第一次数学危机,加深了人们对数的理解,促进了数学的进步发展。
勾股定理是历史上第一个给出不定方程的解答,从而促使费尔玛大定理的提出,这是一只下金蛋的鹅,数学家们经过350年的历程才获得解决,这期间给整个数学界带来了巨大的财富。
我国古代数学家对勾股定理的证明,极富创意,即使在理论方面也占一席之地。
以赵爽的“弦图”作为2002年在中国召开世界数学家大会的会徽,可知“弦图”已作为了我国古代数学成就的代表。
而在西方,欧几里得在证明勾股定理的同时结合图形分析,以演绎推理的方法获得了一系列的定理和推论,为几何公理体系的完善和发展写下了新的篇章。
中国的数学文化传统体现了重视应用、数形结合、以计算为主的务实精神。
因为毕达哥拉斯定理是在没有研究的情况下描述的,所以在中国古代从未超越直观经验和具体操作,发展成为一个完整的演绎体系。
而是作为一种技能传播应用,只走了一条解决实际问题的模式化道路。
证明勾股定理的方法有上百种。
下面是16种证明勾股定理的基本方法,有兴趣的同学可以研究一下。
勾股定理,又称毕氏定理,是三角形中最基本的定理之一,它描述了直角三角形斜边与两条直角边的关系。
其表述为:直角三角形斜边的平方等于两直角边平方和,即$a^2+b^2=c^2$,其中$c$为斜边,$a$和$b$为直角边。
勾股定理的证明方法有很多种,下面介绍16种。
1. 几何证明法:欧几里得证明法欧几里得是古希腊的数学家,他在《几何原本》中提出了勾股定理的证明方法。
他的证明方法基于相似三角形和三角形面积的计算公式。
首先,画出一个直角三角形,将它的直角边分别称为$a$和$b$,斜边称为$c$。
然后,以$c$为直径画一个圆,将圆心记为$o$,圆上任意一点记为$d$。
勾股定理的物理证明方法1. 航空物理证明:勾股定理可以用来解释飞机在空中的轨迹。
根据勾股定理,飞机的斜向上移动可以分解为水平移动和垂直移动两个分量。
这样,我们可以利用勾股定理来计算飞机的飞行距离和高度。
2. 动力学证明:在物体受到斜向上投射的情况下,可以利用勾股定理来计算物体的位移、速度和加速度。
物体的水平位移和垂直位移分别对应于勾股定理中的两条直角边。
3. 火箭轨迹证明:当火箭斜向上发射时,可以通过勾股定理来计算火箭的飞行距离和高度。
勾股定理可以解释火箭的水平位移和垂直位移。
4. 坡道运动证明:当物体在斜坡上滑动时,可以利用勾股定理来计算物体的位移和速度。
物体的水平位移和垂直位移分别对应于勾股定理中的两条直角边。
5. 均匀圆周运动证明:在圆周运动中,可以利用勾股定理来计算物体的位移和速度。
物体的水平位移和垂直位移分别对应于勾股定理中的两条直角边。
6. 摆锤运动证明:在摆锤运动中,可以利用勾股定理来计算摆锤的位移和速度。
摆锤的水平位移和垂直位移分别对应于勾股定理中的两条直角边。
7. 斜坡下落证明:当物体从斜坡上滚落时,可以利用勾股定理来计算物体的下落距离和水平位移。
物体的下落距离和水平位移分别对应于勾股定理中的两条直角边。
8. 碰撞问题证明:在碰撞问题中,可以利用勾股定理来计算物体的速度和动量。
物体的水平速度和垂直速度分别对应于勾股定理中的两条直角边。
9. 丢水球问题证明:当抛掷一个水球时,在水球上方的水平位移和垂直位移可以通过勾股定理进行计算。
10. 滑翔运动证明:在滑翔运动中,可以利用勾股定理来计算物体的水平距离和垂直距离。
物体的水平距离和垂直距离分别对应于勾股定理中的两条直角边。
11. 弹道问题证明:在弹道问题中,可以通过勾股定理来计算弹道的弧度和水平位移。
弹道的弧度和水平位移分别对应于勾股定理中的两条直角边。
12. 水平抛体问题证明:在水平抛体问题中,可以利用勾股定理来计算物体的水平位移和垂直位移。
欢迎阅读勾股定理的9种证明(有图)【证法1】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵Rt ∵∠∴∠∴∠∵Rt ∴∠∵∠∴∠又∵∠∴∠∴∴(a P. ∵D ∴∠∴∠∴∠又∵∴∴∠∵Rt ∴∠∴∠即∠又∵∠BDE=90o ,∠BCP=90o ,BC=BD=a.∴BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴222c b a =+.【证法3】(项明达证明)c.线上. 过点过点B 作F 作FN ∵∠∴∠∵∴∠∴∵∠∴∠又∵∠∴Rt B 三点BF 、CD.交AB 于点M ,交DE 于点L.∵AF=AC ,AB=AD , ∠FAB=∠GAD ,∴ΔFAB ≌ΔGAD , ∵ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴矩形ADLM 的面积=2a.同理可证,矩形MLEB 的面积=2b .∵正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB 的面积 ∴222b a c +=,即222c b a =+. 【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c.再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R.过B 作BP ⊥AF ,垂足为P.过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵∠∴∠又∵∠∴Rt ∴所以Rt ΔCA=b ,∵Rt ∴Rt ∴又∵∠∠∴∴∴. 2c =∵S 2438=2, 985S S S +=,∴824321S ab b S S --=+=812SS b --.② 把②代入①,得=922S S b ++=22a b +.∴222c b a =+.【证法6】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c.