MATLAB环境下16QAM调制及解调仿真程序说明(精)
- 格式:doc
- 大小:20.50 KB
- 文档页数:9
QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现一、引言MIMO-OFDM系统是一种融合了多输入多输出(MIMO)和正交频分复用(OFDM)技术的无线通信系统,能够显著提高数据传输速率和系统可靠性。
在MIMO-OFDM系统中,调制方式的选择对系统性能具有重要的影响。
QPSK和16QAM是两种常用的调制方式,它们在MIMO-OFDM系统中的应用对系统的性能和效率有着明显的影响。
本文将针对QPSK和16QAM调制下的MIMO-OFDM系统进行Matlab仿真实现,以研究两种调制方式对系统性能的影响。
二、MIMO-OFDM系统基本原理MIMO-OFDM系统由MIMO技术和OFDM技术组成。
MIMO技术利用多个天线发射和接收信号,通过空间分集和空间复用的方式提高系统的性能和可靠性。
而OFDM技术将带宽分成多个子载波,并采用正交调制方式传输数据,能够有效克服多径干扰和频率选择性衰落,提高系统的抗干扰能力和频谱利用率。
MIMO-OFDM系统将MIMO技术和OFDM技术结合,充分发挥两者的优势,实现了高速率和高可靠性的无线通信。
1. Matlab仿真环境搭建需要在Matlab环境中搭建MIMO-OFDM系统的仿真环境。
在Matlab中,可以使用Communications Toolbox和Wireless Communications Toolbox工具箱来搭建MIMO-OFDM系统的仿真环境。
通过这些工具箱,可以方便地构建MIMO通道模型、OFDM调制器和解调器等系统组件,并进行参数设置和仿真运行。
2. QPSK调制方式在QPSK调制方式下,将复数信号映射到星座图上,每个符号点代表两个比特。
QPSK调制方式可以实现较高的传输速率和频谱利用率,适用于高速率和大容量的无线通信场景。
在MIMO-OFDM系统中,QPSK调制方式通常用于传输速率要求较高的场景,例如视频传输和高速数据传输等。
2. MIMO-OFDM系统仿真实现与QPSK调制方式类似,利用Matlab中的Wireless Communications Toolbox,可以进行16QAM调制下MIMO-OFDM系统的仿真实现。
通信原理课程设计报告书课题名称16QAM 调制与解调 的MATLAB 实现及调制性能分析姓名 学号学院通信与电子工程学院 专 通信工程※※※※※※※※※※※※※ ※※※※※※※※※※※2009级通信工程专业 通信原理课程设计业指导李梦醒教师2012年 01 月 01日16QAM 调制与解调的MATLAB 实现及调制性能分析 1 设计目的(1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位8/5π8/3π8/π8/7π8/9π8/11π8/13πM 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。
式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cosk , Y k = -A k sin k 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。
通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2009级通信工程专业通信原理课程设计16QAM调制与解调的MATLAB实现及调制性能分析(1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。
式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)8/5π8/3π8/π8/7π8/9π8/11π8/13πk X 和k Y 也是可以取多个离散的变量。
创作编号:BG7531400019813488897SX创作者:别如克*姓名:NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。
三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调信号(In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调信号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),创作编号:BG7531400019813488897SX创作者:别如克*numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调制qamdet.m%QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,最终恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m创作编号:BG7531400019813488897SX创作者:别如克*%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]);ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); y n(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); y n(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3;%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]);end;创作编号:BG7531400019813488897SX创作者:别如克*。
QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现QPSK和16QAM调制是一种常见的调制方式,而MIMO-OFDM系统是一种利用多输入多输出技术和正交频分复用技术的无线通信系统。
本文将介绍如何使用Matlab对MIMO-OFDM系统进行仿真实现,并分别使用QPSK和16QAM调制方式进行实验。
我们将讨论MIMO-OFDM系统的基本原理和结构,然后介绍Matlab的仿真实现方法,最后进行仿真实验并分析实验结果。
1. MIMO-OFDM系统的基本原理和结构MIMO-OFDM系统是一种结合了多输入多输出(MIMO)技术和正交频分复用(OFDM)技术的无线通信系统。
MIMO技术利用多个天线进行信号传输和接收,可以显著提高系统的传输速率和抗干扰性能。
而OFDM技术将高速数据流分割成多个低速子流,并利用正交频分复用技术进行传输,可以有效克服多径传输引起的频率选择性衰落和提高频谱利用率。
MIMO-OFDM系统的结构包括多个发射天线和多个接收天线,发射端和接收端分别进行信号处理和数据传输。
