上海市2015高考数学模拟卷(格致中学)文科
- 格式:doc
- 大小:507.50 KB
- 文档页数:4
上海市杨浦区2015届高三一模数学文含答案XXX年度第一学期高三年级学业质量调研数学学科试卷(文科)考生注意:1.答卷前,务必在答题纸上写上姓名、考号,并将核对后的条形码贴在指定位置上。
2.本试卷共有23道题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知sinα=1/2,α∈(0,π),则α=π/6.2.设A={x|1≤x≤3},B={xm+1≤x≤2m+4,m∈R},A⊆B,则m的取值范围是[-1,3)。
3.已知等差数列{an}中,a3=7,a7=3,则通项公式为an=-2n+11.4.已知直线l经过点A(1,-2)、B(-3,2),则直线l的方程是y=-x-1.5.函数f(x)=x^2-1(x<0)的反函数f^-1(x)=√(x+1)(x≥1)。
6.二项式(x-1/2)^4的展开式中的第4项是6x^2-12x+5/16.7.不等式log2(x-3)+x>2的解是(3,∞)。
8.已知条件p:x+1≤2;条件q:x≤a,若p是q的充分不必要条件,则a的取值范围是(-∞,1]。
9.向量a=(2,3),b=(-1,2),若ma+b与a-2b平行,则实数m=1/2.10.一家5口春节回老家探亲,买到了如下图的一排5张车票:6排A座 | 6排B座 | 6排C座 | 走廊 | 6排D座 | 6排E座| 窗口 | 窗口 |其中爷爷行动不便要坐靠近走廊的座位,小孙女喜欢看风景要坐靠窗的座位,则座位的安排方式一共有60种。
11.已知一个铁球的体积为36π,则该铁球的表面积为54π。
12.已知集合A={z|z=1+i+i^2+。
+in,n∈N*},则集合A的子集个数为2^n-1.13.设△ABC的内角A,B,C所对的边分别为a,b,c。
若(a+b-c)(a+b+c)=ab,则角C=π/3.14.如图所示,已知函数y=log2(4x)图像上的两点A,B和函数y=log2(x)上的点C,线段AC平行于y轴,三角形ABC 为正三角形时,点B的坐标为(-1,2),则实数p=-1/4.值为_______________。
2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)(扫描二维码可查看试题解析)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=.2.(4分)(2015•上海模拟)函数的定义域是.3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是.7.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为.8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)9.(4分)(2015•上海模拟)若(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为.10.(4分)(2015•上海模拟)设口袋中有黑球、白球共7 个,从中任取2个球,已知取到至少1个白球的概率为,则口袋中白球的个数为.11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为.12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有个.13.(4分)(2015•上海模拟)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+a5+…+a2011+a2013+a2015=.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B16.(5分)(2015•上海模拟)用反证法证明命题:“已知a 、b ∈N *,如果ab 可被 5 整17.(5分)(2015•上海模拟)实数x 、y 满足x 2+2xy+y 2+x 2y 2=1,则x ﹣y 的最大值18.(5分)(2015•上海模拟)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围[﹣+2[+2三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)(2015•上海模拟)已知正四棱柱ABCD ﹣A 1B 1C 1D 1,底面边长为,点P 、Q 、R 分别在棱AA 1、BB 1、BC 上,Q 是BB 1中点,且PQ ∥AB ,C 1Q ⊥QR (1)求证:C 1Q ⊥平面PQR ;(2)若C 1Q=,求四面体C 1PQR 的体积.20.(14分)(2015•上海模拟)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n} 的前n项和S n=2n2+2n,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.21.(14分)(2015•上海模拟)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A类波“中有一个是f1(x)=sinx,从A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.22.(16分)(2015•上海模拟)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)当a2+b2=1时,函数y=f(x)存在零点x0,求x0的取值范围.23.(18分)(2015•上海模拟)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;(2)设曲线C与x轴的交点是M、N,抛物线E:y=x2+1与y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),将Y i中的所有元素相加(若Y i中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.2015年上海市十二校联考高考数学模拟试卷(文科)(3月份)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分. 1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=0.2.(4分)(2015•上海模拟)函数的定义域是(0,1].3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.•×=故答案为:4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.=27.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a 的取值范围为﹣3≤a≤9.﹣﹣﹣﹣8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)9.(4分)(2015•上海模拟)若(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为(0,5).10.(4分)(2015•上海模拟)设口袋中有黑球、白球共7 个,从中任取2个球,已知取到至少1个白球的概率为,则口袋中白球的个数为3.﹣,由此能求出口袋,11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.x==AB••12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.sinx=x=x=,,,+C)()即可.,sinx=x=x=,,,+C)()13.(4分)(2015•上海模拟)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+a5+…+a2011+a2013+a2015=0.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.,﹣+)与(﹣,)和(﹣a+,)和(﹣)的距离,即..二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B中的元素16.(5分)(2015•上海模拟)用反证法证明命题:“已知a 、b ∈N *,如果ab 可被 5 整除,222218.