做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上.用数字表示面积的编号(如图).∵∠∴∠又∵∠∴Rt ∴∴又∵∠∴∠∵∴Rt 过Q =∠QAM Rt Δ由∵∠∴∠又∵∠∴Rt ∵2c 又∵7S ∴2a 即222c b a =+.【证法7】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC=a ,AC=b ,斜边AB=c (如图).过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙, ∵AB=DC=c ,AD=BC=a , AC=BD=b ,∴222AC BC AB +=,即222b a c +=,∴222c b a =+.【证法8】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知AD AB AC ∙≠2,或者BD AB BC ∙≠2.即AD :AC ≠AC :AB ,或者BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∴若∠在Δ∵∠∴若∠又∵∠∴∠∴2a ABCD.把正方形()a b a 2=+ABCD的面积为∴2a ∴2a。
勾股定理的9 种证明(有图)【证法1】(邹元治证明)以a、b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A E、B三点在一条直线上,B、F、C 三点在一条直线上,C G D三点在一条直线上.v Rt △HAE 坐Rt △EBF,• / AHE =/ BEF./ AEH + / AHE = 90o, /AEH + / BEF = 90o.• / HEF = 180o—90o= 90o.二四边形EFGH是一个边长为c的正方形. 它的面积等于c2.v Rt △GDH坐Rt △HAE,••• / HGD = / EHA.v / HGD + / GHD = 90o,•/ EHA + / GHD = 90o.又v / GHE = 90o,•/ DHA = 90o+ 90o= 180 o.•ABCD是一个边长为a + b的正方形,它的面积等于【证法2】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为 c. 把它们拼成如图那样的一个多边形,使 D E、F在一条直线上.过C作AC的延长线交DF于点P.v D、E、F在一条直线上,且Rt △ GEF坐Rt △ EBD,•/ EGF = / BEDv / EGF + / GEF = 90°,•/ BED + / GEF = 90 ° ,•/ BEG =18(b—90o= 90 o.又v AB = BE = EG = GA = c ,•ABEG是一个边长为c的正方形.•/ ABC + / CBE = 90o.v Rt △ABC 幻Rt △EBD,•/ ABC = / EBD.•/ EBD + / CBE = 90o.即/ CBD= 9Gb.又v / BDE = 90o,Z BCP = 90o,BC = BD = a.• BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCB的面积为S,则【证法3】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上.过点Q作QP// BC交AC于点P. 过点B作BMiL PQ垂足为M;再过点F作FNL PQ垂足为N.v / BCA = 90o , QP// BC••• / MPC = 90o,v BM 丄PQ•/ BMP = 90o,•BCPM是一个矩形,即/ MBC = 90o.v / QBM + / MBA = / QBA = 90o,/ ABC + / MBA = / MBC = 90o,•/ QBM = / ABC又v / BMP = 90o,Z BCA = 90o, BQ = BA = c ,•Rt △ BMQ坐Rt △ BCA.同理可证Rt △ QNF幻Rt △ AEF.从而将问题转化为【证法4】(梅文鼎证明).【证法4】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C B三点在一条直线上,连结BF CD.过C作CL± DE交AB于点M交DE于点L.v AF = AC ,AB = AD,/ FAB = / GAD•△ FAB 坐△ GADv △ FAB的面积等于,△ GAD的面积等于矩形ADLM 的面积的一半,•矩形ADLM的面积=. 同理可证,矩形MLEE的面积二.v正方形ADEB勺面积=矩形ADLM勺面积+矩形MLEB勺面积•,即.【证法5】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b (b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF丄AC AF交GT 于F, AF 交DT于R.过B作BP丄AF,垂足为P.过D作DE与CB的延长线垂直,垂足为E, DE交AF 于H.v / BAD = 90o,Z PAC = 90o,••• / DAH = / BAC.又v / DHA = 90o,Z BCA = 90o,AD = AB = c ,• Rt △ DHA坐Rt △ BCA.• DH = BC = a , AH = AC = b.由作法可知, PBCA 是一个矩形, 所以Rt △ APB 坐Rt △ BCA.即PB = CA = b , AP= a,从而PH = b —a.v Rt △DGT 坐Rt △BCA ,Rt △ DHA坐Rt △ BCA.• Rt △ DGT坐Rt △ DHA .•DH = DG = a,/ GDT = / HDA . 