在发射端,将输入数据流进行调制、符号映射,并进行空间信号处理和频谱分配;在接收端,对接收的信号进行解调、解映射、信道均衡和解调制处理。
整个系统利用MIMO技术和OFDM技术的优势,可以实现高速和高质量的无线通信传输。
2. Matlab的仿真实现方法在Matlab中,可以利用通信工具箱和信号处理工具箱进行MIMO-OFDM系统的仿真实现。
需要定义系统的参数,包括天线数、子载波数、信道模型、调制方式等;然后生成输入数据流,并进行调制和符号映射;接着进行信道编码和传输;最后进行解码和译码,并进行结果分析。
对于QPSK调制方式,可以使用comm.QPSKModulator和comm.QPSKDemodulator进行调制和解调,并使用comm.ErrorRate进行误码率计算;对于16QAM调制方式,可以使用comm.RectangularQAMModulator和comm.RectangularQAMDemodulator进行调制和解调,并进行相应的误码率计算。
姓名: NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图基带信号x串并转换In电平映射成形滤波Xcoswt载波发生器已调信号 y+90度相移Qn-sinwt已调信号yEPF电平映射成形滤波X正交调制原理框图InX LPF抽样判决coswt并恢复信号 x串载波恢复时钟恢复转换90度相移-sinwtQnX LPF抽样判决相干解调原理框图二、MQAM 调制介绍及本仿真程序的几点说明MQAM 可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。
三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000;% 设定码元数量fb=1;%基带信号频率fs=32;% 抽样频率fc=4;%载波频率 ,为便于观察已调信号,我们把载波频率设的较低Kbase=2;% Kbase=1, 不经基带成形滤波,直接调制 ;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N);% 产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc);% 对基带信号进行 16QAM 调制y1=y; y2=y;% 备份信号,供后续仿真用T=length(info)/fb;m=fs/fb;nn=length(info);dt=1/fs;t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为 10000 个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title(' 已调信号 (In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y);y=fft(y)/n;y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04;y=20*log10(y);f1=m/n;f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title(' 已调信号频谱 '); xlabel('f/fb');%画出 16QAM 调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc);title(' 星座图 ');SNR_in_dB=8:2:24;%AWGN 信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc);% 对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N;% 统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0,% 如果没有输入参数,则指定信息序列为10000 个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0;% 1/2 的概率输出为0elseinfo(i)=1;% 1/2 的概率输出为1endend;qam.mfunction [y ,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb;m=fs/fb;nn=length(x);dt=1/fs;t=0:dt:T-dt;%串/ 并变换分离出 I 分量、 Q 分量,然后再分别进行电平映射I=x(1:2:nn-1);[I,In]=two2four(I,4*m);Q=x(2:2:nn);[Q,Qn]=two2four(Q,4*m);if Kbase==2;I=bshape(I,fs,fb/4);% 基带成形滤波Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t);% 调制qamdet.m%QAM 信号解调function [xn,x]=qamdet(y ,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs);% 设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb;N=length(y)/m;n=(.6:1:N)*m;n=fix(n);In=I(n);Qn=Q(n);xn=four2two([In Qn]);%I分量Q 分量并/串转换,最终恢复成码元序列xnnn=length(xn);xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:);xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8;end;if nargin<5; alfa=0.5;end;if nargin<4; N=16;end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m%二进制转换成四进制function [y ,yn]=two2four(x,m);T=[0 1;3 2];n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5;y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; % 映射电平分别为-1.5 ;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax);yn=(y-ymin)*3/(ymax-ymin);% 设置门限电平,判决I0=find(yn< 0.5);I1=find(yn>=0.5 & yn<1.5); I2=find(yn>=1.5 & yn<2.5);yn(I0)=zeros(size(I0)); yn(I1)=ones(size(I1)); yn(I2)=ones(size(I2))*2;I3=find(yn>=2.5);yn(I3)=ones(size(I3))*3; %一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:);xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x);m=2*fs/fb;n=fs/fc;i1=m-n; i=1;ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n;c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal;axis([-1.5 1.5 -1.5 1.5]); end;。