(5分)(2015•上海模拟)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,[﹣+2[+2+2+2[22三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤. 19.(12分)(2015•上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.,由,,BR=QR=.20.(14分)(2015•上海模拟)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n} 的前n项和S n=2n2+2n,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.,∴,因此,,时,=4n21.(14分)(2015•上海模拟)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A类波“中有一个是f1(x)=sinx,从A类波中再找出两个不同的波(每两个波的初相φ都不同)使得这三个不同的波叠加之后是“平波”,即叠加后y=0,并说明理由.则:即:所以:则:即:得到:=此时:,+22.(16分)(2015•上海模拟)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)当a2+b2=1时,函数y=f(x)存在零点x0,求x0的取值范围.[,)≥≥[23.(18分)(2015•上海模拟)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上,求正方形ABCD的面积;(2)设曲线C与x轴的交点是M、N,抛物线E:y=x2+1与y 轴的交点是G,直线MG与曲线E交于点P,直线NG 与曲线E交于Q,求证:直线PQ过定点(0,3).(3)设曲线C与x轴的交点是M(u,0)、N(v,0),可知动点R(u,v)在某确定的曲线上运动,曲线与上述曲线C在a≠0时共有4个交点,其分别是:A(x1,|x2)、B(x3,x4)、C(x5,x6)、D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),将Y i中的所有元素相加(若Y i中只有一个元素,则和是其自身)得到255个数y1、y2、…、y255,求y13+y23+…+y2553的值.1P的方程为:,y=,=0,因此1x+1,(﹣,x++=+n=3y=,如图所示,=0参与本试卷答题和审题的老师有:双曲线;若尘;wsj1012;qiss;刘长柏;1619495736;zlzhan;1457446928;sdpyqzh;wkl197822;孙佑中;sxs123;chenzhenji(排名不分先后)菁优网2015年4月16日。
【解析】()1f x =【提示】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期【考点】二倍角公式,三角函数的周期【答案】{}1,4 【解析】{UB x =<{}1,4UAB =【提示】由A 与B ,找出两集合的交集即可. 【考点】集合交集及其基本运算11【解析】()2f x =【提示】由原函数解析式把【考点】反函数.1sin 60=162a a ⎫⎪⎭【考点】立体几何的基本运算. 【解析】抛物线上的动点到焦点的距离等于动点到准线的距离【解析】12log (9x -且又2log (95)-1433x --+g【解析】条件要求男、女教师都有142332363636C +C C +C C 4515=+数目,再排除其中只有女教师的情况;即可得答案. 242246621(2)()C 2240x x ==. 求得r 值,则答案可求. 【解析】双曲线又C【解析】2a b c ++222a b c =++222a b a c b c +++22222a b c a c b c =++++2222()a b c c a b ++++,142cosc a b c a b c a b<+>=+++,1465cosc a b c a b<+>=++.2a b c ++的最大值为1465+. a b c ++的最大值为【提示】分别以a b ,所在的直线为【考点】平面向量的基本运算【解析】()sin 1f x x =当且仅当223())()f x x f x -+-m x ,满足120x x <<L 11【解析】22x x ++直接可得82(x +<它们的解集是相同的3112n b a +-)n λ-,。
格致中学 二〇一五届高考模拟考试试题高三年级 数学(理科) 试卷 (共4页)一、填空题:(本大题共14小题,每小题4分,满分56分)。
把答案直接填写在答题卷的相应位置上。
1 已知集合{}2≤=x x A ,⎭⎬⎫⎩⎨⎧≤-+=015x x x B ,则A B = .2 若函数)(x f y =与2x y e +=的图像关于直线x y =对称,则=)(x f .3 已知角α的终边上的一点的坐标为22(sin ,cos )33P ππ,则角α的最小正值为 . 4 已知z 和31z i+-都是纯虚数,那么=z . 5 若抛物线22y px =的焦点恰好是双曲线222x y -=的右焦点,则_______p =. 6 设{}n a 为等差数列,若π=++951a a a ,则28tan()a a +的值为.7 设整数m 是从不等式0822≤--x x 的整数解的集合S 中随机抽取的一个元素,记随机变量ξ2m =,则ξ的数学期望E ξ= .8 对于空间中的三条直线,有以下四个条件:①三条直线两两相交;②三条直线两两平行; ③三条直线共点;④两直线相交,第三条平行于其中一条与另个一条相交. 其中使这三条直线共面的充分条件有 个.9 圆sin cos (0,02)ρθθρθπ=->≤<的圆心的极坐标是 .10 已知12,F F 分别是椭圆2211612x y +=的左、右焦点,点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .11 把实数a 、b 、c 、d 排形成如a b c d ⎛⎫⎪⎝⎭的形式,称之为二行二列矩阵.定义矩阵的一种运算a b x ax by c d y cx dy +⎛⎫⎛⎫⎛⎫⋅=⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,该运算的几何意义为平面上的点(),x y 在矩阵a b c d ⎛⎫⎪⎝⎭的作用下变换成点(),ax by cx dy ++,若曲线22421x xy y ++=在矩阵11a b ⎛⎫ ⎪⎝⎭的作用下变班级____________姓名________________学号____________准考证号______________换成曲线2221x y -=,则a b +的值为____________.12 已知数列{}n a 满足:11a =,2()a x x N *=∈,21n n n a a a ++=-,若前2014项中恰好含有667项为0,则x 的值为 .13 在面积为2的ABC ∆中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上, 则2+⋅的最小值是 . 14 设函数()122014122014,()f x x x x x x x x =+++++++-+-++-∈R ,下列四个命题中真命题的序号是 .(1)()f x 是偶函数; (2)不等式()20132014f x <⨯的解集为∅; (3)()f x 在()0,+∞上是增函数; (4)方程2(56)(2)f a a f a -+=-有无数个实根. 二、选择题:(每题5分,共20分)15 如果i +2是关于x 的实系数方程02=++n mx x 的一个根,则圆锥曲线122=+ny m x 的焦点坐标是 ( ).A )0,1(± .B )1,0(± .C )0,3(± .D )3,0(±16 某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金 ( ).A 大于10g .B 小于10g .C 大于等于10g .D 小于等于10g17 某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( ).A 101 .B 201 .C 401 .D 120118 设函数()xxxf x a b c =+-,其中0,0c a c b >>>>.