2019-2020学年八年级数学上册 平方差公式教案 新人教版.doc
- 格式:doc
- 大小:208.00 KB
- 文档页数:2
2019-2020学年八年级数学上册《15.2.1平方差公式(一)》教案人教新课标版1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重、难点与关键1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.3.关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程(一)学生动手,得到公式1. 计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)2.提出问题:观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?2.特点:等号的一边:两个数的和与差的积,等号的另一边:是这两个数的平方差3.再试一试:【学生自己出相似的题目加以验证】4.得到结论(a+b)(a-b)=a2-ab+ab-b2=a2-b2.即(a+b)(a-b)=a2-b2 【1】(二)熟悉公式1.下列哪些多项式相乘可以用平方差公式?【2】23)(2(ba3a-b-)+)(3)+)322(bba-ab--a+a+2(b3)(23)((c+)a+bb-+b-c-+ca-aa3a)(2)3(b2bb)((ca---)1.认清公式:在等号左边的两个括号内分别没有符号变化的集团是a,变号的是b(三)运用公式1.直接运用例:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)【3】2.简便计算例:(1)102×98【3】 (2)(y+2)(y-2)-(y-1)(y+5)3. 练习: P153 练习1,2)2)(2(x y y x +--- )25)(52(x x -+)25.0)(5.0)(5.0(2++-x x x 22)6()6(--+x x 【4】100.5×99.5 99×101×10001四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a ,•第二个数b ;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破1. 课本P156第1、2题.2.备用题 1..证明:两个连续奇数的积加上1一定是一个偶数的平方2.求证:22)7()5(--+m m 一定是24的倍数七、教学反思:。
2019-2020学年八年级数学上册14.2.1平方差公式教案(新人教版) 教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.教学重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.教学难点:平方差公式的应用.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程一、创设情境,引入新课同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a -b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a 和b ,只有正确找到a 和b ,•一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:课本P108例1引导学生一定先找出公式中的a 和b ,而后套公式【例2】计算:课本P108例2补充:(3x -y )(3y -x )-(x -y )(x+y )通过做题,应该总结出:在两个因式中,符号相同的一项作a ,符号不同的一项作b .三、随堂练习,巩固新知课本P108练习第1、2题. 四、当堂检测1、选择(1).以下各式中, 不能用平方差公式计算的是( ).A.)32)(23(a b b a -+B.)34)(34(22bc b bc a +-C.)23)(32(b a b a +-D.)35)(53(m m -+ (2).下列各计算中正确的是( ).A 222)2)(2(b a b a b a -=-+ B.14)21)(12(2-=--x x xC.22))((a b b a b a -=+-+D.22))((b a b a b a --=--+(3).若( ) 24225)5(x y y x -=+,则括号内应填的代数式是( ).A.25y x --B.25y x +C.25y x -D.25y x +- (4).2006200420052⨯-的计算结果是( ).A.1-B.1C.2-D.22.