通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析1 设计目的(1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。
式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cosq k , Y k = -A k sinq k8/5π8/3π8/π8/7π8/9π8/11π8/13π则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。
实验一 16QAM调制与解调仿真一、实验目的(1)掌握16QAM调制与解调原理。
(2)掌握Matlab/Simulink仿真软件使用方法。
(3)设计16QAM调制与解调仿真电路,观察同相支路、正交支路波形及16QAM星座图。
二、实验环境与仪器Windows98/2000/XP、Matlab(R2010a)/Simulink三、实验内容1、熟悉地掌握了MATLAB软件在通信系统设计与仿真的基本步骤与方法。
2、搭建16QAM调制解调仿真系统;3、运行仿真系统,得出各模块部分的波形及并进行分析。
四、实验原理1、16QAM调制原理16QAM是用两路独立的正交4ASK信号叠加而成,4ASK是用多电平信号去键控载波而得到的信号。
它是2ASK体制的推广,和2ASK相比,这种体制的优点在于信息传输速率高。
正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。
16进制的正交振幅调制是一种振幅相位联合键控信号。
16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。
这里采用正交调幅法。
16QAM正交调制的原理如下图1.1所示。
图1.1 16QAM调制器组成框图图中串/并变换器将速率为Rb的二进制码元序列分为两路,速率为Rb/2。
2-4电平变换为Rb/2的二进制码元序列变成速率为RS=Rb/log216的4个电平信号,4电平信号与正交载波相乘,完成正交调制,两路信号叠加后产生16QAM信号。
在两路速率为Rb/2的二进制码元序列中,经2-4电平变换器输出为4电平信号,即M=16。
经4电平正交幅度调制和叠加后,输出16个信号状态,即16QAM RS=Rb/log216=Rb/4,本实验采用便是这种方式。
2、QAM解调原理16QAM信号采取正交相干解调的方法解调,解调器首先对收到的16QAM信号进行正交相干解调,一路与cosωct相乘,一路与sinωc t相乘。
通信原理课程设计报告书课题名称 16QAM 调制与解调 的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析1 设计目的(1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。
式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)8/5π8/3π8/π8/7π8/9π8/11π8/13π令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。
通信原理课程设计报告书课题名称 16QAM 调制与解调 的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析1 设计目的(1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。
式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)8/5π8/3π8/π8/7π8/9π8/11π8/13π令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)k X 和k Y 也是可以取多个离散的变量。
1。
课程设计目的随着现代通信技术的发展,特别是移动通信技术高速发展,频带利用率问题越来越被人们关注.在频谱资源非常有限的今天,传统通信系统的容量已经不能满足当前用户的要求.正交幅度调制QAM(Quadrature Amplitude Modulation)以其高频谱利用率、高功率谱密度等优势,成为宽带无线接入和无线视频通信的重要技术方案.首先介绍了QAM调制解调原理,提出了一种基于MATLAB的16QAM系统调制解调方案,包括串并转换,2—4电平转换,抽样判决,4—2电平转换和并串转换子系统的设计,对16QAM的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明16QAM调制技术的优越性。
2.课程设计要求(1)设计一个16QAM调制与解调系统。
(2)设计程序时必须使得程序尽可能的简单。
(3)利用MATLAB进行程序编写并对系统进行仿真分析。
3。
相关知识随着现代通信技术的发展,特别是移动通信技术高速发展,新的需求层出不穷,促使新的业务不断产生,因而导致频率资源越来越紧张.在有限的带宽里要传输大量的多媒体数据,频谱利用率成为当前至关重要的课题,由于具有高频谱利用率、高功率谱密度等优势,16QAM技术被广泛应用于高速数据传输系统.在很多宽带应用领域,比如数字电视广播,Internet宽带接入,QAM 系统都得到了广泛的应用。
QAM也可用于数字调制。
数字QAM有4QAM、8QAM、16QAM、32QAM等调制方式。
其中,16QAM和32QAM广泛用于数字有线电视系统。
当今国际市场上出现了采用16QAM 调制技术的卫通调制解调器,如美国COMTECH EF DATA公司新推出的CDM—600。
该卫通调制解调器支持速率高达20Mbps[1]。
无线通信技术的迅猛发展对数据传输速率、传输效率和频带利用率提出了更高的要求.选择高效可行调制解调手段,对提高信号的有效性和可靠性起着至关重要的作用。
由于QAM已经成为宽带无线接入和无线视频通信的重要技术方案。
