1.6一元一次不等式组2导学案
- 格式:doc
- 大小:93.00 KB
- 文档页数:2
家长(签名): 组长(签名): 教师评价: 第 1 页第5课时《一元一次不等式的解法及应用题》导学案 知识目标:1、熟练掌握不等式的解法 2、会列不等式解应用题能力目标:1、对比的学习方法;2、会找相等关系或不等关系。
解下列不等式,并把解集在数轴上表示出来:8223-<+x x x x 4923+≥- 0)7(319≤+-x )1(5)32(2+<+x x31222+≥+x x1213<--m m列方程解应用题(部分与整体问题)1 .一个工程队规定要在6天内完成300方土的工程,第一天完成了60方土,现在要比原计划提前两天完成,则以后平均每天比原计划多完成多少方土?分析:相等关系是:解:设以后平均每天比原计划多完成x方土,依题意得:答:2、考试共有25道选择题,做对一题得4分,不做或做错一题减2分,小明的成绩为60分,那么他做对了几题?分析:相等关系:解:设小明做对了x题,依题意得:答:通过对比,熟悉找相等关系或不等关系。
列不等式解应用题(部分与整体问题)1 .一个工程队规定要在6天内完成300方土的工程,第一天完成了60方土,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?分析:不等关系是:解:设以后平均每天比原计划多完成x方土,依题意得:答:2、考试共有25道选择题,做对一题得4分,做错一题减2分,若小明想确保考试成绩在60分以上,那么,他至少做对几题?分析:不等关系:解:设小明至少做对了x题,依题意得:答:分析:“整体”指的是工程中的方士,部分指的是“第一天完成的”与“其余天完成的”。
分析:“整体”指的是小明的成绩分,部分指的是“做对的得分”与“做错的得分”。
家长(签名):组长(签名):教师评价:第 2 页3、一部电梯最大负荷为1000公斤,电梯内已装有货物800公斤,问电梯还可以装多少公斤?分析:相等关系:4、已知每支笔3元,每个笔记本2元。
一次函数、一元一次方程和一元一次不等式一、学习目标1、经历实际问题中数量关系的分析、抽象,得出一元一次不等式与一元一次方程、一次函数的内在联系2、会利用不等式、方程、函数的内在联系解决问题3.根据具体的问题情景,选用合适的工具进行解决问题;4、通过解决实际问题,知道数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学习数学的信心和兴趣.二、学习重点:一元一次不等式与一元一次方程、一次函数的内在联系三、学习难点:根据情景中所表达的关系,选用合适的工具解决问题四、学习过程一、情境引入:一根长20cm的弹簧,一端固定,另一端挂物体。
在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.如果所挂物体的质量为x㎏,弹簧的长度是y cm。
(1)求y与x之间的函数关系式,并画出函数的图象。
(2)求弹簧所挂物体的最大质量是多少?二、概括总结:三、例1 :某人点燃一根长25cm的蜡烛,已知蜡烛每小时缩短5cm,设x h后蜡烛剩下的长度为y cm.(1)求y与x之间的函数关系式.(2)几小时后,蜡烛的长度不足10cm?四、练习一:取什么值时,函数y=-2(x+1)+4的值是正数?负数?非负数?大于6?2. 声音在空气中的传播速度y (m/s)(简称音速)与气温x(℃)满足。
求(1时的气温(2)音速超过340m/s时的气温范围五.例2 :兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20 m?谁先跑过100 m?六.练习二作出函数y1=2x-4与y2=-2x+8的图象,并观察图象回答下列问题:(1)x取何值时,y1>0?(2)x取何值时,y2>0?(3)x取何值时,y1>0与y2>0同时成立?(4)x取何值时, y1>y2?(5)你能求出函数y1=2x-4,y2=-2x+8的图象与x轴所围成的三角形的面积吗?写出过程.