若,,a b c 是ABC ∆的三条边长,则下列结论中正确的是 ( ) ①对一切(),1x ∈-∞都有()0f x >;②存在x R +∈,使,,x x xxa b c 不能构成一个三角形的三条边长; ③若ABC ∆为钝角三角形,则存在()1,2x ∈,使()0f x =..A ①② .B ①③ .C ②③ .D ①②③三、解答题:(本大题共74分) 19(本小题12分)如图,棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且//AB CD ,90BAD ∠=,2PA AD DC ===,4AB =.(1)求证:BC PC ⊥;(2)求PB 与平面PAC 所成的角的正弦值.20(本小题14分)设ABC ∆三个内角,,A B C 所对的边分别为,,a b c .已知,cos cos 3C a A b B π==.(1)求角A 的大小;(2)如图,在ABC ∆的外角ACD ∠内取一点P ,使得2PC =.过点P 分别作直线,CA CD 的垂线,PM PN ,垂足分别是.设PCA α∠=,求PM PN +的最大值及此时α的取值.21(本小题14分)定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M >,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知函数()11124x xf x a ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭.(1)当1a =时,求函数()f x 在(),0-∞上的值域,并判断函数()f x 在(),0-∞上是否为有界函数,请说明理由;(2)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围.DCAP23(本小题16分)在平面直角坐标系xoy 中,已知三点(0,0)O ,(1,1)A -,(1,1)B ,曲线C 上任意—点(,)M x y 满足:14()2MA MB OM OA OB +=-⋅+.(1)求曲线C 的方程;(2)设点P 是曲线C 上的任意一点,过原点的直线l 与曲线相交于,M N 两点,若直线,PM PN 的斜率都存在,并记为PM k ,PN k .试探究PM PN k k ⋅的值是否与点P 及直线l 有关,并证明你的结论;(3)设曲线C 与y 轴交于,D E 两点,点(0,)Q m 在线段DE 上,点P 在曲线C 上运动. 若当点P 的坐标为(0,2)时,QP 取得最小值,求实数m 的取值范围.23(本小题18分)已知等比数列{}n a 的首项12013a =,公比12q =-,数列{}n a 前n 项和记为n S ,前n 项积记为n T . (1)证明:21n S S S ≤≤;(2)求n 为何值时,n T 取得最大值;(3)证明:若数列{}n a 中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为12,,,n d d d ,则数列{}n d 为等比数列.。
2015年上海高考数学(文科)试题解析版一、填空题(本大题共14小题,每题4分,满分56分) 1、函数()x x f 2sin 31-=的最小正周期为 _________.分析:本题是基础题目,主要考查余弦的二倍角公式,属于常考题目。
答案:π2、设全集U R =,若集合{}4,3,2,1=A ,{}32|≤≤=x x B ,则=B C A U _________. 分析:本题考查了学生的集合运算,属于基础题目和常考题目 。
答案:{1,4}3、若复数z 满足i z z +=+13_,其中i 为虚数单位,则z =___________. 分析:考查复数基本形式及共轭复数的概念,属于基础题目和常规题目。
答案:1142i + 4、设()x f 1-为()12+=x xx f 的反函数,则()=-21f ___________.分析:考查了反函数的知识点,较为基础。
答案:23-5、若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211302c c ,解为⎩⎨⎧==53yx ,则=-21c c ___________.分析:考查了二元一次方程组增广矩阵的概念,属于基础知识,但考前这个小知识点被遗漏的学校较多。
答案:166、若正三棱柱的所有棱长均为a ,且其体积为316,则=a ___________.分析:首先考查了学生对于正三棱柱的认识,其次考查了棱柱的体积公式,题型和知识点较为常规。
答案:47、抛物线()022>=p px y 上的动点Q 到其焦点距离的最小值为1,则=p ___________. 分析:考查了抛物线上的点到焦点的距离问题,可以通过第一定义,将到焦点的距离转化成到准线的距离,这样题目就非常容易解决掉。
答案:28、方程()()223log 59log 1212+-=---x x 的解为___________.分析:考查了对数方程的知识点,通过对数运算,去掉对数符号,解出方程的根,易错点为根的验证。
2015年上海市高考数学试卷(文科)一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)函数f(x)=1﹣3sin2x的最小正周期为.2.(4分)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B=.3.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.4.(4分)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=.5.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.6.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.7.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.8.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.9.(4分)若x,y满足,则目标函数z=x+2y的最大值为.10.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(4分)在(2x+)6的二项式中,常数项等于(结果用数值表示).12.(4分)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13.(4分)已知平面向量、、满足⊥,且{||,||,||}={1,2,3},则|++|的最大值是.14.(4分)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m ∈N*),则m的最小值为.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分. 15.(5分)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2 B.x+8<2(x2+2x+3)C.<D.>17.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.18.(5分)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.20.(14分)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.21.(14分)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.22.(16分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.23.(18分)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.2015年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.(4分)(2015•上海)函数f(x)=1﹣3sin2x的最小正周期为π.【分析】由条件利用半角公式化简函数的解析式,再利用余弦函数的周期性求得函数的最小正周期.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.2.