利用matlab实现16QAM调制一、随机信号的调制第一个示例描述以下问题:下表描述了解决此问题的关键任务和相应的通信工具箱函数,其中选择基带16QAM作为调制制式以及加性高斯白噪声(AWGN)作为信道模型。
问题解决方案:1.产生随机二进制数据序列。
在MATLAB中表示信号的常规格式是向量或者矩阵。
本示例中利用randint 函数来产生一个表示二进制数据序列连续值的列向量。
其中二进制数据序列的长度(即为列向量中的行数)设置为30,000。
下面的代码同时还绘制了数据序列的杆图(stem plot),用来显示数据的0、1值。
你所产生的图可能与次示例中的图有一点不一样,这是因为本示例中应用了随机数。
%% Setup% Define parameters.M = 16; % Size of signal constellationk = log2(M); % Number of bits per symboln = 3e4; % Number of bits to processnsamp = 1; % Oversampling rate%% Signal Source% Create a binary data stream as a column vector.x = randint(n,1); % Random binary data stream% Plot first 40 bits in a stem plot.stem(x(1:40),'filled');title('Random Bits');xlabel('Bit Index'); ylabel('Binary Value');2、准备调制modem.qammod对象实现M-QAM调制器,本示例中M为16。
其输入参数是从0到15的整数而不是4bits二进制数据。
因此,在利用此对象的modulate方法之前需要对二进制数据序列x进行预处理。
QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现1. 引言1.1 背景介绍MIMO(Multiple Input Multiple Output)技术和OFDM (Orthogonal Frequency Division Multiplexing)技术是目前无线通信领域中常用的关键技术。
MIMO技术通过在传输端和接收端利用多个天线进行数据传输,从而提高系统的传输效率和抗干扰性能。
而OFDM技术则利用频谱分割和并行传输的方式,提高信道传输效率和抗多径干扰的能力。
本文将结合QPSK(Quadrature Phase Shift Keying)调制和16QAM(Quadrature Amplitude Modulation)调制两种常见调制方式,设计并实现MIMO-OFDM系统。
QPSK调制使用4个相位点来表示传输信号,适用于简单的调制场景;而16QAM调制则利用16个不同的信号点表示传输信号,可以提高传输速率和频谱利用效率。
通过Matlab仿真实现这两种调制方式下的MIMO-OFDM系统,并进行性能分析和实验结果展示,旨在探究不同调制方式对系统性能的影响,为未来的无线通信系统设计提供参考和借鉴。
1.2 研究意义研究QPSK和16QAM调制下MIMO-OFDM系统的意义在于探索该组合对系统性能的影响,进一步优化系统设计和参数配置。
通过比较不同调制方式下MIMO-OFDM系统的性能表现,可以为实际通信系统的部署提供重要参考依据。
研究还有助于深化对多址接入、信道编解码等关键技术的理解,并为提高系统的可靠性、稳定性和数据传输速率提供技术支持。
探究QPSK和16QAM调制下MIMO-OFDM系统的研究意义重大,不仅可以促进通信技术的进步,还可以为实际应用中的无线通信系统提供更加稳定和高效的解决方案。
1.3 研究目的研究目的:通过对QPSK和16QAM调制下MIMO-OFDM系统的设计和仿真实现,旨在探究在多输入多输出和正交频分复用技术的基础上,如何提高系统的性能和可靠性。
(完整版)MATLAB环境下16QAM调制及解调仿真程序说明姓名:NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。
三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:100 0),[0 35],[0 0],'b:');title('已调信号(In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调信号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调制qamdet.m%QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,最终恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); y n(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); y n(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3; %一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]); end;。
QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现一、引言在通信系统中,多输入多输出(MIMO)技术和正交频分复用(OFDM)技术是两种重要的通信技术,它们分别能够提高系统的数据传输速率和信号的可靠性。
而QPSK和16QAM调制则是常用于数字通信系统的调制方式,在实际应用中具有重要的意义。
本文将结合MIMO-OFDM系统和QPSK、16QAM调制,使用Matlab进行仿真实现,展示其在数字通信系统中的应用。
二、MIMO-OFDM系统MIMO-OFDM系统是将MIMO技术与OFDM技术相结合的一种通信系统。
MIMO技术是指通过多个天线实现在同一频段上传输多个并行数据流的技术,可以提高系统的数据传输速率和信号的可靠性。
而OFDM技术是一种多载波调制技术,可以将一个高速数据流分成多个低速数据流,并通过并行传输提高系统的频谱利用率和抗多径干扰能力。
在MIMO-OFDM系统中,传输信号首先通过MIMO编码器进行编码,然后经过OFDM调制器进行调制。
接收端通过OFDM解调器和MIMO解码器对接收信号进行解调和解码,从而实现数据的传输。
三、QPSK调制QPSK(Quadrature Phase Shift Keying)调制是一种常用的数字调制方式,它将信号分成实部和虚部进行调制,每个符号携带两个比特信息。
QPSK调制器通过将输入的二进制比特流分成两路,分别作为实部和虚部信号进行调制,形成QPSK调制信号。
QPSK调制的信号点分布在复平面上的四个正交位置,分别代表00、01、10、11四种符号的调制。