随堂演练1、在一次函数y=2x-3中,该函数与y 轴的交点是________;若点P 到x 轴距离为 2,则点P 的坐标是_______________2、当自变量x 时,函数y=3x+2的值大于0;当x 时,函数y=3x+2的值y>0 ?y ≤-2?3、如图,直线 经过点 和点,直线过点A ,则不等式 的解集为_________y kx b =+(12)A --,(20)B -,2y x =20x kx b <+<y一次函数、一元一次方程和一元一次不等式作业1、如图,直线是一次函数b kx y +=的图象,观察图象,可知:(1) ; ,函数y= (2)当 时,y>0; 当 时,y<0,当 时,y=0;(3)当4->y 时, ;当y<-4时,2、在一次函数23y x =-中,已知则 ;若已知2=y 则 ;3、当自变量 时,函数32y x =+的值大于0;当 时,函数32y x =+的值小于0。
姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。
2.总结解一元一次不等式组的步骤及情形。
3.理解与掌握一元一次不等式组的解集及其应用。
一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。
五、牛刀小试内容见PPT 。
六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。
课题:9.3一元一次不等式组(1)主备人:谭宪宗 2014级 班 组学习目标:1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
学习重点:一元一次不等式组解集的理解 学习难点:一元一次不等式组的解集和解法。
探究案探究一:不等式组的有关概念现有两根木条a 和b ,a 长10 cm ,b 长3 cm.如果再找一根木条。
,用这三根木条钉成一个三角形木框,如果设木条长x cm ,那么对木条的长度有什么要求?类似于方程组 叫做一元一次不等式组。
判别下列不等式组中哪些是一元一次不等式组,并说明为什么?(1)⎩⎨⎧>-<03x 0x (2)⎩⎨⎧<->3y 3x (3)⎩⎨⎧<>4x 2x(4)⎩⎨⎧>-<-1y x 413x (5)⎪⎩⎪⎨⎧<->-09014x 2x (6) ⎪⎩⎪⎨⎧<->-<+03x 123x 532x 问题:怎样确定不等式组的解集呢?不等式组中所有不等式的解集的_____,叫做这个不等式组的解集。
求不等式组的_____的过程,叫做解不等式组。
例:利用数轴来确定不等式组的解集(1)⎩⎨⎧->>13x x (2)⎩⎨⎧-<<1x 3x (3)⎩⎨⎧><-1x 3x (4)⎩⎨⎧-<>1x 3x归纳:求两个一元一次不等式组的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两个不等式的解集的区域都覆盖的部分.归纳小结:一元一次不等式组解集四种类型如下表:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.探究二:解一元一次不等式组 例 :解下列不等式组:①22841x x x x >+⎧⎨+>-⎩ 解: 解不等式①,得 .解不等式②, 得 . 把不等式○1和○2的解集在数轴上表示出来:所以这个不等式组的解集为:2x+3≥x+11 ② x x -<-+21352解:①① ②解一元一次不等式组的两个步骤:(1)求出这个不等式组中各个 ; (2)利用 求出这些不等式的解集的公共部分。
1.4 一元一次不等式导学案(二) 主备人:王军 审核人: 姓名 班级学习目标:1、会用一元一次不等式解决简单的实际问题。
2、进一步熟练解一元一次不等式,体会实际问题对解集的影响。
学习重点:一元一次不等式的解法;解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向学习难点:进一步熟练解一元一次不等式,体会实际问题对解集的影响预习导学:1、什么是一元一次不等式?2、列一元一次方程解应用题的步骤是怎样的?3、解下列不等式,并把解集分别表示在数轴上。
123x x -< 2322x x -<+合作探求:1、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错了或不答一道题扣1分.在这次竞赛中小明被评为优秀(85分或85分以上),小明至少答对了几道题?思考:用一元一次不等式解决实际问题的一般步骤是什么?2、小颖准备用21元钱去买笔和笔记本。
