MRI人体组织信号特征
- 格式:pptx
- 大小:333.57 KB
- 文档页数:9
●脂肪、骨髓组织脂肪的T1短,T2长,故在T1WI和T2WI图象上均是高信号,即白色。
骨髓内因有较多的脂肪,在MR上亦是高信号,故MR对脊髓疾病特别敏感,在临床上有着广泛的应用。
●肌肉、肌腱、韧带肌肉组织的T1较长,T2较短,故在T1WI和T2WI上均呈中等强度信号(黑色或灰黑色)。
肌腱和韧带组织含纤维成分较多,其信号强度较肌肉组织略低。
●骨骼、钙化骨骼和钙化内含大量钙质,水分含量少,故其T1值很长,T2值很短。
故无论T1WI和T2WI上均呈信号缺如的无(低)信号区。
●软骨软骨组织分为纤维软骨和透明软骨。
纤维软骨的信号强度比骨髓和钙化略高,但仍呈低信号;透明软骨的T1和T2较长,故在T1WI 图象上呈较低信号,在T2WI上呈中等灰色信号。
●气体气体的T1值很长,T2值很短,故在两者图象上均呈低信号。
●水分水的T1值较长,T2值明显延长,故在T1WI图象上呈较低信号,T2WI上信号明显增强,呈鲜明的高信号。
●血流快速流动的血液因其流空效应,在各种成像上均呈低或无信号。
而缓慢或不规则的血流如湍流、漩流等,血管内信号增加且不均匀。
T1WI:T1 weighted imaging T1加权像T2WI:T2 weighted imaging T2加权像Diffusion Weighted Imaging 弥散加权成像DWI是利用水分子的弥散运动特性进行成像的。
DWI使MRI对人体的研究深入到细胞水平的微观世界,反映着人体组织的微观几何结构以及细胞内外水分子的转运等变化。
目前常规采用的成像技术是在SE序列中180°脉冲两侧对称地各施加一个长度、幅度和位置均相同的对弥散敏感的梯度脉冲,当质子沿梯度场进行弥散运动时,其自旋频率将发生改变,结果在回波时间内相位分散不能完全重聚,进而导致信号下降。
用相同的成像参数两次成像,分别使用和不用对弥散敏感的梯度脉冲,两次相减就剩下做弥散运动的质子在梯度脉冲方向上引起的信号下降的成分,即由于组织间的弥散系数不同而形成的图像,故称DWI。
磁共振常用序列及其特点磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用的医学影像学技术,它利用核磁共振(Nuclear Magnetic Resonance,NMR)原理对人体的组织进行成像。
磁共振成像序列是磁共振成像的一项重要组成部分,不同的序列可以提供不同的图像信息。
接下来,我将介绍几种常见的磁共振成像序列及其特点。
1.T1加权序列T1加权序列是一种根据组织的T1弛豫时间(组织放松到63.2%的时间)来加权的序列。
在T1加权序列中,脂肪组织呈亮信号,而水分组织呈暗信号。
T1加权序列主要用于显示组织的形态、大小和位置,对于检测病灶较好。
2.T2加权序列T2加权序列根据组织的T2弛豫时间(组织放松到37%的时间)来加权,脂肪组织呈暗信号,而水分组织呈亮信号。
T2加权序列主要用于显示炎症和液体聚集的情况,对检测水肿、脂肪肉芽肿等有很好的效果。
3.T1增强序列T1增强序列是在注射对比剂后进行成像的,对比剂可以增强组织和血管的可视化。
在T1加权序列中,对比剂呈亮信号,可以提高病变的检出率,对于检测血管瘤、癌瘤等有很好的效果。
4.T2液体抑制序列T2液体抑制序列是通过特殊的脉冲序列抑制水分信号,突出其他信号的序列。
在T2液体抑制序列中,脂肪组织呈亮信号,而水分信号被抑制,可以用于显示骨髓炎、脂肪浸润等情况。