它的优点是可以在相同的带宽和功率条件下实现比BPSK调制更高的数据传输速率,且具有抗噪性能好的特点。
五、MIMO-OFDM系统Matlab仿真实现为了验证MIMO-OFDM系统在QPSK和16QAM调制下的性能,我们使用Matlab进行仿真实现。
首先我们建立了一个具有多个发送天线和多个接收天线的MIMO信道模型,并在此基础上构建了一个MIMO-OFDM系统。
姓名:NikeyMATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相干解调原理框图正交调制原理框图相干解调原理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的16个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是直接产生与调制时一模一样的载波来进行信号解调。
三、仿真结果图附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带信号进行16QAM调制y1=y; y2=y; %备份信号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:T-dt;subplot(211);%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调信号(In:red,Qn:green)');%傅里叶变换,求出已调信号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)-1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调信号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); %对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在不同信道噪声强度下的误码率');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映射I=x(1:2:nn-1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t); %调制qamdet.m%QAM信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,最终恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);two2four.m%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; %映射电平分别为-1.5;0.5;0.5;1.5four2two.m%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); y n(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); y n(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3; %一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';constel.m%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc;i1=m-n; i=1; ph0=(i1-1)*2*pi/n;while i <= N/m;xi=x(i1:i1+n-1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0-angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*');end;plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:');hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]); end;。
通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析 1设计目的 (1) 掌握16QAM 调制与解调的原理。
(2) 掌握星座图的原理并能熟悉星座图的应用。
(3) 熟悉并掌握MATLAB 的使用方法。
(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。
2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。
虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。
但是由图1可见,在MPSK 体制中,随着图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。
为了改善在M 大时的噪声容限,发展出了QAM 体制。
在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。
这种信号的一个码元可以表示为(2—1)式中:k=整数;和分别可以取多个离散值。
式(2—1)可以展开为(2—2)令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为(2—3)和也是可以取多个离散的变量。
从式(2—3)看出,可以看作是两个正交的振幅键控信号之和。
在式(2—1)中,若θk 值仅可以取π/4和-π/4,A k 值仅可以取+A 和-A ,则此QAM 信号就成为QPSK 信号,如图2所示:图2 4QAM 信号矢量图所以,QPSK 信号就是一种最简单的QAM 信号。
有代表性的QAM 信号是16进制的,记为16QAM ,它的矢量图示于下图中:三、成绩验收盖章2010年 月 日图3 16QAM 信号矢量图图中用黑点表示每个码元的位置,并且示出它是由两个正交矢量合成的。
题目:基于MATLAB 的16QAM 及32QAM 系统的仿真原理:QAM 是一种矢量调制,将输入比特映射到一个复平面,形成复数调制信号,然后将I 信号和Q 信号(实部虚部)分量采用幅度调制,分别对应调制在相互正交的两个载波(cos t ω,sin t ω)上。
下图为MQAM 的调制原理图。
MQAM 的信号表达式:()()()cos sin 1,2,...,,0M C S C S i i T C i T C S i i s t a g t t a g t ti M t T a a ωω=-=≤≤与是具有种不同幅度的加权值上述表达式可以看出,QAM 为两个正交载波振幅相位调制的结合。