已知每支笔3元,每个笔记本2.2元。
现在她已经买了2个笔记本,剩下的钱用来买笔,她还可以买几只笔?归纳总结利用不等式解应用题时,出现较多的是至少(≥),至多(≤),不足(<),超过(>)等关键词。
要善于抓住这些表示不等关系的词语,列出不等式。
列一元一次不等式解应用题的步骤和列一元一次不方程解应用题的步骤是一样的。
另外还要考虑是否符合实际问题。
当堂检测:(必做题)1、用不等式表示下列各题:(1)x 的2倍与它的一半的差是非负数 ; (2)x 与3差的平方不足9;(3)x 的31与5的差介于3和8之间 ; (4)x 的3倍不超过y 的212、某次数学知识竞赛中,共有16道问答题,评分标准是:答对一道题得6分,答错一道题倒扣2分,不答不扣分.小明同学有一道题未答,那么他至少答对多少道题,才能得到60分以上的成绩?选做题:3、小明骑自行车去姥姥家,每小时走12千米。
一小时后,小明的爸爸发现小明忘记带钥匙了,立即骑摩托车去送,问要在20分钟内追上,爸爸至少以多少的速度追赶?课后作业:1、某容器装了一些水,先用去了4升,然后又用了剩下的一半。
1.6一元一次不等式组第2节一、教案背景1、面向学生:八年级学生学科:数学2、课时:13、教学准备:几何画板课件。
4、学生课前准备:(1)预习一元一次不等式组(2)内容。
(2)在白纸上画若干条数轴。
二、教学课题《一元一次不等式组(2)》1.进一步理解一元一次不等式组及其解的意义,感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。
2.利用数轴探究不等式组解集的公共部分出现的所有情形,并且能将不等式组的解集提升为口诀。
【学习重点】:巩固一元一次不等式组的解法。
【学习难点】:利用数轴探究不等式组解集的出现各种情形,经过理解并归纳为口诀。
三、教材分析《一元一次不等式组》是北师大版义务教育课程标准实验教科书数学信年级下册第一章第6节,我把本节内容分为3个课时,第一课时是一元一次不等式组的概念及解法,第二课时是巩固一元一次不等式组的解法,探究一元一次不等式组解的所有情形。
第三课时是一元一次不等式组的应用。
本课为一元一次不等式组第2课时,通过教材“做一做”、例2、例3的教学,让学生进一步巩固一元一次不等式组的解法,同时利用数轴数形结合探究不等式组解集的四种情形,从而达到真正理解不等式组解集的含义的目的。
四、教学方法。
本课我采用有效教学法和目标教学法,将传统教学与现代信息技术相结合,充分利用黑板,电子白板,电子展台,几何画板展示学生利用数轴求不等式组解集过程,同时发展学生化归能力,总结不等式组解集的四种情形。
所谓目标教学法,是本课开课时,我出示学习目标,让学生知道,本节课要学什么?所谓有效教学法,是本课我充分利用几何画板,电子展台来吸引学生的注意力,从而让学生学会如何利用数轴确定不等式组的解集(解),达有效教学的目的。
五、教学过程(一)、复习回顾。
1.什么是一元一次不等式组的解集?怎样求一元一次不等式组的解集?2.解一元一次不等组的步骤有哪些?(1).分别求出两个一元一次不等式的解集.(2).在同一条数轴上确定它们的公共部分。
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x C. 方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x ,所以-a ≥1,解得a ≤D. 方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证第2课时 余弦和正切【知识与技能】1.理解余弦、正切的概念,了解锐角三角函数的定义;2.能运用余弦、正切的定义解决问题. 【过程与方法】逐步培养学生观察、分析、类比、概括的思维能力. 【情感态度】在探索结论的过程中,体验探索的乐趣,增强数学学习的信心,感受成功的快乐.【教学重点】掌握余弦、正切的概念,并能运用它们解决具体问题.【教学难点】灵活运用三角函数的有关定义进行计算.一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A的对边与邻边的比是否分别也是一个固定值呢?为什么?