(4分)(2015•上海)设全集U=R,若集合A={1,2,3,4},B={x|2≤x≤3},则A∩B= {2,3} .【分析】由A与B,找出两集合的交集即可.【解答】解:∵全集U=R,A={1,2,3,4},B={x|2≤x≤3},∴A∩B={2,3},故答案为:{2,3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.4.(4分)(2015•上海)设f﹣1(x)为f(x)=的反函数,则f﹣1(2)=﹣.【分析】由原函数解析式把x用含有y的代数式表示,x,y互换求出原函数的反函数,则f﹣1(2)可求.【解答】解:由y=f(x)=,得,x,y互换可得,,即f﹣1(x)=.∴.故答案为:.【点评】本题考查了函数的反函数的求法,是基础的计算题.5.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.6.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a= 4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.7.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.8.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x ﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.9.(4分)(2015•上海)若x,y满足,则目标函数z=x+2y的最大值为3.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.10.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.11.(4分)(2015•上海)在(2x+)6的二项式中,常数项等于240(结果用数值表示).【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)(2015•上海)已知双曲线C1、C2的顶点重合,C1的方程为﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.【分析】求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.【解答】解:C1的方程为﹣y2=1,一条渐近线的方程为y=,因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,所以C2的一条渐近线的方程为y=x,因为双曲线C1、C2的顶点重合,所以C2的方程为.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.13.(4分)(2015•上海)已知平面向量、、满足⊥,且{||,||,||}={1,2,3},则|++|的最大值是3+.【分析】分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则++=(1+x,2+y),有||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.【解答】解:分别以所在的直线为x,y轴建立直角坐标系,①当{||,||}={1,2},||=3,则,设,则x2+y2=9,∴++=(1+x,2+y),∴||=的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为=3+;②且{||,||}={1,3},||=2,则,x2+y2=4,∴++=(1+x,3+y)∴||=的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为2+=2+,③{||,||}={2,3},||=1,则,设,则x2+y2=1∴++=(2+x,3+y)∴||=的最大值,其几何意义是在圆x2+y2=1上取点(x,y)与定点(﹣2,﹣3)的距离的最大值为1+=1+∵,故|++|的最大值为3+.故答案为:3+【点评】本题主要考查了向量的模的求解,解题的关键是圆的性质的应用:在圆外取一点,使得其到圆上点的距离的最大值:r+d(r为该圆的半径,d为该点与圆心的距离).14.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f (x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2是解答该题的关键,是难题.二、选择题(本大题共4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分. 15.(5分)(2015•上海)设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念是解决本题的关键.16.(5分)(2015•上海)下列不等式中,与不等式<2解集相同的是()A.(x+8)(x2+2x+3)<2 B.x+8<2(x2+2x+3)C.<D.>【分析】根据x2+2x+3=(x+1)2+2>0,可得不等式<2,等价于x+8<2(x2+2x+3),从而得出结论.【解答】解:由于x2+2x+3=(x+1)2+2>0,不等式<2,等价于x+8<2(x2+2x+3),故选:B.【点评】本题主要考查不等式的基本性质的应用,体现了等价转化的数学思想,属于基础题.17.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣ C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧的中点,E为劣弧的中点,已知PO=2,OA=1,求三棱锥P﹣AOC的体积,并求异面直线PA和OE所成角的大小.又容易得到,从而带【分析】由条件便知PO为三棱锥P﹣AOC的高,底面积S△AOC入棱锥的体积公式即可得到该三棱锥的体积.根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC,从而得到∠PAC.【解答】解:∵PO=2,OA=1,OC⊥AB;∴;E为劣弧的中点;∴∠BOE=45°,又∠ACO=45°;∴OE∥AC;∴∠PAC便是异面直线PA和OE所成角;在△ACP中,AC=,;如图,取AC中点H,连接PH,则PH⊥AC,AH=;∴在Rt△PAH中,cos∠PAH=;∴异面直线PA与OE所成角的大小为arccos.【点评】考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,能用反三角函数表示角.20.(14分)(2015•上海)已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a∈(1,3),判断函数f(x)在[1,2]上的单调性,并说明理由.【分析】(1)根据函数的奇偶性的定义即可判断,需要分类讨论;(2)根据导数和函数的单调性的关系即可判断.【解答】解:(1)当a=0时,f(x)=,显然为奇函数,当a≠0时,f(1)=a+1,f(﹣1)=a﹣1,f(1)≠f(﹣1),且f(1)+f(﹣1)≠0,所以此时f(x)为非奇非偶函数.(2)∵a∈(1,3),f(x)=ax2+,∴f′(x)=2ax﹣=,∵a∈(1,3),x∈[1,2],∴ax>1,∴ax3>1,∴2ax3﹣1>0,∴f′(x)>0,∴函数f(x)在[1,2]上的单调递增.【点评】本题考查了函数的奇偶性和单调性,属于基础题.21.(14分)(2015•上海)如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米,现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时,乙到达Q地后在原地等待.设t=t1时乙到达P地,t=t2时乙到达Q 地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t1≤t≤t2时,求f(t)的表达式,并判断f(t)在[t1,t2]上的最大值是否超过3?说明理由.【分析】(1)用OP长度除以乙的速度即可求得t1=,当乙到达P点时,可设甲到达A点,连接AP,放在△AOP中根据余弦定理即可求得AP,也就得出f(t1);(2)求出t2=,设t,且t小时后甲到达B地,而乙到达C地,并连接BC,能够用t表示出BQ,CQ,并且知道cos,这样根据余弦定理即可求出BC,即f(t),然后求该函数的最大值,看是否超过3即可.