又v / DGT = 90o,Z DHF = 90o,/ GDH = / GDT + / TDH = / HDA+Z TDH = 90o,• DGFH是一个边长为a的正方形.• GF = FH = a . TF 丄AF, TF = GT—GF = b — a .• TFPB是一个直角梯形,上底TF=b-a,下底BP= b,高FP=a + (b—a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为①v = ,• = . ②把②代入①,得【证法6】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).v / TBE = / ABH = 90o,•/ TBH = / ABE.又v / BTH = / BEA = 90o,BT = BE = b ,• Rt △ HBT 坐Rt △ ABE.••• HT = AE = a.••• GH = GT—HT = b —a.又T / GHF + / BHT = 90o,/ DBC + / BHT = / TBH + / BHT = 90o,•/ GHF = / DBC.T DB = EB—ED = b—a,/ HGF = / BDC = 90o,• Rt △ HGF坐Rt △ BDC.即.过Q作QM L AG 垂足是M.由/ BAQ = / BEA = 90o,可知 / ABE =/ QAM 而AB = AQ = c,所以Rt △ ABE 幻Rt △ QAM .又Rt △ HBT 幻Rt △ ABE.所以Rt △ HBT 幻Rt △ QAM .即.由Rt △ ABE 坐Rt △ QAM 又得QM = AE = a,/ AQM = / BAE.T / AQM + / FQM = 90o,Z BAE + / CAR = 90o,Z AQM = / BAE•/ FQM = / CAR.又T / QMF = / ARC = 90o, QM = AR = a ,• Rt △ QMF坐Rt △ ARC.即.T ,,,【证法7】(利用多列米定理证明)在Rt△ ABC中,设直角边BC= a, AC= b,斜边AB = c (如图).过点A作AD// CB, 过点B作BD//CA则ACBD为矩形,矩形ACBD^接于一个圆.根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有T AB = DC = c , AD = BC = a , AC = BD = b ,•,即,【证法8】(利用反证法证明)如图,在Rt△ ABC中,设直角边AC BC的长度分别为a、b,斜边AB的长为c,过点C 作CDL AB垂足是D.假设,即假设,则由可知,或者.即AD: AO AC AB或者BD: BO BC AB.在厶ADCF" ACB中,v / A = / A,•••若AD: AO AC AB」/ AD字/ ACB.在厶CDB^H A ACB中,v / B = / B,•若BD BO BC AB,贝S/ CDB^Z ACB.又v / ACB = 90o,• / AD& 90o,Z CD字90o.这与作法CD!AB矛盾.所以,的假设不能成立证法9】(辛卜松证明)设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD. 把正方形ABC划分成上方左图所示的几个部分,则正方形ABC啲面积为;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD勺面积为=.。
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的9种证明〔有图〕【证法1】〔邹元治证明〕以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,那么每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如下图形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法2】〔梅文鼎证明〕做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P. ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a. ∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,那么,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法3】〔项明达证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕 ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如下图的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P.过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,∴ ∠MPC = 90º,∵ BM ⊥PQ , ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF. 从而将问题转化为【证法4】〔梅文鼎证明〕. 【证法4】〔欧几里得证明〕做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD , ∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a ,ΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a.