利用平方差公式计算 )3)(3( )1(ab c c ab +-+)32)(32()23)(23( )2(y x y x y x y x -+-+-)43)(34()52)(25)(3(23322332x y y x x y y x --+--+-)3)(9)(3)(4(2++-x x x5.195.20 )5(⨯200720092008 )6(2⨯-选做: ()()()()121212742+++·…·()1264+ 五、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a ,•第二个数b ;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破课本P112第1题.板书设计。
14.2.1 平方差公式教案2022-2023 学年人教版八年级数学上册一、教学目标1.理解平方差公式的含义和原理。
2.掌握平方差公式的推导和运用方法。
3.能够解决与平方差公式相关的数学问题。
二、教学准备1.教师准备:黑板、彩色粉笔、课件等。
2.学生准备:教材、笔、笔记本等。
三、教学过程步骤一:导入新知在上节课的学习中,我们学习了两个数的平方和公式,你们还记得它是什么吗?请同学们回忆一下。
步骤二:引入平方差公式1.引导学生思考:如果我们知道一个数的平方和另一个数的平方,能否求出这两个数的差呢?2.出示以下问题:已知一个数的平方和另一个数的平方,求这两个数的差。
请同学们思考一下,有没有什么方法可以求得这个差值?3.教师解决问题:假设已知两个数的平方分别为 a 和 b,而我们要求的差值为 a - b,我们可以进行如下变形: a - b = (a + b) * (a - b) / (a + b) =(a^2 - b^2) / (a + b) = [(a - b)(a + b)] / (a + b) = a - b 最后的结果刚好是我们要求的差值。
这个公式就是平方差公式。
步骤三:导练1.请同学们打开教材第 XX 页,进行平方差公式的导练。
每个同学独立完成,然后交换答案核对。
2.教师巡视答题过程,找出常见的错误,并进行解答和讲解。
步骤四:拓展应用1.出示课件,给出一个实际问题:求两个连续整数的差的平方。
2.引导学生思考解题方法,然后进行讲解:假设这两个连续整数分别为 n 和n+1,根据平方差公式,我们可以得到: (n + 1)^2 - n^2 = [(n + 1) - n][(n + 1) + n] = 2n + 1 因此,两个连续整数的差的平方等于 2n + 1。
3.继续出示一些类似的问题,让学生尝试解答,并进行讲解。
步骤五:总结1.请同学们回顾今天的内容,总结平方差公式的原理和运用方法。
2.教师进行总结,强调学生掌握平方差公式的重要性,并鼓励他们多进行练习。
2019-2020年八年级数学上册14.2乘法公式14.2.1平方差公式教案新版新人教版教学目标:理解乘法的平方差公式,并能运用平方差公式进行简单的运算.重点:平方差公式的推导和应用.难点:理解平方差公式的结构特征,灵活应用平方差公式.教学流程:一、情境引入灰太狼开了一家租地公司,一天他把一边长为a米的正方形土地,租给慢羊羊种植,有一年,他对慢羊羊说,我把这块地的一边增加5米,另一边减少5米,再继续租给你,租金不变,这样你也没吃亏,你看如何,慢羊羊一听觉得没有吃亏,就答应了.慢羊羊回到羊村,就把这件事对喜羊羊他们讲了,喜羊羊一听马上说,“村长,您吃亏了!”慢羊羊村长很吃惊的问道:“啊,那我吃亏了多少?”沸羊羊说道:“我来帮您算算,”喜羊羊还没等沸羊羊开始算就说到:“不用算啦,村长亏了25平方米!”沸羊羊不解道:“你怎么算的这么快呀?”。
二、知识回顾1.说一说多项式乘以多项式的计算法则?答案:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.填空(1)(1)(1)________;(2)(2)(2)________;(3)(21)(21)________.x x m m x x +-=+-=+-=答案:(1);(2);(3)三、探究问题:观察下面等式,你能发现什么规律?222112222(1)()()1;(2)()()4;(3)()(1.1)41x m x x m m x x x +-=-+-=-+-=-归纳:乘法的平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.图形演示:尝试计算:,解:222(1).(32)(32)(3)294x x x x +-=-=- 2222(2).(2)(2)()(2)4x y x y x y x y -+--=--=-练习:1.下列各式中,能用平方差公式计算的是( )A .(2x -3y )(-2x +3y )B .