【解答】解:(1)根据条件知,设此时甲到达A点,并连接AP,如图所示,则OA=;∴在△OAP中由余弦定理得,f(t1)=AP==(千米);(2)可以求得,设t小时后,且,甲到达了B点,乙到达了C点,如图所示:则BQ=5﹣5t,CQ=7﹣8t;∴在△BCQ中由余弦定理得,f(t)=BC==;即f(t)=,;设g(t)=25t2﹣42t+18,,g(t)的对称轴为t=;且;即g(t)的最大值为,则此时f(t)取最大值;即f(t)在[t1,t2]上的最大值不超过3.【点评】考查余弦定理的应用,以及二次函数在闭区间上最值的求法.22.(16分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=|x1y2﹣x2y1|;(2)由(1)得:S=|x1y2﹣x2y1|=×|x1﹣y1|=,进而得到答案;(3)方法一:设直线l1的斜率为k,则直线l1的方程为y=kx,联立方程组,消去y解得x=±,可求得x1、x2、y1、y2,利用S=|x1y2﹣x2y1|=•,设=c(常数),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,可得,此时S=;方法二:设直线l1、l2的斜率分别为、,则=m,则mx1x2=﹣y1y2,变形整理,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=|x1y2﹣x2y1|;(2)由(1)A(x1,y1),C(x2,y2),S=|x1y2﹣x2y1|=×|x1﹣y1|=.所以|x1﹣y1|=,由x12+2y12=1,解得A(,﹣)或(,﹣)或(﹣,)或(﹣,),由k=,得k=﹣1或﹣;(3)方法一:设直线l1的斜率为k,则直线l2的斜率为,直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=|x1y2﹣x2y1|=•,设=c(常数),所以(m﹣k2)2=c2(1+2k2)(k2+2m2),整理得:k4﹣2mk2+m2=c2[2k4+(1+4m2)k2+2m2],由于左右两边恒成立,所以只能是,所以,此时S=,综上所述,m=﹣,S=.方法二:设直线l1、l2的斜率分别为、,则=m,所以mx1x2=y1y2,∴m2==mx1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即(+4m)x1x2y1y2+2(+)=1,所以+﹣2x1x2y1y2=(x1y2﹣x2y1)2=[1﹣(4m+)x1x2y1y2]﹣2x1x2y1y2=﹣(2m++2)x1x2y1y2,是常数,所以|x1y2﹣x2y1|是常数,所以令2m++2=0即可,所以,m=﹣,S=.综上所述,m=﹣,S=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.23.(18分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0≥a n(n∈N*),求证:{b n}的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N*),求λ的取值范围,使得对任意m,n∈N*,a n≠0,且.【分析】(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n 的最大值M和最小值m,再由∈()列式求得λ的范围.﹣a n=2(b n+1﹣b n),b n=3n+5,【解答】(1)解:∵a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴a n+1∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=3λ<0,∴的最小值为,最大值为,则,解得.∴λ∈().②当λ=﹣1时,a2n=1,a2n﹣1=﹣3,∴M=3,m=﹣1,不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;→﹣∞,无最小值.当n→+∞时,a2n﹣1综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.参与本试卷答题和审题的老师有:caoqz;sllwyn;沂蒙松;sxs123;maths;刘长柏;danbo7801;吕静;wkl197822;whgcn;wfy814(排名不分先后)菁优网2017年3月17日。
2015年上海高考数学(文科)试题一、填空题(本大题共14小题,每题4分,满分56分)1、函数()x x f 2sin 31-=的最小正周期为 _________.2、设全集U R =,若集合{}4,3,2,1=A ,{}32|≤≤=x x B ,则=B C A U _________.3、若复数z 满足i z z +=+13_,其中i 为虚数单位,则z =___________.4、设()x f 1-为()12+=x x x f 的反函数,则()=-21f ___________.5、若线性方程组的增广矩阵为⎪⎪⎭⎫ ⎝⎛211302c c ,解为⎩⎨⎧==53y x ,则=-21c c ___________.6、若正三棱柱的所有棱长均为a ,且其体积为316,则=a ___________.7、抛物线()022>=p px y 上的动点Q 到其焦点距离的最小值为1,则=p ___________.8、方程()()223log 59log 1212+-=---x x 的解为___________.9、若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数()y x x f 2+=的最大值为___________.10、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示)11、在6212⎪⎭⎫ ⎝⎛+x x 的二项展开式中,常数项等于 (结果用数值表示).12、已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为___________.13、已知平面向量,,满足b a ⊥,且}{}3,2,1=++的最大值 为___________.14、已知函数()x x f sin =,存在m x x x ,,21,满足π6021≤<<<≤m x x x ,且()()()()()()()*-∈≥=-++-+-N m m x f x f x f x f x f x f m m ,2,1213221 ,则m 的最小值为____.二、选择题(本大题共4小题,每题5分,满分20分)15、设C z z ∈21,,则“21z 、z 均为实数”是“21z z -为实数”的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件下D 、既不充分也不必要条件16、下列不等式中,与不等式23282<+++x x x 解集相同的是( )A 、()()23282<+++x x xB 、 ()()32282++<+x x xC 、823212+<++x x xD 、218322>+++x x x17、已知点A 的坐标为()1,34,将OA 坐标原点O 逆时针方向旋转3π至OB ,则B 点的纵坐标为( )A 、233B 、235C 、211D 、213 18、设()n n n y x P ,是直线()*∈+=-N n n n y x 12与圆222=+y x 在第一象限的交点,则极限=--∞→11lim n nn x y ( )A 、1-B 、21-C 、1D 、2三、解答题(本题共5大题,满分74分)19、(本题满分12分)如图,圆锥的顶点为P ,底面圆心为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧BC 的中点,已知2PO =,1OA =,求三棱锥P AOC -的体积,并求异面直线PA 与OE 所成角。