5.弥散加权序列弥散加权序列根据自由扩散过程对T2弛豫时间进行加权,可以提供组织的弥散信息。
弥散加权序列主要用于检测脑部卒中、肿瘤等疾病,可以提供无创评估组织水分分布和细胞完整性的信息。
6.平衡态序列平衡态序列是一种T1加权和T2加权的混合序列,同时考虑了T1弛豫时间和T2弛豫时间对信号的影响。
平衡态序列可以提供较好的组织对比度,常用于检测关节半月板损伤等结构。
除了上述常见的磁共振成像序列外,还有许多其他序列,如快速成像序列(如快速梯度回波序列、快速反转恢复序列等),磁共振波谱成像序列等。
人体组织电特性磁共振断层成像(MR EPT)技术进展辛学刚【摘要】科学研究早已证实,人体组织的电特性参数(包括电导率和电容率)在正常组织与肿瘤组织之间差异较大,因此测量人体活体组织的电特性参数变化有可能成为肿瘤早期诊断的有效手段.磁共振成像(MRI)本质上是非电离电磁场,即强的静磁场、梯度磁场和射频电磁场与人体组织的相互作用,因此MRI影像信息中必然包含人体组织的电特性信息.MRI领域近年来新兴的研究热点之一人体组织电特性磁共振断层成像(MR EPT)技术,其就是研究如何从MRI影像信息中有效提取人体组织电特性信息.本文概述MR EPT技术的产生背景,从反映电磁场基本运动规律的麦克斯韦方程组出发,解析给出MR射频场与人体组织电特性参数之间的量化关系,深入剖析了3T和7T不同场强下MR EPT成像方法的国际研究进展以及潜在的技术突破口.同时,还介绍目前运用MR EPT技术开展的动物实验和前期临床人体测试等情况,展示这一新兴技术的诱人前景.【期刊名称】《中国生物医学工程学报》【年(卷),期】2015(034)001【总页数】8页(P83-90)【关键词】生物组织电特性;人体组织电特性磁共振断层成像;磁共振射频;癌症早期检测【作者】辛学刚【作者单位】南方医科大学生物医学工程学院,广州510515;纽约大学医学院Bernard and Irene Schwartz生物医学成像中心,纽约10016,美国【正文语种】中文【中图分类】R318引言人体组织电特性磁共振断层成像(magnetic resonance electrical properties,MR EPT)技术是在传统质子磁共振成像(magnetic resonance imaging,MRI)技术的基础上,通过检测能够反映人体组织非均匀电特性(electrical properties,EPs)分布的磁共振射频场(radiofrequency field,RF field),来计算得到人体组织各处的EPs分布的新兴的MR成像是近年来MR领域备受瞩目的研究热点之一。
磁共振检查序列总结磁共振成像(MRI)是一种非侵入性的医学影像技术,可以提供高分辨率和详细的人体内部结构和功能信息。
磁共振检查序列是MRI检查中的不同影像模式,用于观察不同类型的组织和病变。
下面是对常见的磁共振检查序列进行总结:1.T1加权序列:在T1加权序列中,脂肪组织显示高信号强度,而水和其他组织则显示低信号强度。
这一序列用于观察正常的解剖结构,例如骨骼、脂肪和肌肉,以及一些组织的病变。
2.T2加权序列:在T2加权序列中,水分子显示高信号强度,而脂肪和其他组织则显示低信号强度。
这一序列对于观察液体积聚、水肿和炎症非常有用。
它还用于检测肿瘤、脑卒中、神经病变等。
3.重建梯度回波(GRE)序列:GRE序列利用梯度来对信号进行重新编码,提高了图像的分辨率和对比度。
它对于检测血管病变、血小板聚集和血液流速异常非常有用。