(-3x +4y )(-4y -3x )C .(x -y )(x +2y )D .(x +y )(-x -y )答案:B2.下面各式的计算对不对?如果不对,应当怎样改正?22222223232323222323294(1)()()(2)()()9(3)()()(4)()(49)4a a a a a a b a x x x b b x a a x x +-=--=+-=---=----答案:(1)√;(2)×;22222323()()46694129a b a b a ab ab b a ab b --=--+=-+(3)×,22222()()24x x x x +-=-=-(4)×,23232232349()()()()a a a a a ---=---+=- 3.计算:(2)(2)(1)(5);(2)1(02981).y y y y +---+⨯ 解:2222222(1)(2)(2)(1)(5)2(45)44541(2)10298(1002)(1002)10021000049996y y y y y y y y y y y +---+=--+-=---+=-+⨯=+-=-=-= 四、应用提高计算(x 4+1)(x 2+1)(x +1)(x -1)的结果是( )A.x 8+1B.x 8-1C.(x +1)8 D.(x -1)8答案:B提示: 42422448(1)(1)(1)(1)(1)(1)(1)(1)(1)1x x x x x x x x x x ===+++-++-+--五、体验收获今天我们学习了哪些知识?1.说一说乘法的平方差公式?2.应用平方差公式时要注意什么?六、达标测评1.下列计算正确的是( )A .(x +3)(x -3)=x 2-6B .(3x +2y )(3x -2y )=3x 2-2y 2C .(m -n )(-m -n )=m 2-n 2D .(34a +43b )(43b -34a )=169b 2-916a 2答案:D2.如图①,在边长为a 的正方形纸片中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的公式是( )A.a 2+b 2=(a +b )(a -b )B.a 2-b 2=(a +b )(a -b )C.(a +b )2=a 2+2ab +b2 D.(a -b )2=a 2-2ab +b 2答案:B 3.计算:()1911119(222()()(3)(3)55)p q s q t t s p ---+-; 解: 2222(1)(911)(119)(119)(119)(11)(9)12181s t t s t s t s t s t s ==-=-+-+-222222(2)(3)(3)5522(3)(3)552()(3)54925p q p q q p q p q p q p ---=-+--=--=- 4.先化简,再求值:a (3-a )-(1-a )(1+a ).2222(3)(1)(1)3(1)3131a a a a a a a a a aa ---+=---=--+=-解:当a =2时,原式=3×2-1=5.七、布置作业教材108页练习题第2题.`27735 6C57 汗25502 639E 掞32284 7E1C 縜25949 655D 敝24778 60CA 惊32200 7DC8 緈O"29605 73A5 玥221037 522D 刭22377 5769 坩34432 8680 蚀。
2019-2020学年八年级数学上册 15.2.1平方差教学案人教新课标版【学习目标】:1、经历探索平方差公式的过程,体会数形结合思想。
2、能理解并熟练运用平方差公式进行计算。
【学习重点和难点】:重点:平方差公式的推导和应用。
难点:理解平方差公式的结构特征,灵活运用平方差公式。
教学过程设计(一)创设情境,引出课题问题1:计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= ;(2)(m+2)(m-2)= ;(3)= ;(4)(2x+1)(2x-1)= .(二)探索新知,尝试发现问题2:思考:1、(1)等号左边相乘的两个因式有什么特点?(2)你发现了什么运算规律?你能通过它直接写出下式的结果吗?(a+b)(a-b)=2.你能用文字语言叙述这个规律吗?3、符号语言:_________________________________________注:这里的两数可以是两个单项式也可以是两个多项式等等.问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系例1.