2015年高考上海卷文数试题解析(精编版)(解析版)一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数x x f 2sin 31)(-=的最小正周期为 . 【答案】π2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U . 【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U . 【考点定位】集合的运算.3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a z -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a ,所以i z 2141+=.【考点定位】复数的概念,复数的运算.4.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f . 【答案】32-5.若线性方程组的增广矩阵为 ⎝⎛02 13 ⎪⎪⎭⎫21c c 解为⎩⎨⎧==53y x ,则=-21c c . 【答案】166.若正三棱柱的所有棱长均为a ,且其体积为316,则=a . 【答案】4【解析】依题意,3162321=⨯⨯⨯⨯a a a ,解得4=a . 【考点定位】等边三角形的性质,正三棱柱的性质.7.抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p .【答案】2【解析】依题意,点Q 为坐标原点,所以12=p,即2=p . 【考点定位】抛物线的性质,最值.8. 方程2)23(log )59(log 1212+-=---x x 的解为 .【答案】2【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.9.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【考点定位】组合,分类计数原理.11.在62)12(xx +的二项式中,常数项等于 (结果用数值表示). 【答案】240【解析】由r r rr rrr x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .【答案】14422=-y x【考点定位】双曲线的性质,直线的斜率.13.已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 . 【答案】53+【考点定位】平向量的模,向量垂直.【名师点睛】本题考查分析转化能力.设向量a 、b 、c 的坐标,用坐标表示c b a ++,利用辅助角公式求三角函数的最值.即可求得||c b a ++的最大值.14.已知函数x x f s i n )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为. 【答案】8二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C.211 D. 213 【答案】D因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2 【答案】A三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.【答案】1010arccos【考点定位】圆锥的性质,异面直线的夹角.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增.【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.【考点定位】函数的奇偶性、单调性.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米, 所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题, 分段函数的值域,先求各段函数的值域,再求并集.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分. 已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;(2)设kx y l =:1,)33,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.【答案】(1)详见解析;(2)1-=k 或51-=k ;(3)21-=m .由(1)得2111221216|1|3|3333|21||21kk kx x y x y x S +-=-=-= 由题意知31216|1|32=+-k k , 解得1-=k 或51-=k . (3)设kx y l =:1,则x km y l =:2,设),(11y x A ,),(22y x C , 由⎩⎨⎧=+=1222y x kx y ,的221211k x +=, 同理2222222)(211m k k k m x +=+=,由(1)知,||||||21||21||2121212111221x x k m k kx x k mx x y x y x S ⋅-⋅=⋅-⋅=-= 22222212||mk k m k +⋅+-=, 整理得0)18()2164()18(22222242=-++++-m S k m m S S k S ,由题意知S 与k 无关, 则⎪⎩⎪⎨⎧=++=-021*********m m S S S ,解得⎪⎪⎩⎪⎪⎨⎧-==21812m S . 所以21-=m . 【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分. 已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n .(1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)N (0*∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;(3)设130a λ=<,n n b λ=)N (*∈n ,求λ的取值范围,使得对任意m ,*∈N n ,0n a≠,且 1(,6)6m na a ∈. 【答案】(1)56-=n a n ;(2)详见解析;(3))0,41(-.(3)因为n n b λ=,所以)(211n n n n a a λλ-=-++,当2≥n 时,112211)()()(a a a a a a a a n n n n n +-+⋅⋅⋅+-+-=---λλλλλλλ3)(2(2)(22211+-+⋅⋅⋅+-+-=---n n n n λλ+=n 2,由指数函数的单调性知,}{n a 的最大值为0222<+=λλa ,最小值为λ31=a , 由题意,nm a a 的最大值及最小值分别是12321+=λa a 及31212+=λa a , 由61312>+λ及6123<+λ,解得041<<-λ, 综上所述,λ的取值范围是)0,41(-. 【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.。
一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数xxf2sin31)(-=的最小正周期为 .【答案】π2.设全集R=U.若集合}4,3,2,1{=A,}32|{<≤=xxB,则=)(BCAU.【答案】}4,1{【解析】因为}32|{<≤=xxB,所以2|{<=xxBCU或}3≥x,又因为}4,3,2,1{=A,所以}4,1{)(=BCAU.【考点定位】集合的运算.3.若复数z满足izz+=+13,其中i是虚数单位,则=z .【答案】i2141+【解析】设),(R∈+=babiaz,则bia-=,因为izz+=+13,所以ibiabia+=-++1)(3,即ibia+=+124,所以⎩⎨⎧==1214ba,即⎪⎪⎩⎪⎪⎨⎧==2141ba,所以iz2141+=.【考点定位】复数的概念,复数的运算.4.设)(1xf-为12)(+=xxxf的反函数,则=-)2(1f .【答案】32-5.若线性方程组的增广矩阵为⎝⎛213⎪⎪⎭⎫21cc解为⎩⎨⎧==53yx,则=-21cc .【答案】166.若正三棱柱的所有棱长均为a,且其体积为316,则=a .【答案】4【解析】依题意,3162321=⨯⨯⨯⨯aaa,解得4=a.【考点定位】等边三角形的性质,正三棱柱的性质.7.抛物线)0(22>=ppxy上的动点Q到焦点的距离的最小值为1,则=p . 【答案】2【解析】依题意,点Q为坐标原点,所以12=p,即2=p.【考点定位】抛物线的性质,最值.8. 方程2)23(log)59(log1212+-=---xx的解为 .【答案】2【考点定位】对数方程.【名师点睛】利用24log2=,)0,0(logloglog>>=+nmmnnmaaa将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.9.