【教学说明】这种设置问题的方式既是对上节课重要知识的回忆,又为引入本节知识做好铺垫,同时也暗示着解决问题的方法与上节课利用相似获得结论的方法完全类似,让学生有法可依.学生可相互交流,教师巡视,听取学生的看法、见解,随时参与讨论,帮助学生获取正确认知.二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:〔1〕ACAB=A CA B'''';〔2〕BCAC=B CA C''''【教学说明】这个问题可由学生自主探究,得出结论.教师在学生探讨过程中,提出问题∠A确定后,∠A的邻边与斜边的比也确定吗?它的对边与邻边的比呢?在学生得出结论后,应与学生一道进行总结归纳.余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求 cosA,tanB的值.分析与解由正弦函数定义及sinA = 35知,sinA =BCAB=35,又BC = 6,故AB = 10,所以AC = 22AB BC- = 8,从而 cosA = ACAB=810=4 5,tanB =8463ACBC==.【教学说明】此题可先让学生独立完成,教师巡视指导,时时关注学生解题时是否能紧扣定义,即sinA = BCAB,cosA =ACAB,tanB= ACBC的运用是否得当,有没有出现混淆情形.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.【分析】由于∠B和∠C都不是直角三角形中的锐角,而题意却要求出tanB,sinC的值,这样迫使我们要将∠B,∠C放到直角三角形中去,这时,过A作AD丄BC于D可到达这一目的,问题可逐步解决.解过A作AD丄BC于D. AB = AC,∴BD = CD = 12BC=12⨯30 = 15.又 AB = AC = 20,∴AD = 57,因此tanB = BCAC= 577153=,sinC =AD577AC204==.四、运用新知,深化理解1.分别求出以下直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.△ABC中,∠C=90°,cosB=〔1〕求cosA和tanA的值;〔2〕假设AB=5,求BC和AC的长.△ABC中,∠C=90°,AC=b,BC=a,AB=c.〔1〕sinA与cosB的关系如何?为什么?〔2〕sin2A与cos2A的关系如何?说说你的理由〔sin2A=(sinA)2).〔3〕找出tanA与tanB的关系;〔4〕由〔1〕,〔2〕,〔3〕,你能发现什么有趣的结论?【教学说明】让学生通过对上述问题的思考,稳固所学知识,增强运用解决问题的能力.其中第2题在学生探究交流后,教师应予以评讲,让学生的分析能力和解决问题能力得到进一步开展.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.〔1〕sinA =513,sinB =1213,cosA =1213,cosB =513,tanA=5 12tanB = 125.31313=21313=21313=, cosB =313 13=,tanA = 32,tanB = 23.2.解:tanA =BCAC = 34,AC = 8. ∴BC = 6,在△ABC 中,AB = 22AC BC += 10. ∴ cosB =63105=,tanB = 8463=. 3.解:〔1〕由于cosB = BC 1AB 3=,设BC = x,那么AB = 3x.∴AC =22AB BC - = 22(3x)2x x -=2.∴cosA = AC AB= 223,tanA =BC AC= 24.(2) 假设AB = 5,即3x = 5, ∴x = 53,∴BC = 53,AC = 1023.4.解:〔1〕sinA = cosB (2)sin 2A + cos 2A = 1 (3)tanA ·tanB = 1 (4)略五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流. 【教学说明】 教师应与学生一起进行交流,共同回忆本节知识,理清例题思路方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材P 68~70习题28.1中选取.“课时作业〞局部.本节课的引入可采用探究的形式.首先引导学生认知特殊角直角三角形的余弦、正切,进而引出锐角三角函数的定义.其次利用一个联系生活实际的问题,让学生对三角函数有关定义能够灵活运用.最后,应注重让学生用自己的语言归纳和表达经由探索得出的结论,引导学生对知识与方法进行回忆总结,形成良好的反思习惯,掌握高效的学习方法.。