运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(b-2a) (3)(-x+2y)(-x-2y)(三)巩固运用,内化新知问题5:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b)(2)(3)(-m+n)(m-n);(4);(5);(6).问题6:判断下列计算是否正确:(1)(2a–3b)(2a–3b)=4a2-9b2()(2)(x+2)(x –2)=x2-2 ()(3)(-3a-2)(3a-2)=9a2-4 ()(4)()问题7:计算:(1)(2x +3)(2x-3);解:(1)(2x + 3)(2x –3)(2)(b+2a)(2a-b)(3)(四)拓展深化,发展思维问题8:利用平方差公式进行计算:(1)98×(-102);(2)(y+2)(y-2)-(y+5)(y-5) (3)20012-19992(五)小试牛刀,挑战自我1.计算:(1)(x+y)(x-y)+(2x+y)(2x+y)(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7) (4)(2x-5)(x-2)+(3x-4)(3x+4)2.在下列括号中填上合适的多项式:4.已知:两个正方形的周长之和等于32cm,它们的面积之差为48cm2,求这两个正方形的边长.5.如果x2-y2=20,x+y=4,求x-y的值教学反思。
2019-2020年八年级数学上册《乘法公式-平方差公式》教案人教新课标版
教学设计说明:
本章的学习目标主要是熟练掌握整式的运算,且这些知识是以后学习分
式、根式运算以及函数等知识的基础,而本节是整式乘法中乘法公式的首要
内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过
程,才能实现本节乃至本章作为数学工具的重要作用。
因此,在教学安排上
,选择从学生遇到的数学计算问题提出问题,从特殊多项式乘法,使学生经
历观察思考的过程,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法基础上,推导公式,使原本枯燥的数学概念,具有
一定实际意义和说理性。
运用平方差公式表示图形面积,体现了数形结合的
思想方法,之后安排一系列例题和练习题,把新知运用到实战中去,既调动
学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识,解决问题的能力,从而达到较好的授课效果。
本节公式中字母的含义对学生来讲很抽象,是本节难点,通过巩固练习,
让学生逐步体会,乘法公式逆用是因式分解的重要方法,因此,练习中,渗透了这部分知识,为后面学习因式分解做好铺垫。
-----如有帮助请下载使用,万分感谢。
平方差公式-人教版八年级数学上册教案一、教学目标1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。
二、教学重点和难点教学重点1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。
教学难点1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。
三、教学内容及步骤教学内容1.平方差公式的含义;2.计算两数之差的平方。
教学步骤第一步:引入1.老师出示一道题目:“已知a=5,b=7,求(a−b)2的值。
”2.学生思考并回答:(a−b)2=(5−7)2=4。
3.老师引导学生思考:是否这道题目可以用一种更简便的方法来计算呢?第二步:讲解平方差公式1.老师出示平方差公式:(a−b)2=a2−2ab+b2。
2.老师讲解公式的含义:将a2、−2ab、b2三个量相加就得到(a−b)2的值。
3.老师对公式进行分解和讲解:(a−b)2可以分解为一个平方数减去两倍的一个数乘以另一个数再加上一个平方数。
4.老师通过样例演示,使学生理解和掌握平方差公式的运用。
第三步:练习1.老师让学生通过练习,巩固平方差公式的运用。
2.老师在课上布置作业,要求学生运用平方差公式计算两数之差的平方。
四、课堂小结1.通过本节课的讲解,学生理解并掌握了平方差公式的含义和运用;2.学生通过课上练习,巩固和加深了对平方差公式的理解和掌握;3.学生在作业中进一步加深了对平方差公式的理解和掌握。
五、课后作业1.完成课上作业;2.再次练习平方差公式的运用;3.预习下一节课内容。
平方差公式教案教学设计(优秀7篇)《平方差公式》教学反思篇一教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1、(1)用较简单的代数式表示下图纸片的面积。
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:沿hd、gd裁开均可,但一定要让学生在裁开之前知道hd=bc=gd=fe=a-b,这样裁开后才能重新拼成一个矩形。