同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法5】〔杨作玫证明〕做两个全等的直角三角形,设它们的两条直角边长分别为a 、b 〔b>a 〕,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如下图的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +〔b ―a 〕. 用数字表示面积的编号〔如图〕,那么以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法6】〔李锐证明〕设直角三角形两直角边的长分别为a 、b 〔b>a 〕,斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如下图形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号〔如图〕.∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE. ∴ HT = AE = a. ∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC. 即 27S S =.过Q 作QM ⊥AG ,垂足是M. 由∠BAQ =∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法7】〔利用多列米定理证明〕在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c 〔如图〕. 过点A 作AD ∥CB ,过点B 作BD ∥CA ,那么ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法8】〔利用反证法证明〕如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设222c b a ≠+,即假设 222AB BC AC ≠+,那么由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 假设 AD :AC ≠AC :AB ,那么∠ADC ≠∠ACB. 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 假设BD :BC ≠BC :AB ,那么 ∠CDB ≠∠ACB. 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+. 【证法9】〔辛卜松证明〕设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个局部,那么正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个局部,那么正方形ABCD的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.。
勾股定理两种主要证明方法勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。
“勾三,股四,弦五”是勾股定理的一个最著名的例子。
当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。
在中国数学史中同样源远流长,是中算的重中之重。
《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。
开方除之,即弦。
”勾股定理现辨认出约有种证明方法,就是数学定理中证明方法最少的定理之一。
下面我们一起来观赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算是经》并作注释时,编定了一幅“勾股圆方图”,也称作“弦图”,这就是我国对勾股定理最早的证明。
年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。
方法二:刘徽“青朱进出图”约公元年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。
方法三:欧几里得“公理化证明”希腊数学家欧几里得(euclid,公元前~公元前)在巨著《几何原本》给出一个公理化的证明。
年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发售了一张邮票,图案就是由三个棋盘排序而变成。
方法四:毕达哥拉斯“拼图”毕达哥拉斯(公元前—前年),古希腊知名的哲学家、数学家、天文学家.将4个全等的直角三角形拼成边长为(a+b)的正方形abcd,使中间留下边长c的一个正方形洞.画出正方形abcd.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的`两个正方形洞。
勾股定理的十六种证明方法
勾股定理是数学中的重要定理之一,通常被描述为直角三角形的斜边平方等于两直角边平方之和。
这个定理的证明方法有很多种,以下是其中的十六种证明方法:
1. 几何证明法
2. 代数证明法
3. 三角函数证明法
4. 相似三角形证明法
5. 欧几里得算法证明法
6. 向量证明法
7. 反证法
8. 非欧几里得几何证明法
9. 外接圆证明法
10. 内切圆证明法
11. 黄桃算法证明法
12. 割圆法证明法
13. 梅涅劳斯定理证明法
14. 射影几何证明法
15. 连锁反应证明法
16. 矩阵证明法
每一种证明方法都有其独特的思路和技巧,可以通过对比和学习不同证明方法来更好地理解和掌握勾股定理。