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
第一课时 §11.1生活中的不等式学习目标:1.在现实情境中认识数量间的不等关系,理解不等式的意义; 2.会用不等式表示不等关系.3.在对实际问题的数量关系进行比较分析、作出推断的过程中,提高学生参与数学活动,乐于接触社会环境中数学信息的兴趣,让学生体验用数学知识解决实际问题的方法. 学习过程: 一、课前导学1、看书P118--119完成与课堂同行P98同步导学。
2、完成与课堂同行P99自主练习1、2、3 二.合作探究活动一、观察研究课本P.6“例如,一辆轿车在某公路上的行驶速度是akm/h,已知该公路对轿车的限速是100km/h,那么可以表示为”:a 100. 活动二、用数学式子表示数量之间的关系x 2.9y 3.1 x+2 48.(2)一辆48座的旅游车载有游客 x 人,到一个站又上来了2个人,车内仍有空座位.则x .活动三、交流:请你举出至少两个有不等关系实例,并与同学交流.举例:1、 ;2、 .对自己所举出的例子用数学式子表示其中的数量之间的关系: 1、 ; 2、 . 不等式:像30kg <55kg 、x >50,x +2<48、a ≤100、3y ≥10等,用 号表示不等关系的式子叫做不等式.三.例题讲解:例1用“>”或“<”号填空:(1)-6+4 -1+3; (2)5-2 0-2;(3)6×2 3×2 (4)-6×(-4) -2×(-4).练习:用“>”或“<”号填空:(1)0 -2 (2)-1 -5 (3)-4 2 (4)31 21 (5)32- 43- 说明:数的比较大小方法:正数大于负数;两个负数比较大小,绝对值大的负数反而小. 例2用不等式表示: (1)a 是正数 ; (2)b 是非负数 ; (3)c 是负数 ; (4)d 不小于2的数 。
练习:用不等式表示 (1) a 是负数; (2)x 与5的和大于2; (3)x 与a 的差小于2; (4)x 与y 的差是非负数 归纳:根据不等式的意义,常用的不等号有下面的 种形式. 例3.2006年2月5日扬州气象台预报本市气温是-2~4℃,这表示2月5日的最低气温是 ℃,最高气温是 ℃.设扬州市2月5练习:见书P119:1,2 拓展延伸:1、 根据下图,对a 、b 、c 三种物体的重量判断正确的是( ) A a <c B a <b C a >c D b <c2、某工程队爆破石头,导火线燃烧的速度为0.8cm /s ,点火工人跑开的速度是5m/s ,安全区在离点火地110m 外,,设这根导线的长度至少应大于xcm ,点火工人才能到达安全区,列出不等式.三、盘点收获:本节课你有什么收获? 四、检测反馈1、 用“>”或“<”号填空:(1)π 3 (2)-22(-2)2(3)310.3 (4)小明上八年级时的体重Wkg 20kg;(5)已知a 、b 、c 为直角三角形的三边,c 为斜边,则 c a,b c 2、用表示大小关系的符号填空:(1).a 2 0 (2)-|x| 0(3)x 2+1 0 (4).已知a 、b 、c 为三角形的三边,则b+c a b-c a (5).你和你的父母的年龄的和S 50。
2013-2014年第二学期羊街中学数学组
导学案设计方案
上学期里,我们亲历了四次课改实践活动,活动之频繁,足见上级部门对课改的重视性。
2013年12月底,全国21省的课改专家齐聚四川綦江县,更进一步提出了推进课改工作的具体要求。
为此,我校行政领导、教研组长于2013年12月26日召开了课改工作目标推进会。
为迎接2014年6月份新课改现场会在我县的胜利召开,切实推进课改工作,根据学校课改工作的要求,在本学期之初特拟定此方案。
一、课改工作方案:
1、要求各位教师利用期初时间以羊街中学学案模板为蓝本,完
成下学期学案初稿设计(电子档),并于2014年3月10日
之前将学案电子档交给教研组长。