希望推出公式:a2-b2=(a+b)(a-b)2、(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异。
说明:平方差公式的数学表达式在使用上有三个优点:(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。
因而也就“欠”明确(如结果不知是谁与谁的平方差)。
故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。
3、判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)平方差公式的教学设计篇二学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律。
第十四章整式的乘法与因式分解·14.3因式分解·第二课时平方差公式教案班级:课时:课型:一、学情分析平方差公式是最基本、用途最广泛的公式之一,它在整式乘法、因式分解、分式运算及其他代数式的变形中起十分重要的作用.但是这一阶段的学生抽象思维能力还不够完整,需要在教师的引导下进行探索.二、教学目标1.探索并运用平方差公式进行因式分解,体会转化思想;2.会综合运用提公因式法和平方差公式对多项式进行因式分解.三、重点难点【教学重点】运用平方差公式分解因式.【教学难点】综合运用提公因式法与平方差公式来分解因式.四、教学过程设计第一环节【复习旧知引入新课】1.师:因式分解的定义?生:把一个多项式分解成几个整式的积的形式.2.师:提公因式法的定义?生:在一个多项式中,若各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.3.5ab3+20ab2的公因式是什么?(答案)5ab2(b+4).4.x2-1和4m2-n2可以用提公因式法分解吗?设计意图:通过师生互动共同回顾上节课所学知识,避免学生遗忘知识,同时为这节课所学知识做铺垫.第二环节【合作交流探索新知】1.观察多项式x2-1和4m2-n2,试着用已经学过的知识找出他们之间有什么特点?学生通过因式分解发现x2-1可以变成(x-1)(x+1),4m2-n2可以变成(2m-n)(2m-n),老师引出平方差概念.(答案)都可以写成a2-b2(两个数的平方差)的形式.x2-1=x2-12和4m2-n2=(2m)2-n2.2.师:你能将a2-b2分解因式吗?学生思考后将其变成(a-b)(a+b),老师给出互逆过程,给出相关概念.两个数的平方差,等于这两个数的和与这两个数的差的积.这种分解因式的方法称为公式法.3.下列多项式能用平方差公式法进行因式分解吗?x2-1=4m2-n2=-4m2-9=x2-(x+y)2=(答案)x2-1=(x+1)(x-1)4m2-n2=(2m)2-n2=(2m+n)(2m-n)-4m2-9不能转变为平方差形式x2-(x+y)2=[x+(x+y)][x-(x+y)]=-y(2x+y)4.老师带领学生进行知识归纳,让学生印象更加深刻.因式分解的平方差公式:公式中的ɑ,b可以是单独的数字、字母,也可以是单项式、多项式.5.师:多项式2x2-8y2怎么分解?老师强调:如果多项式的各项含有公因式,那么先提公因式,且必须分解到不能分解为止.设计意图:通过观察两个多项式运用因式分解引出平方差的概念,再由特殊到一般总结规律.通过几道习题让学生能够熟悉的运用公式法进行因式分解,让学生更清楚哪些式子是不能用平方差公式法.第三环节【应用迁移巩固提高】例1:(1) 4x2-9;(2)(x+p)2-(x+q)2 .例2.把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.例3.分解因式:(1)x4-y4;(2)ɑ3b-ɑb.设计意图:本环节通过三道例题的练习,考察学生对平方差公式法运用的熟练程度,巩固基础.【答案】例1.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式= [(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2.(1)解:原式= [3(m+n)]2-(m-n)2=(4m+2n)(2m+4n)= 4(2m+n)(m+2n);(2)原式= 2x(x2-4)= 2x(x+2)(x-2).例3.(1)解:原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y);(2)原式=ɑb(ɑ2-1)=ɑb(ɑ+1)(ɑ-1).第四环节 【随堂练习 巩固新知】1.下列多项式不能用平方差公式分解因式的是( )A.