4.脂肪饱和序列:脂肪饱和序列通过使用特殊脉冲来抑制脂肪信号,使其他组织更加突出。
这一序列在检测肿瘤和炎症等病变时非常有用。
5.反转恢复序列:反转恢复序列使用一个特殊的反转脉冲来抑制某些信号,然后使用梯度来恢复它们。
这一序列对于检测脑脊液中的病变和脑梗死等方面非常有用。
6.弥散加权序列:弥散加权序列通过对水分子的随机热运动进行观察,来提供有关组织微观结构的信息。
这一序列对于观察白质疾病、脑卒中等有很好的应用。
此外,还有一些特殊的磁共振检查序列,如磁共振脑血管成像(MR angiography,MRA),用于观察血管结构和血流状况;功能性磁共振成像(functional MRI,fMRI),用于观察大脑功能活动等。
总之,磁共振检查序列根据不同的信号特点和应用领域,可以提供丰富的解剖和功能信息,对于临床诊断和治疗非常有帮助。
不同的序列可以互相补充,形成一个完整的影像学资料,进一步提高诊断准确性。
一、简介磁共振扫描仪(MRI)是利用磁振造影的原理,将人体置于强大均匀的静磁场中,透过特定的无线电波脉冲来改变区域磁场,借此激发人体组织内的氢原子核产生共振现象,而发生磁矩变化讯号。
因为身体中有不同的组织及成份,性质也各异,所以会产生大小不同的讯号,再经由计算机运算及变换为影像,将人体的剖面组织构造及病灶呈现为各种切面的断层影像。
MRI的成像原理不同于X线检查及核医学检查,不依靠射线穿透人体成像,因而避免了射线辐射对人体的损害,属于无创性检查。
MRI的软组织分辨力高于CT,可以很好地区分脑的灰、白质,前列腺的外周带与中央带,子宫的内膜层与肌层等,并可使关节软骨、肌肉、韧带、椎间盘、半月板等直接显影。
MRI具有任意方位断层的能力,可在患者体位不变的情况下行横断位、矢状位、冠状位及任意角度断层扫描,无观察死角,显示病变全面、立体,可为诊断提供更多的信息。
MRI无需造影剂就可使心血管系统清楚显影,可与DSA(数字减影血管造影)媲美。
免除了患者在插管和静脉注射造影剂时所承担的痛苦和危险。
MRI无骨性伪影,对于脑后颅窝的病变,CT常因有骨性伪影干扰而影响观察,MRI则无此忧虑,图像质量和对病变的诊断显着优于CT。
基于MRI的上述优点,MRI特别适合于中枢神经系统、心血管系统、关节软组织、盆腔脏器等病变的检查,对于头颈部、纵隔、腹腔实性脏器的检查也很优越。
磁共振成像MRI的优点:1、软组织分辨率高,明显优于CT。
2、成像参数多,图像变化多,提供信息量大。
3、可以多轴面直接成像,病变定位准确。
4、磁共振频谱(MRS)还可以反映组织的生化改变,弥散成像(Diffision)可反映水分子布郎运动。
5、磁共振血管成像(MRA)可不用造影剂直接显示血管的影像,磁共振水成像(MRCP、MRU、MRM)可不用造影剂显示胆管、输尿管、椎管。
6、可直接显示心肌和心腔各房室的情况。
7、颅底无骨伪影。
8、对人体无放射损伤。
缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;3.对胃肠道的病变不如内窥镜检查;4.体内留有金属物品者不宜接受MRI。
联影磁共振序列联影磁共振(Magnetic Resonance Imaging, MRI)是一种常用的医学影像学技术,可用于观察人体内部结构和功能。
它通过利用人体组织中的水分子在强磁场和无线电波的作用下发生共振现象,获取图像信息。
联影磁共振序列(MRI sequence)是指在磁共振成像中,所采集的一系列图像。