波形矢量可以表示为:()()()11221,2,...,,0i i i S s t s f t s f t i M t T =+=≤≤()()()()()()()()121102202cos,02sin ,01,2,...,1,2,...,S ST C S g T C S g T i i T i i f t g t t t T E f t g t t t T E s s t f t dt i M s s t f t dt i M ωω=≤≤=≤≤====⎰⎰ MQAM 信号最佳接收:实验仿真条件:码元数量设定为10000个,基带信号频率1HZ ,抽样频率32HZ ,载波频率4HZ 。
实验结果分析:对于QAM ,可以看成是由两个相互正交且独立的多电平ASK 信号叠加而成。
因此,利用多电平误码率的分析方法,可得到M 进制QAM 的误码率为:])(1log 3[)11(022n E L L erfc L P b e --= 式中,M L =,Eb 为每码元能量,n 0为噪声单边功率谱密度。
通过调整高斯白噪声信道的信噪比SNR (Eb/No ),可以得到如图所示的误码率图:QAM信号误码率分析10010-1率码误10-210-3信噪比可见16QAM和32QAM信号的误码率随着信噪比的增大而逐渐减小,这与理论趋势是一致的,但是存在偏差。
题目基于MATLAB的16QAM 及32QAM 系统的仿真原理:QAM是一种矢量调制,将输入比特映射到一个复平面,形成复数调制信号,然后将I信号和Q信号(实部虚部)分量采用幅度调制,分别对应调制在相互正交的两个载波(cos t , sin t )上。
下图为MQAM 的调制原理图。
MQAM 的信号表达式:S i t a i c g T t cos c t a i s g T t sin 点i 1,2,..., M , 0 t T sa ic与a iS是具有i M种不同幅度的加权值上述表达式可以看出,QAM为两个正交载波振幅相位调制的结合波形矢量可以表示为:s t S i1 f1 t s2 f2 t i 1,2,..., M, 0 t T ST SS i 0 S i t f i t dt i 1,2,..., MTsS2 0 S i t f2 t dt i 1,2,..., MMQAM信号最佳接收:实验仿真条件:码元数量设定为10000个,基带信号频率1HZ,抽样频率32HZ , 载波频率4HZ 实验结果分析:P e对于QAM ,可以看成是由两个相互正交且独立的多电平 ASK 信号叠加而成因此,利用多电平误码率的分析方法,可得到 M 进制QAM 的误码率为:(1 >fcL 3L O 2g21L (Eb )]L V L 1 n ° 式中,L M ,Eb 为每码元能量,n o 为噪声单边功率谱密度。
通过调整高斯白噪声信道的信噪比 SNR (Eb/No ),可以得到如图所示的误码率 图:0 10QAM 信号误码率分析-110-2 10*** +■ -310-1 -0.5 0.5 1 信噪比1.52.5-1可见16QAM 和32QAM 信号的误码率随着信噪比的增大而逐渐减小,这与理论趋势是一致的,但是存在偏差。
总结:与16QAM 比较,32QAM 解调的误码率高,但数据速率高。
16QAM 一般工作32QAr ;l 误比特率性能O-3 «oO在大信噪比环境下,误码率会很小,在同等噪声条件下, 16QAM 的抗噪声性能是相当优越的附录代码:main_plot.m clear;clc;echo off;close all;N=10000; % 设定码元数量fb=1; %基带信号频率fs=32; %抽样频率fc=4; %载波频率 ,为便于观察已调信号,我们把载波频率设的较低Kbase=2;% Kbase=1, 不经基带成形滤波,直接调制 ;% Kbase=2, 基带经成形滤波器滤波后,再进行调制info=random_binary(N); %产生二进制信号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); % 对基带信号进行 16QAM 调制 y1=y; y2=y;%备份信号,供后续仿真用T=length(info)/fb;m=fs/fb;nn=length(info);dt=1/fs;t=0:dt:T-dt;n=length(y);y=fft(y)/n;y=abs(y(1:fix(n/2)))*2;q=find(y<1e-04); y(q)=1e-04;y=20*log10(y);f1=m/n;f=0:f1:(length(y)-1)*f1;%subplot(212);plot(f,y,'b');grid on;title(' 已调信号频谱 '); xlabel('f/fb');%画出 16QAM 调制方式对应的星座图%%constel(y1,fs,fb,fc); title(' 星座图 ');SNR_in_dB=8:2:24; %AWGN 信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); % 加入不同强度的高斯白噪声y_output=qamdet(y_add_noise,fs,fb,fc); % 对已调信号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率 end;figure;semilogy(SNR_in_dB,Pe,'blue*-');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM 调制误码率 ');bshape.m%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);four2two.mfunction xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=-abs(ymax); yn=(y-ymin)*3/(ymax-ymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); yn(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); yn(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3; %一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';two2four.m%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n-1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn-1.5; y=yn;for i=1:m-1;y=[y;yn];end;y=y(:)'; % 映射电平分别为 -1.5 ;0.5;0.5 ;1.5 random_binary.mfunction [info]=random_binary(N)if nargin == 0, % 如果没有输入参数,则指定信息序列为 10000 个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2 的概率输出为 0elseinfo(i)=1; % 1/2 的概率输出为 1endend;qamdet.m%QAM 信号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)-1)*dt;I=y.