-ɑ2+b 2B.16m 2-25m 4C.2x 2-21y 2D.-4x 2-92.下列各式能用平方差公式分解因式的是( )A .2x 2+y 2B .-x 2+y 2C .-x 2-y 2D .x 3+(-y )23.将(ɑ-1)2-1 分解因式,结果正确的是( )A.ɑ(ɑ-1)B.ɑ(ɑ-2)C.(ɑ-2)(ɑ-1)D.(ɑ-2)(ɑ+1)4.分解因式:x 2y 2-49 = ;5.分解因式:-25ɑ2+9b 2 = .设计意图:本环节在于夯实基础,通过解答简单练习让学生在习题中找到学习的乐趣,增强学生学习的主动性.【答案】1.D2. B3.B4.(xy+7)(xy-7)5.(3b+5ɑ)(3b-5ɑ)第五环节【当堂检测及时反馈】1.(2019秋•乳山市期末)下列多项式,不能用平方差公式分解因式的是()A.a2b2-1 B.4-0.25a2C.-x2+1 D.-a2-b22.(2019•贺州)把多项式4a2-1 分解因式,结果正确的是()A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)23.把ɑ3-4ɑ分解因式,结果正确的是()A.ɑ(ɑ2-4)B.(ɑ+2)(ɑ-2)C.ɑ(ɑ+2)(ɑ-2)D.ɑ(ɑ+4)(ɑ-4)4.(2019春•金坛区期中)已知x-y= 3,y-z= 2,x+z= 4,则代数式x2-z2的值是()A.9 B.18 C.20 D.245.下列分解因式正确的是()A.ɑ2-2b2=(ɑ+2b)(ɑ-2b)B.-x2+y2=(-x+y)(x-y)C.-ɑ2+9b2=-(ɑ+9b)(ɑ-9b)D.4x2-0.01y2=(2x+0.1y)(2x-0.1y)6.(珠海·中考)因式分解:ɑx2-ɑy2=.7.(2020•哈尔滨模拟)分解因式:-(a+2)2+16(a-1)2=.8.(2020秋•广西期中)运用公式“a2-b2=(a+b)(a-b)”计算:9992-1 =,99982=.9.把下列各式分解因式:(1)(a-1)+a2(1-a);(2)x5-16x.10.已知4m+n= 40,2m-3n= 5.求(m+2n)2-(3m-n)2的值.设计意图:通过本环节的练习,深化学生对平方差公式的运用,同时让学生体会到公式法的优越性.【答案】1.D2.B3.C4.C5.D6.ɑ(x+y)(x-y)7.3(5a-2)(a-2)8.998000;999600049.解:(1)原式=(a-1)-a2(a-1)=(a-1)(1-a2)=(a-1)(1+a)(1-a)=-(a-1)2(1+a);(2)原式=x(x4-16)=x[(x2)2-42]=x(x2+4)(x2-4)=x(x2+4)(x+2)(x-2).10.解:(m+2n)2-(3m-n)2=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),当4m+n= 40,2m-3n= 5 时,原式=-40×5 =-200.第六环节【拓展延伸能力提升】1.利用因式分解计算:1002-992+982-972+962-952+…+22-12.2.已知乘法公式a5+b5=(a+b)(a4-a3b+a2b2-ab3+b4);a5-b5=(a-b)(a4+a3b+a2b2+ab3+b4).利用或者不利用上述公式,分解因式:x8+x6+x4+x2+1.设计意图:本环节习题在于考察学生能够灵活的运用公式法求解,对式子的转化能力要求较高.【答案】1.解:原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1)= 100+99+98+97+…+2+1= 5050.2.解:x 10-1=(x 5)2-1=(x 2)5-1=(x 2-1)(x 8+x 6+x 4+x 2+1),则有x 8+x 6+x 4+x 2+1=11210--x x =()()()()111155-+-+x x x x= (x 4+x 3+x 2+x +1)(x 4-x 3+x 2-x +1).第七环节 【总结反思 知识内化】课堂小结:1.利用平方差公式分解因式: ɑ2-b 2 = (ɑ+b )(ɑ-b ).2.因式分解的步骤是:首先提取公因式,然后考虑用公式法.3.因式分解应进行到每一个因式不能分解为止.4.将因式分解应用到计算中,简化计算.设计意图:通过知识小结,使学生梳理本节课所学内容,理解本课核心知识,提高学习质量.第八环节 【布置作业 夯实基础】。
2019-2020学年(秋季版)八年级数学上册 14.2.1 平方差公式学案(新版)新人教版学习目标:1、掌握平方差公式的结构特征,能运用公式进行简单运算;2、在探索平方差公式的过程中,培养符号感和推理能力3、在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美。