不同的磁共振序列对应着不同的图像对比度和解剖信息,因此能够提供更全面的诊断信息。
一种常见的联影磁共振序列是T1加权像(T1-weighted image)。
在这种序列中,使用短回波时间和长回波时间的组合,使得脂肪组织呈现出高信号强度,而水和其他组织呈现出低信号强度。
因此,T1加权像特别适用于观察脂肪组织和解剖结构。
另一种常见的序列是T2加权像(T2-weighted image)。
在这种序列中,使用长回波时间和长回波间隔,使得水分子呈现出高信号强度,而脂肪和其他组织呈现出低信号强度。
T2加权像对于观察水肿、炎症和肿瘤等病变具有较高的敏感性。
除了T1和T2加权像,还有一些其他常见的联影磁共振序列,如FLAIR序列、DWI序列和动态增强序列等。
FLAIR序列(Fluid-Attenuated Inversion Recovery)通过利用反转恢复脉冲来抑制脑脊液信号,从而更好地显示脑脊液以外的病变。
DWI序列(Diffusion-Weighted Imaging)则通过测量水分子在不同方向上的自由扩散来观察组织的微结构和功能。
动态增强序列则通过注射对比剂并连续采集图像,以观察血管灌注和肿瘤的血供情况。
联影磁共振序列的选择应根据待观察病变的性质和目的来确定。
不同的序列具有不同的优势和局限性,医生需要根据临床需要进行选择。
有时,医生还会根据需要进行序列的组合,以获得更全面的信息。
联影磁共振序列的应用广泛,可以用于诊断和评估各种疾病,如脑卒中、肿瘤、神经系统疾病和骨骼疾病等。
通过观察不同的序列图像,医生可以获得关于病变的位置、大小、形态和组织特征等信息,从而进行准确的诊断和治疗规划。
核磁共振报告
核磁共振(MRI)是一种无创的医学成像技术,可以准确地观察人体内部的组织结构,帮助医生进行病情诊断和治疗方案的制定。
以下是本次核磁共振报告的详细分析。
1. 检查目的
本次核磁共振检查的目的是观察患者颅内及脑部的情况,对患者的头痛、头晕等症状进行评估。
2. 检查部位和方式
本次检查采用1.5 Tesla核磁共振仪进行,检查部位为颅内及脑部。
3. 检查结果
通过本次核磁共振检查,我们观察到患者颅内及脑部的情况如下:
(1)脑室及脑池大小正常,脑积水排除;
(2)脑组织结构清晰,脑灰质与脑白质分界清晰,未见明显异常信号;
(3)左侧颞叶下沟异常信号,支持颞叶海马区脑组织损伤的可能性,需结合临床检查进行进一步诊断。
4. 诊断
根据本次核磁共振检查结果,我们初步判断患者存在左侧颞叶下沟异常信号,可能是颞叶海马区脑组织损伤造成的。
需要结合临床表现和其他检查结果,进一步明确疾病诊断和治疗方案。
5. 注意事项
(1)检查前应禁食4-6小时,避免饮用含咖啡因、可乐等刺激性饮料;
(2)检查时应佩戴无金属物品的宽松衣服;
(3)对于患有心脏病、器官移植等高风险人群,需特别注意核磁共振对身体的影响和检查前的准备。
以上为本次核磁共振检查的详细分析,我们将会结合临床表现和其他检查结果,给出最终的诊断和治疗方案。
核磁共振扫描参数核磁共振扫描(MagneticResonanceImaging,简称MRI)是一种利用原子核在外磁场和射频场作用下发生共振现象的原理,通过对信号的检测和处理,得到人体组织的形态和功能信息的医学影像技术。
1.重复时间(RepetitionTime,简称TR):TR是从一个激发脉冲开始到下一个激发脉冲开始的时间间隔,单位为毫秒。
较短的TR可以提高图像的对比度,但会增加扫描时间。