*cos(2*pi*fc*t);Q=-y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N =length(y)/m; n=(.6:1:N)*m; n=fix(n);In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I 分量 Q 分量并/ 串转换,最终恢复成码元序列 xn nn=length(xn);xn=[xn(1:nn/2);xn(nn/2+1:nn)];xn=xn(:); xn=xn';qam.mfunction [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:T-dt;%串 / 并变换分离出 I 分量、 Q 分量,然后再分别进行电平映射I=x(1:2:nn-1);[I,In]=two2four(I,4*m);Q=x(2:2:nn);[Q,Qn]=two2four(Q,4*m);if Kbase==2; % 基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)-Q.*sin(2*pi*fc*t);32QAMM = 32;k = log2(M);x = randint(20000,1);y = modulate(modem.qammod('M',32,'InputType','Bit'),x);EbNo = -5:1:10;for n=1:length(EbNo)snr(n) = EbNo(n) + 10*log10(k);ynoisy = awgn(y,snr(n),'measured');zms = demodulate(modem.qamdemod('M',32,'OutputType','Bit'),ynoisy); z = de2bi(zms,'left-msb');[nErrors(n), BITBER(n)] = biterr(x,z);theo_err_prb( n)=(1/k)*3/2*efc(sqrt(k*0.1*(10.A(EbNo( n)/10)))); enddisp (nErrors);disp (BITBER);semilogy(EbNo,BITBER,'b*-',EbNo,theo_err_prb,'k*-');title('32QAM 误比特率性能 ');xlabel('Eb/N0(dB)');ylabel(' 误比特率 ');legend(' 仿真误码率 ',' 理论误码率 ');。
实验五16QAM调制与解调实验【实验目的】使学生了解16QAM的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。
【实验器材】装有MATLAB软件的计算机一台【实验原理】1. 16QAM 是用两路独立的正交4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。
它是2ASK 体制的推广,和2ASK 相比,这种体制的优点在于信息传输速率高。
2. 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。
16 进制的正交振幅调制是一种振幅相位联合键控信号。
16QAM 的产生有2 种方法:(1)正交调幅法,它是有2 路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2 路独立的四相位移相键控信号叠加而成。
3. 16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与cosωc t 相乘,一路与sinωc t 相乘。
然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。
【实验内容与步骤】1. MATLAB软件的设置:对路径的设置,设置成路径指向comm2文件夹;2. 在命令行输入start指令,然后输入num值,如3,之后按照内容3输入参考代码。
3. 新建一个扩展名为M的文件,输入以下程序:M=16;k=log2(M);x=randint(30000,1);%产生二进制随机数y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制EbNo=-5:1:10;%信噪比s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制for n=1:length(EbNo)snr(n)=EbNo(n)+10*log10(k);%Ratio of symbol energy to noise power spectral densityynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率,不是误比特率。
姓名:Nikey
MATLAB
环境下
环境下环境下
环境下16QAM调制及解调仿真
调制及解调仿真调制及解调仿真
调制及解调仿真程序说明
程序说明程序说明
程序说明一、正交调制及相干解调原理框图
正交调制原理框图
相干解调原理框图二、
MQAM调制介绍及本仿真程序的几点说明 MQAM可以用正交调制的方法产生,本仿真中取M=16,即幅度和相位相结合的
16个信号点的调制。
为了观察信道噪声对该调制方式的影响,我们在已调信号中又加入了不同强度的高斯白噪声,并统计其译码误码率。
为了简化程序和得到可靠的误码率,我们在解调时并未从已调信号中恢复载波,而是
直接产生与调制时一模一样的载波来进行信号解调。
三、仿真结果图
附源程序代码:
main_plot.m clear;clc;echo off;close all;
N=10000; %设定码元数量
fb=1; %基带信号频率
fs=32; %抽样频率
fc=4; %载波频率,为便于观察已调信号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;
% Kbase=2,基带经成形滤波器滤波后,再进行调制
info=random_binary(N; %产生二进制信号序列
[y,I,Q]=qam(info,Kbase,fs,fb,fc; %对基带信号进行16QAM调制
y1=y; y2=y; %备份信号,供后续仿真用
T=length(info/fb; m=fs/fb; nn=length(info;
dt=1/fs; t=0:dt:T-dt;
subplot(211;
%便于观察,这里显示的已调信号及其频谱均为无噪声干扰的理想情况
%由于测试信号码元数量为10000个,在这里我们只显示其总数的1/10
