二、2-1点的投影
- 格式:ppt
- 大小:343.00 KB
- 文档页数:19
2-2 点、线、面的投影特性一、点的投影1、点的三面投影点是组成物体最基本的几何元素。
如图2-9所示,在三投影面体系中,由空间点A(x,y,z)分别向三投影面作正投影,得其三面投影a(x,y)、a′(x,z)、a″(y,z),即过点A分别作三投影面的垂线,其垂足即为点A的三面投影;展开H面和W面,得到点A的三视图:a 、a′长对正,a′、a″高平齐,a 、a″宽相等,如图2-10所示。
图2-9 点的三面投影图2-10 点的三视图例1 :已知空间点B的两面投影b ,b′,如图2-11所示,求其第三面投影b″。
分析:空间点B的三面投影b 、b′、b″符合“长对正,高平齐,宽相等”的投影规律。
作图: b′与b″高平齐,b与b″宽相等,则其交点即为b″。
图2-11 求点的第三面投影图2-12 求点的三面投影例2 :已知空间点D(5,4,3),如图2-12所示,求其三面投影。
分析:空间点D的三面投影分别为d(x,y)、d′(x,z)、d″(y,z),且符合“长对正,高平齐,宽相等”的投影规律。
作图:分别在三投影轴上取x1=5,y1=4,z1=3,按“长对正,高平齐,宽相等”的投影规律分别作直线段,交点即为空间点D的三面投影(d 、d′、d″)。
2、两点的相对位置空间两点的相对位置是指空间两点间前后、左右、上下的位置关系。
两点在空间的相对位置可以根据两点的坐标值来判定,如图2-13所示。
X坐标确定两点的左右位置关系。
X坐标值大的点在左;Y坐标确定两点的前后位置关系。
Y坐标值大的点在前;Z坐标确定两点的上下位置关系。
Z坐标值大的点在上。
图2-13 两点的相对位置故A点在B点的右,后,上方,即B点在A点的左,前,下方。
3、重影点及其可见性判断若空间两点在某一投影面上的投影重合,则称这两点为该投影面的重影点。
此时,这两点位于同一投射线上,且有两个坐标的值分别相等,不等值的坐标之大小可以确定重影点的可见性,即X、Y、Z坐标值大的点分别位于左方、前方、上方,为可见点,如图2-14所示。
【教学内容与过程设计】教学内容过程设计一、点在一个投影面上的投影图1 图2过空间点A向投影面H 引垂线,得到的垂足a即为空间点A在H面上的正投影,见图1。
在投影线任取一点B,,其在H面上的投影与A的投影重合。
结论:在一定的投影条件下,空间一点有其唯一确定的投影,投影a 有无数个空间与其对应。
二、点在两投影面体系中的投影引入:点在一个投影面上的投影能不能确定点的空间位置?(图2)如何解决?——增加投影面。
1、两投影面体系(图3)在图1的基础上再增加一个投影面,处于正面直立位置且与H面相互垂直,这样就建立两投影面体系。
水平投影面——H面;正面投影面——V面;OX投影轴。
图3 图4 ★黑板上画出空间示意图(由图1逐步演变为图3)。
点对一个投影面的投影(图1)点在两投影面体系中的投影(图3)点在三投影面体系中的投影(图5)2、空间点A在两个投影面上的投影(图3)过空间点A分别向H、V面引垂线,得到的垂足a、a'分别为空间点A在H-V两面投影体系中的投影。
A —空间点;a—点A的水平投影;a'—点A的正面投影;3、投影面的展开(图3)为了方便表达,需要将两个相互垂直的投影面展开到同一平面内。
规定:V面保持不动,H面向下旋转90°,使得H面和V面处于同一平面内,从而得到点的两面投影图。
注意:a、a'、a x三点共线,并且垂直OX轴。
4、点的两面投影规律①a'a⊥OX轴,点的水平投影与正面投影的连线垂直于OX轴;②aa x =A a',a'a x=A a,点的水平投影到X轴距离反映该点到V面距离,点的正面投影到X轴距离反映该点到H面距离。
注意:给了点的水平投影和正面投影就可确定该点的空间位置,同样给了一个空间点就有唯一一组水平投影和正面投影与其对应。
A (a,a')三、点在三投影面体系中的投影引入:点的两面投影已经能确定该点的空间位置,但为更清楚地表达某些几何体的形状和结构,需采用三面投影图。
点、直线和平面的投影教学目的要求:1.点的投影及作图.2.各种位置直线的投影,及两直线的相对位置.3.直角三角形法求直线的实长和倾角,直角定理.4.各种位置平面的投影,平面上取点取线的作图.教学重点难点:1.各种位置直线的投影.2.各种位置平面的投影.3.平面上取点取线的作图.学时: 3§ 1点的投影1.1点的三面投影本节教学目标:点在第一分角中各种位置的投影特性和作图方法。
重点:点在两投影面体系及三投影面体系中的投影,两点的相对位置及重影点的投影。
难点:重影点的投影。
引入:点是最基本的几何元素,以此来分析点在空间中的位置关系及规律。
1.1.1三面投影的规律点的三面投影:水平投影 a → H正面投影 a´→ V侧面投影 a″→ W点的三面投影规律:a′a ⊥ oxa′a″⊥ oza aх =a″az1.1.2点的投影与坐标的关系一、三投影面体系中点的投影A a = a′ax = a″ay = 高标(Z标)A a′= a ax = a″az = 纵标(Y标)A a″= a′az = aay = 横标(X标)V、H 投影反映XV、W 投影反映ZH、W 投影反映Y1.点在三投影面体系中的投影空间点 A的位置确定后,那么它的三面投影( a、a′、 a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。