2.回波时间(EchoTime,简称TE):TE是激发脉冲开始到信号回波的时间间隔,单位为毫秒。
较短的TE可以提高图像的对比度,特别是对液体和脂肪组织有较好的对比度。
3.扫描平面(SlicePlane):扫描平面是指在人体中需要观察的特定平面,如横断面、矢状面或冠状面等。
4.矩阵大小(MatrixSize):矩阵大小是图像的像素数目,决定了图像的分辨率。
较高的矩阵大小可以提高图像的细节展示,但会增加扫描时间和图像文件大小。
5.出血时间(TimeofFlight,简称TOF):TOF技术利用流体在动脉和静脉中的不同信号强度来提取血管信息。
出血时间越长,对静脉的信号越强,可观察到更多的血管结构。
6.空间分辨率(SpatialResolution):空间分辨率表示图像中的最小可见结构大小,受到扫描时间、像素大小和矩阵大小等因素的影响。
7.扇形角度(FlipAngle):扇形角度是指激发脉冲与磁场方向之间的夹角。
较大的扇形角度可以提高图像的对比度,但也会增加激发脉冲的能量和扫描时间。
8.脂肪抑制(FatSuppression):脂肪抑制技术通过特定的脉冲序列抑制脂肪信号,使得其他组织的对比度更加明显。
这些参数的设置可以根据不同的临床需求和扫描部位进行调整,以获得最佳的图像质量和解剖信息。
核磁共振扫描的参数调整需要经验和专业知识,医生和技术人员会根据具体情况进行选择和优化,以提供准确、清晰的图像。
1.人体正常组织MR信号特征:MR的信号强度是多种组织特征参数的可变函数,它所反映的病理生理基础较CT更广泛,具有更大的灵活性,MRI信号强度与组织的弛豫时间、氢质子密度、血液或脑脊液流动、化学位移及磁化率有关,其中弛豫时间,即T1和T2时间,对图像对比起着重要的作用,它是区分正常组织、病理组织及组织特性的主要诊断基础。
T1短的组织主要为脂肪,脂肪和水同样还大量的氢原子,质子密度高,但脂肪分子较大,其中的质子周围有炭、氧等原子,能量传递快,T1值就短,同样与蛋白质大分子结合的水其T1值也短。
脂肪的T2值中等。
正常人体脾脏,肝脏,肌肉等组织的T2值较短,他们在T2权像上信号相对较低。
在组织发生炎症,坏死,囊变等情况时T2值一般会延长。
肿瘤T2值较长,但一些含水分较少或纤维化明显的肿瘤T2值并不长,如肺癌,胰腺癌,成骨性肿瘤。
1.1脂肪、骨髓:组织脂肪的T1短、T2长、Pd高,根据信号强度公式,质子密度大和T1值小,其信号强度大,故不论在T1WI、T2WI和PdWI图像上均呈高信号,与周围长T1组织形成良好对比,尤其在使用短TR检查时,脂肪组织的分界线明显,信号高、呈白色。
但随着TR的延长,在T2WI图像上脂肪信号有逐渐衰减降低之势,这是脂肪抑制技术的基础;倘若为质子密度加权像,此时脂肪组织仍为高信号,但周围组织的信号强度增加,使其对比度下降。
骨髓内因含有较多的脂肪成分,在MR扫描图像上亦呈高信号,和脂肪组织信号有相似的特征。
因此,MR骨髓成像技术对于骨髓疾病、尤其是对于早期的骨髓转移或骨髓瘤等特别敏感,故临床上有着广泛的用途。
1.2肌肉、肌腱、韧带:肌肉组织所含的质子明显少于脂肪和脊髓,它具有较长的T1和较短的T2值,根据强度公式,当T1弛豫增加和T2减少时信号强度较低,所以在T1加权像上,因使用的TR值较短,使质子的磁化恢复不完全,信号强度较低,影像呈灰黑色;随着TR的延长,信号强度增加,在T2加权像上,因具有短T2的弛豫特点,信号强度增加不多,影像呈中等灰黑色,故在T1WI、T2WI和PdWI上均呈中等强度信号(黑灰或灰色)。