plot(t(1:1000,y(1:1000,t(1:1000,I(1:1000,t(1:1000,Q(1:1000,[0 35],[0 0],'b:';
title('已调信号(In:red,Qn:green';
%傅里叶变换,求出已调信号的频谱
n=length(y; y=fft(y/n; y=abs(y(1:fix(n/2*2;
q=find(y<1e-04; y(q=1e-04; y=20*log10(y;
f1=m/n; f=0:f1:(length(y-1*f1;
subplot(223;
plot(f,y,'r';
grid on;
title('已调信号频谱'; xlabel('f/fb';
%画出16QAM调制方式对应的星座图
subplot(224;
constel(y1,fs,fb,fc; title('星座图';
SNR_in_dB=8:2:24; %AWGN信道信噪比
for j=1:length(SNR_in_dB
y_add_noise=awgn(y2,SNR_in_dB(j; %加入不同强度的高斯白噪声
y_output=qamdet(y_add_noise,fs,fb,fc; %对已调信号进行解调 numoferr=0; for i=1:N
if (y_output(i~=info(i,
numoferr=numoferr+1;
end;
end;
Pe(j=numoferr/N; %统计误码率
end; figure;
semilogy(SNR_in_dB,Pe,'red*-';
grid on;
xlabel('SNR in dB';
ylabel('Pe';
title('16QAM调制在不同信道噪声强度下的误码率';
random_binary.m %
产生二进制信源随机序列
function [info]=random_binary(N
if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元 N=10000; end;
for i=1:N,
temp=rand;
if (temp<0.5,
info(i=0; % 1/2的概率输出为0
else
info(i=1; % 1/2的概率输出为1
end
end;
qam.m function [y,I,Q]=qam(x,Kbase,fs,fb,fc;
%
T=length(x/fb; m=fs/fb; nn=length(x;
dt=1/fs; t=0:dt:T-dt;
%串/并变换分离出I分量、Q分量,然后再分别进行电平映射
I=x(1:2:nn-1; [I,In]=two2four(I,4*m;
Q=x(2:2:nn; [Q,Qn]=two2four(Q,4*m;
if Kbase==2; %基带成形滤波
I=bshape(I,fs,fb/4; Q=bshape(Q,fs,fb/4;
end;
y=I.*cos(2*pi*fc*t-Q.*sin(2*pi*fc*t; %调制
qamdet.m %QAM
信号解调
function [xn,x]=qamdet(y,fs,fb,fc;
dt=1/fs; t=0:dt:(length(y-1*dt;
I=y.*cos(2*pi*fc*t;
Q=-y.*sin(2*pi*fc*t;
[b,a]=butter(2,2*fb/fs; %设计巴特沃斯滤波器 I=filtfilt(b,a,I; Q=filtfilt(b,a,Q;
m=4*fs/fb; N=length(y/m; n=(.6:1:N*m; n=fix(n;
In=I(n; Qn=Q(n; xn=four2two([In Qn];
%I分量Q分量并/串转换,最终恢复成码元序列xn nn=length(xn; xn=[xn(1:nn/2;xn(nn/2+1:nn];
xn=xn(:; xn=xn';
bshape.m %
基带升余弦成形滤波器
function y=bshape(x,fs,fb,N,alfa,delay;
%设置默认参数
if nargin<6; delay=8; end;
if nargin<5; alfa=0.5; end;
if nargin<4; N=16; end;
b=firrcos(N,fb,2*alfa*fb,fs;
y=filter(b,1,x;
two2four.m %
二进制转换成四进制
function [y,yn]=two2four(x,m;
T=[0 1;3 2]; n=length(x; ii=1;
for i=1:2:n-1;
xi=x(i:i+1+1;
yn(ii=T(xi(1,xi(2;
ii=ii+1;
end;
yn=yn-1.5; y=yn;
for i=1:m-1;
y=[y;yn];
end;
y=y(:'; %映射电平分别为-1.5;0.5;0.5;1.5
four2two.m %
四进制转换成二进制
function xn=four2two(yn;
y=yn; ymin=min(y; ymax=max(y; ymax=max([ymax abs(ymin];
ymin=-abs(ymax; yn=(y-ymin*3/(ymax-ymin;
%设置门限电平,判决
I0=find(yn< 0.5; yn(I0=zeros(size(I0;
I1=find(yn>=0.5 & yn<1.5; yn(I1=ones(size(I1;
I2=find(yn>=1.5 & yn<2.5; yn(I2=ones(size(I2*2; I3=find(yn>=2.5; yn(I3=ones(size(I3*3;
%一位四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn;
for i=1:n;
xn(i,:=T(yn(i+1,:;
end;
xn=xn'; xn=xn(:; xn=xn';
constel.m %
画出星座图
function c=constel(x,fs,fb,fc;
N=length(x; m=2*fs/fb; n=fs/fc;
i1=m-n; i=1; ph0=(i1-1*2*pi/n;
while i <= N/m;
xi=x(i1:i1+n-1;
y=2*fft(xi/n; c(i=y(2;
i=i+1; i1=i1+m;
end;
%如果无输出,则作图
if nargout<1;
cmax=max(abs(c;
ph=(0:5:360*pi/180;
plot(1.414*cos(ph,1.414*sin(ph,'c';
hold on;
for i=1:length(c;
ph=ph0-angle(c(i;
a=abs(c(i/cmax*1.414;
plot(a*cos(ph,a*sin(ph,'r*';
end;
plot([-1.5 1.5],[0 0],'k:',[0 0],[-1.5 1.5],'k:'; hold off; axis equal; axis([-1.5 1.5 -1.5 1.5]; end;。