若yx,满足⎪⎩⎪⎨⎧≥≤+≥-2yyxyx,则目标函数yxz2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【考点定位】组合,分类计数原理.11.在62)12(x x +的二项式中,常数项等于 (结果用数值表示). 【答案】240【解析】由rr r r rr r x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .【答案】14422=-y x【考点定位】双曲线的性质,直线的斜率.13.已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 . 【答案】53+【考点定位】平向量的模,向量垂直.【名师点睛】本题考查分析转化能力.设向量a 、b 、c 的坐标,用坐标表示++,利用辅助角公式求三角函数的最值.即可求得||++的最大值.14.已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为 .【答案】8二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D. 218322>+++x x x 【答案】B17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ).A.233 B. 235 C.211 D. 213 【答案】D因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2 【答案】A三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.【答案】1010arccos【考点定位】圆锥的性质,异面直线的夹角.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.【考点定位】函数的奇偶性、单调性.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米,所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题,分段函数的值域,先求各段函数的值域,再求并集.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;(2)设kx y l =:1,)33,33(C ,31=S ,求k 的值;(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.【答案】(1)详见解析;(2)1-=k 或51-=k ;(3)21-=m .由(1)得2111221216|1|3|3333|21||21kk kx x y x y x S +-=-=-=由题意知31216|1|32=+-k k ,解得1-=k 或51-=k . (3)设kx y l =:1,则x kmy l =:2,设),(11y x A ,),(22y x C ,由⎩⎨⎧=+=1222yxkxy,的221211kx+=,同理2222222)(211mkkkmx+=+=,由(1)知,||||||21||21||2121212111221xxkmkkxxkmxxyxyxS⋅-⋅=⋅-⋅=-=22222212||mkkmk+⋅+-=,整理得0)18()2164()18(22222242=-++++-mSkmmSSkS,由题意知S与k无关,则⎪⎩⎪⎨⎧=++=-2164182222mmSSS,解得⎪⎪⎩⎪⎪⎨⎧-==21812mS.所以21-=m.【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.已知数列}{na与}{nb满足)(211nnnnbbaa-=-++,*∈Nn.(1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)N (0*∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;(3)设130a λ=<,n n b λ=)N (*∈n ,求λ的取值范围,使得对任意m ,*∈N n ,0n a ≠,且1(,6)6m na a ∈. 【答案】(1)56-=n a n ;(2)详见解析;(3))0,4(-.(3)因为n n b λ=,所以)(211nn n n a a λλ-=-++,当2≥n 时,112211)()()(a a a a a a a a n n n n n +-+⋅⋅⋅+-+-=--- λλλλλλλ3)(2(2)(22211+-+⋅⋅⋅+-+-=---n n n nλλ+=n 2,由指数函数的单调性知,}{n a 的最大值为0222<+=λλa ,最小值为λ31=a , 由题意,nma a 的最大值及最小值分别是12321+=λa a 及31212+=λa a ,由61312>+λ及6123<+λ,解得041<<-λ, 综上所述,λ的取值范围是)0,41(-.【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.。
绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)文科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题:本大题共有14题,满分56分.直接填写结果,每个空格填对得4分,否则一律得零分.1.函数213sin f x =x -()的最小正周期为 . 2.设全集=U R .若集合={1,2,3,4}A ,{23}B x x =≤≤,则U A B ð= . 3.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .4.设-1f x ()为=21x f x x +()的反函数,则=-12f () .5.若线性方程组的增广矩阵为122301c c 骣琪琪桫、解为35x y ì=ïí=ïî,,则12c c -= . 6.若正三棱柱的所有棱长均为a,且其体积为,则a= .7.抛物线2=2>0y px p ()上的动点Q 到焦点的距离的最小值为1,则p = .8.方程1122log (95)log (32)2x x ---=-+的解为 .9.若x ,y 满足0,2,0,x y x y y ì-ïï+íïïî≥≤≥则目标函数2f x y =+的最大值为 .10.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).11.在621(2)x x+的二项展开式中,常数项等于 (结果用数值表示).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为22=14x y -.若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .13.已知平面向量a ,b ,c 满足a ⊥b ,且{|a |,|b |,|c |}={1,2,3},则|a +b +c |的最大值是 .14.已知函数()sin f x x =.若存在12,,m x x x 满足1206πm x x x ≤<<<≤,且1|f x ()223-1|||++||=122,m m f x f x f x f x f x m m -+--?*N ()()()()()(≥),则m 的最小值为 .二、选择题:本大题共有4小题,满分20分.每题有且只有一个正确答案,将正确答案填在题后括号内,选对得5分,否则一律得零分.15.设12,z z ÎC ,则“12,z z 均为实数”是“12z z -是实数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.下列不等式中,与不等式2+8<223x x x ++解集相同的是( )A .2(+8)(+2+3)<2x x xB .2+8<2(+2+3)x x xC .212<23+8x x x ++ D .2231>+82x x x ++17.已知点A的坐标为(),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )ABC .112D .13218.设(),n n n P x y 是直线2()1nx y n n -=?