2、教师的导学案应该在适当的章节体现法制教育。
3、分年级由年级组长组织好2014年3月中旬的第一次集体备课。
三、下学期课改学案设计任务分解表:
章中涉及的学案设计教师均属于主讲人员,主讲内容为自己设计的内容。
2.九年级教师在新课结束后,集体备课以备考工作为主。
3.因八年级教材有改变,原学案设计表作废,以此表为准,望老师们能理解。
羊街中学数学组
2014年3月2日。
9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。
1.6一元一次不等式组(二)(导学案)【学习目标】1、进一步巩固解一元一次不等式组的过程.2.、总结解一元一次不等式组的步骤及情形.【学习重点】巩固解一元一次不等式组.【学习难点】讨论求不等式解集的公共部分中所有情况,并能清晰地阐述自己的观点 【新课探究与自主学习】 例题:解下列不等式组:1、⎩⎨⎧+>++<-145123x x x x2、⎪⎩⎪⎨⎧->-+>-x x x x 237121),1(325【巩固练习一】 1、解下列不等式组:(1)⎪⎪⎩⎪⎪⎨⎧-≥+≤-1234121x x x (2)⎩⎨⎧>-<+81353x x2、小组交流合作请大家认真观察一下这四组解,你发现了什么?总结_____________________________________________________________________________ 3、做一做在什么条件下,长度为3cm ,7cm ,xcm 的三条线段可以围成三角形?【巩固练习二】 解下列不等式组:1、⎪⎪⎩⎪⎪⎨⎧+>-<+523)1(212x x x x2、⎩⎨⎧<-+>2.015.013.02.0x x xB 组用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?【课堂小结】:今天你的收获有哪些哪?【课后反思】:学习本节课后,你还有什么知识与方法还没有掌握的,请记录下来,问问同学,问问老师吧!“问能生慧”。
【课后作业】:同步伴读7P 课堂学习A 、 课堂学习B当堂训练(1.6一元一次不等式组(二)) 解下列不等式组:1、⎩⎨⎧>-<+81353x x2、 ⎪⎩⎪⎨⎧>->+xx x 10882213、⎪⎩⎪⎨⎧-<+>-23221x xx 4、⎪⎩⎪⎨⎧≤-+≤+321)2(352x x x x。
三十中学课堂教学导学案
1.什么是一元一次不等式组?
2.什么是一元一次不等式组的解集?
3.解不等式组的步骤
总结一元一次不等式组解集的四种情况a<b
练习:1.直接写出不等式组的解集
>3>2>5<2>.<3.5<5>7
(1)(2)(3)(4)5(6)7(8)>4<8<1<5>.<2.5>0<9
x x x x x x x x x x x x x x ⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨⎩⎩⎩⎩⎩⎩⎩⎩x 02()()x 025
2.解下列不等式组(不画数轴) (1)⎩⎨⎧>-<+81353x x (2)⎪
⎪⎩⎪⎪⎨⎧+>-<+5
23
)1(212x x x x (3)⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x (4)⎪⎪⎩⎪⎪⎨⎧+>+<+3
32
21)4(21x x x
5+6>4515-9<10-4x x x x ⎧⎨⎩() +1<25
62-1+1<52x x x x ⎧⎪⎪⎨⎪⎪⎩() 2+2)<+573(-2)+8>2x x x x ⎧⎨
⎩(()
2.34页知识技能
(1)(2)(3)(4)
3.34页数学理解
3题
问题解决4题
38页4题
(3)(4)7题
(1)(2)
8.求不等式组
2+5>1
3-810
x
x
⎧
⎨
≤
⎩
的整数解
9.求不等式组
-1>2
1
-32+
2
x
x x
⎧
⎪
⎨
≤
⎪⎩
的整数解
10.求不等式组
2(+2)<+5
3(-2)+8>2
x x
x x
⎧
⎨
⎩
的非正整数解
11.若a、b、c是ABC
∆的三边,且a、b满足2
-3+(-4)=0
a b,c是不等式组
-1
>-4
3
6+1
2+3<
2
x
x
x
x
⎧
⎪⎪
⎨
⎪
⎪⎩
的最大整数解,判断ABC
∆形状。
课后小结。