2.术语及规定习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。
3.投影性质点的两投影的连线垂直于相应的投影轴;点的投影到投影轴的距离反映空间点到投影面的距离。
二、特殊位置点的投影1.其他分角内的点两投影面体系——四分角;三投影面体系——八分角。
2.其他情况投影面上的点的投影关系;投影轴上的点的投影关系1.2两点的相对位置和重影点1.2.1两点的相对位置根据两点相对于投影面的坐标不同,即可确定两点的相对位置。
XA<XB B点在A左方 YA>YB B点在A点后方 ZA>ZB B点在A点下方例:比较三棱锥四个顶点S、A、B、C的位置。
《点的投影》教案教学过程复习提问(5分钟)1、三视图的三等关系是如何叙述的?2、三投影面体系中各个平面的代号分别是什么?导入新课(2分钟)点、线、面是构成物体形状的基本几何元素。
学习和掌握它们的投影特性和规律,能够透彻理解园林图样所表达的内容。
讲授新课(35分钟)§3-1点的投影一、点在三面投影体系中的投影1.三面投影体系的建立在V、H两面的基础上再增加一个右侧立面,使之与V、H相互垂直,此面以W 表示,称W面。
这样V、H、W互相垂直,组成一个三投影面体系。
V、H面的交线称X轴;V、W面的交线称Z轴;H、W面的交线称Y轴。
X、Y、Z三轴的交点O称为投影原点。
2.点在三面投影体系中的投影设有一空间点A、分别向H、V、W进行投影的a,a′,a″。
a″称为A点的侧面投影。
摊平时,设V面不动,H向下转90°,W面向右后转90°,Y轴随H的以Y H表示,随W的以Y W表示。
省略投影面边界。
3.点在V、H、W中的投影规律(1)、点的正面投影和水平投影均反映空间点的X坐标,所以点的正面投影和水平投影的连线垂直X轴,即a′a⊥X轴;(2、点的正面投影和侧面投影均反映空间点的Z坐标,所以点的正面投影和侧面投影的连线垂直Z轴,即a′a″⊥Z轴;(3)、点的水平投影和侧面投影均反映空间点的Y坐标,所以点的水平投影到X轴的距离等于侧面投影到Z轴的距离,即aa X=a″a Z。
根据两点相对于投影面的坐标不同,即可确定两点的相对位置。
XA<XB B点在A左方YA>YB B点在A点后方教学过程设计4.点的投影与直角坐标的关系把三面投影体系看作为空间直角坐标体系,则H、V、W面为坐标面,X、Y、Z 轴为坐标轴,原点O为坐标原点。
如上图,空间点A的三个直角坐标X A、Y A、Z A即为A点到三个坐标面的距离,它们与A点的投影a,a′,a″的关系如下:Aa″=aa y=a x o=a′a z=X A;Aa′=aa x=a Y o=a″a z=Y A;Aa=a′a X=a Z o=a″a Y=Z A。
第二章正投影的基础知识本章教学目标要求:1.熟悉投影法的基本知识及三视图的对应关系。
2.掌握点的投影及投影规律3.掌握线、面的投影特性。
本章重点难点:点、线、面的投影特性。
回概述:实际工程中的各种技术图样,都是按一定的投影方法绘制的,机械工程图样通常是用正投影法绘制。
本章首先学习介绍投影法的基本知识和物体三视图,再讨论点、线、面等几何元素的投影原理,为学习后面的内容奠定基础。
§2-1 投影法和三视图的形成§2-2 点的投影§2-3 直线的投影§2-4 平面的投影如图,建立一个平面P 和不在该平面内的一点S ,在平面P 和点S 之间放一物体A 。
过点S发射一光线SA ,SA 与平面P 的交点a 称为物体A 在平面P 上的投影。
这种确定空间物体投影的方法,称为投影法。
一、投影法的基本知识1.投影法§2-1投影法和三视图的形成图2-1 投影法2.投影法分类中心投影法:投影线汇交一点的投影法。
平行投影法:所有投影线相互平行的投影法。
斜投影法:投影线与投影面相倾斜的平行投影法。
正投影法:投影线与投影面相垂直的平行投影法。
AC baBcACBBC Acb aab c S投影中心投影面P投影方向投影面P投影面P投影方向投影线中心投影法正投影法斜投影法3.平行投影法的投影特性⑶类似性(同形性):当直线或平面图形不平行、也不垂直投影面时,直线的投影仍为直线,平面图形的投影是原图形的类似形。
正投影时,其投影小于实长或实形。
⑴实形性(真迹性):线段或平面图形平行于投影面,其投影反映实形或实长。
⑵积聚性:直线或平面图形平行于投射线,其投影积聚成点或直线。
⑸定比性:两平行线段长度之比,等于其投影长之比。
直线上两线段长度之比,等于其投影长之比。
⑷平行性:两相互平行直线,其投影平行。
⑹从属性:直线上的点或平面上的点和直线,其投影必在直线或平面的V投影面正投影投影线A BPRC D图2-3 平行投影法的投影特性注意:投影不等于影子图2-4 影子和投影•仅有一个投影是不能准确、真实地表达物体的形状。