学习重点:平方差公式的推导和应用学习难点:理解平方差公式的结构特征,灵活运用平方差公式.一、情景引入: 老王在某开发商处预定了一套边长为x 米的正方形户型,到了交房的日子,开发商对老王说:“ 你定的那套房子结构不好,我给你换一个长方形的户型,比原来的一边增加5米,另一边减少5米,这样好看多了,房子总价还一样,你也没有吃亏,你看如何?”老王一听觉得没有吃亏,就答应了。
(X-5)m(X-5) m二、自学指导:结合下列问题,学习课本P107-108,(6分钟):1、完成P107“探究”,理解平方差公式的 推导过程和结论;2、完成P107“思考”,会用几何图形说明公式的意义;3、学习例1,掌握平方差公式的结构特征,学习例2,学会把复杂的运算适当 变形成适用平方差公式的运算。
三、合作交流、探索新知计算下列多项式的积,回答下列3个问题:(1)(x+1)(x-1)= (2)(m+2)(m-2)=(3)(2x+1)(2x-1)= (4)(x+1)(2x-3)=1、观察(1)-(3)题你能发现什么规律?2、观察(1)-(3)和(4)题中的乘式中有什么异同点?3、什么情况下才能用平方差公式?四、自学检测(一):1、运用平方差公式计算:(1)(3X +2)(3X -2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)2 计算: (1) 102×98; (2) (y+2) (y-2) – (y-1) (y+5) .完成以上两道题并思考下列问题: ?x 米(1)公式的字母a 、b 有什么特点?(2)表面上不能应用公式的式子怎么办?(3)应用平方差公式时要注意一些什么自学检测(二):基础巩固:1.下面各式的计算对不对?如果不对,应当怎样改正(1)(x+2)(x-2)=x 2 -2 (2)(-3a-2)(3a-2)=9a 2 - 42.口答:(a-b)(b+a) (-a-b)(-a+b) (-a+b)(a+b) (a-b)(-a-b)3.计算:(1)(a+3b)(a-3b) (2) (a 2+1)(a-1)(a+1) (3) 51×49 (4) (x+y-z)×(x-y-z)综合运用:4、若x-y=1,x 2-y 2=1,则x+y=_______.5、已知x-y=2,y-z=4,x+z=14,求x 2-z 2的值。
2019-2020年(秋)八年级数学上册 14.2.1 平方差公式教案(新版)新人教版【知识与技能】会推导平方差公式,并能运用公式进行简单的运算.【过程与方法】1.在探究平方差公式的过程中,培养符号感和推理能力.2.培养学生观察、归纳、概括的能力.【情感态度】在计算过程中发现规律,用数学符号表示,感受数学的简洁美.【教学重点】平方差公式的推导和应用.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.一、情境导入,初步认识出示下列习题,由学生分组完成:1.计算:(x+3)(x-3),(t+2)(t-2),(3y+1)(3y-1),(x+y)(x-y).2.试用简便方法求结果:(1)2001×1999=_____;998×102=_______.【教学说明】根据多项式乘以多项式法则可求得题1,题2根据题目特点,把因数变形得2001×1999=(2000+1)(2000-1)=20002-1×2000+1×2000+1×(-1)=20002-1=3999999.要求学生以小组为单位,共同探究上述过程的结构特征与变化特征,并从中总结出一般性规律来.教师讲课前,先让学生完成“名师导学”.二、思考探究,获取新知由学生进行充分的交流探讨后,师生共同归纳.上述结构的式子用公式表示为:(a+b)(a-b)=a2-b2,即两个数的和与这两个数的差的积,等于这两个数的平方差,称之为平方差公式.(1)推导:(a+b)(a-b)=a2-ab+ab-b2=a2-b2.(2)公式特点:左边是两个二项式相乘,这两项中有一项是相同的,另一项互为相反数,右边是乘式中两项的平方差(相同数的平方减去互为相反数的平方).(3)公式中的a、b可以是数、单项式或多项式.(4)符合平方差公式特点的乘法式子可直接套用公式.例1下列两个多项式相乘,哪些可用平方差公式,哪些不能?能用平方差公式计算的,写出计算结果.(1)(2a-3b)(3b-2a);(2)(-2a+3b)(2a+3b);(3)(-2a-3b)(-2a+3b);(4)(2a+3b)(2a-3b);(5)(-2a-3b)(2a-3b);(6)(2a+3b)(-2a-3b);【分析】两个多项式因式中,如果一项相同,另一项互为相反数就可用平方差公式.解:(1)(6)不能用平方差公式,(2)(3)(4)(5)可以用平方差公式.例2计算:(1)59.9×60.1;(2)102×98.【分析】(1)中的两个因式分别变成60-0.1和60+0.1,再用平方差公式计算;(2)中两个因式分别可转化成100+2与100-2.【教学说明】运用平方差公式计算,先要观察所要计算的式子(或经转化后的式子)是否具有平方差公式的结构特征,然后套用公式计算.例3利用平方差公式计算下列各题.(1)(2x+1)(2x-1)-3x2.(2)(1-2x)(1+2x)(1+4x2)(1+16x4).【分析】(1)中的乘法计算可用平方差公式;(2)应先进行(1-2x)(1+2x)的计算,再逐步应用平方差公式求得结果.三、运用新知,深化理解1.计算下列各题.2.利用平方差公式计算下列各题:(1)499×501;(2)2002×2004-20032.3.请认真分析下面一组等式的特征:1×3=22-1,3×5=42-1,5×7=62-1,……猜想这一组等式有什么规律.将你猜想到的规律用一个只含字母n的式子表示出来.【教学说明】要求学生独立完成上述各题,再与小组成员交流,查漏纠错.四、师生互动,课堂小结阅读下列材料,回忆巩固平方差公式.平方差公式的几何意义也就是利用图形来表示公式.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式就是平方差公式,即(a+b)(a-b)=a2-b2.1.布置作业:从教材“习题14.2”中选取部分题.2.完成创优作业本课时的“课时作业”部分.平方差公式体现了特殊多项式相乘的结果,教师可引导学生由多项式乘法法则推出,然后引导学生观察公式的结构特征,从本质上认识符合公式特征的多项式相乘,以便于灵活解决实际问题.。
2019-2020学年八年级数学上册平方差公式教案新人教版
教学目标:经历探索平方差公式的过程;会推导平方差公式,并能运用公式进行简单的运算,培养学生观察、归纳、概括的能力.
教学重点与难点:平方差公式的推导和应用;理解平方差公式的结构特征,灵活应用平方差公式.
教学过程:
一、学生动手,得到公式
1.计算下列多项式的积:
①(x+1)(x−1);②(m+2)(m−2);③(2x+1)(2x−1)
①(x+1)(x−1) = x2−x+x−1 = x2−1
②(m+2)(m−2) = m2− 2m+ 2m−4 = m2−4
③(2x+1)(2x−1) = 4x2−2x+2x−1 = 4x2−1
2.提出问题:
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?
3.特点:
等号的一边:两个数的和与差的积,等号的另一边:是这两个数的平方差
4.得到结论:(a+b)(a−b) = a2−ab+ab−b2 = a2−b2.
即(a+b)(a−b) = a2−b2,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.
二、熟悉公式
下列哪些多项式相乘可以用平方差公式?
①( 2a+3b)( 2a−3b);②(− 2a+3b)( 2a−3b);③(− 2a+3b)(− 2a+3b);④(−
2a−3b)( 2a−3b);⑤(a+b+c)(a−b+c);⑥(a−b−c)(a+b−c)
学生讨论并回答,教师总结,其中①④⑤⑥可以用平方差公式
认清公式:在等号左边的两个括号内分别没有符号变化的部分是a,变号的部分是b
三、公式的几何关系
思考:你能根据右图中的面积说明平方差公式吗?
学生讨论并回答,教师总结:
(a+b)(a−b)为长方形①与③的面积和
a2−b2则是长方形①与②的面积和
而长方形②与③的是形状大小完全一样的两个长方形,面积相等
所以(a+b)(a−b) = a2−b2
四、运用公式
直接运用
例:①(3x+2)(3x−2);②(b+ 2a)( 2a−b);③(−x+2y)(−x−2y)
解答:①(3x+2)(3x−2) = 9x2−4
②(b+ 2a)( 2a−b) = 4a2−b
③(−x+2y)(−x−2y) = (−x)2−(2y)2 = x2−4y2
简便计算
例:①102×98;②(2+1)(22+1)(24+1)(28+1)(216+1)+1
解答:①102×98 = (100+2)(100−2) = 10000−4 = 9996
②(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (22−1)(22+1)(24+1)(28+1)(216+1)+1
= (24−1)(24+1)(28+1)(216+1)+1
= (28−1)(28+1)(216+1)+1
= (216−1)(216+1)+1
= 232−1+1 = 232.
五、小结:
平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即(a+b)(a−b) = a2−b2.。