+*N 与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x -=-( )A .1-B .12- C .1 D .2三、解答题:本大题共有5题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(本小题满分12分)如图,圆锥的顶点为P ,底面圆心为O ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点,已知2PO =,1OA =,求三棱锥P AOC -的体积,并求异面直线PA 与OE 所成的角的大小.20.(本小题满分14分)已知函数21()f x ax x=+,其中a 为常数. (Ⅰ)根据a 的不同取值,判断函数()f x 的奇偶性,并说明理由; (Ⅱ)若(1,3)a Î,判断函数()f x 在[1,2]上的单调性,并说明理由.21.(本小题满分14分)如图,O ,P ,Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米.现甲、姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时.乙到达Q 地后在原地等待.设1t t =时,乙到达P 地;2t t =时,乙到达Q 地. (Ⅰ)求1t 与1()f t 的值;(Ⅱ)已知警员的对讲机的有效通话距离是3千米.当12t t t ≤≤时,求()f t 的表达式,并判断()f t 在12[,]t t 上的最大值是否超过3?说明理由.22.(本小题满分16分)已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A ,B 和C ,D .记△AOC 的面积为S .(Ⅰ)设11(,)A x y ,22(,)C x y .用A ,C 的坐标表示点C 到直线1l 的距离,并证明12211||2S x y x y =-;(Ⅱ)设1:l y kx =,C ,13S =,求k 的值; (Ⅲ)设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.23.(本小题满分18分)已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n Î*N .(Ⅰ)若35n b n =+,且11a =,求{}n a 的通项公式;(Ⅱ)设{}n a 的第0n 项是最大项,即0()n n a a n Î*N ≥.求证:{}n b 的第0n 项是最大项;(Ⅲ)设130a l =<,()n n b n l =?*N .求l 的取值范围,使得对任意m ,n Î*N ,0n a ¹,且1(,6)6m n a a Î.2015年普通高等学校招生全国统一考试(上海卷)文科数学答案解析1235c c ⎡⎤⎤⎡⎤=⎢⎥⎥⎢⎥⎦⎣⎦⎣⎦【提示】根据增广矩阵的定义得到【解析】正三棱柱的体积为14330x -+=30=,即得【提示】利用对数的运算性质化为指数类型方程,解出并验证即可【考点】对数方程.【考点】二元线性规划求目标函数最值.10.【答案】120122,2(m f x -++2m x ,,满足6m x <<≤27811π0,π,22x x x ===,,。
高中数学学习材料 (灿若寒星 精心整理制作)2015年高考上海卷文数试题解析(精编版)(解析版)一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数x x f 2sin 31)(-=的最小正周期为 .【答案】π2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U . 【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U . 【考点定位】集合的运算.3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z .【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a z -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a ,所以i z 2141+=. 【考点定位】复数的概念,复数的运算.4.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f . 【答案】32-5.若线性方程组的增广矩阵为 ⎝⎛02 13 ⎪⎪⎭⎫21c c 解为⎩⎨⎧==53y x ,则=-21c c . 【答案】166.若正三棱柱的所有棱长均为a ,且其体积为316,则=a . 【答案】4【解析】依题意,3162321=⨯⨯⨯⨯a a a ,解得4=a . 【考点定位】等边三角形的性质,正三棱柱的性质.7.抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p .【答案】2【解析】依题意,点Q 为坐标原点,所以12=p,即2=p . 【考点定位】抛物线的性质,最值.8. 方程2)23(log )59(log 1212+-=---x x 的解为 .【答案】2【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.9.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【考点定位】组合,分类计数原理.11.在62)12(x x的二项式中,常数项等于 (结果用数值表示). 【答案】240【解析】由rr r r rr r x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .【答案】14422=-y x【考点定位】双曲线的性质,直线的斜率.13.已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 . 【答案】53+【考点定位】平向量的模,向量垂直.【名师点睛】本题考查分析转化能力.设向量a 、b 、c 的坐标,用坐标表示c b a ++,利用辅助角公式求三角函数的最值.即可求得||c b a ++的最大值.14.已知函数x x f s i n)(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为 . 【答案】8二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ).A.233 B. 235 C.211 D. 213 【答案】D因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2 【答案】A三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.【答案】1010arccos【考点定位】圆锥的性质,异面直线的夹角.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.【考点定位】函数的奇偶性、单调性.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分. 如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米, 所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题, 分段函数的值域,先求各段函数的值域,再求并集.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分. 已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;(2)设kx y l =:1,)33,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.【答案】(1)详见解析;(2)1-=k 或51-=k ;(3)21-=m .由(1)得2111221216|1|3|3333|21||21kk kx x y x y x S +-=-=-= 由题意知31216|1|32=+-k k ,解得1-=k 或51-=k . (3)设kx y l =:1,则x k m y l =:2,设),(11y x A ,),(22y x C , 由⎩⎨⎧=+=1222y x kxy ,的221211kx +=, 同理2222222)(211m k k k m x +=+=,由(1)知,||||||21||21||2121212111221x x k m k kx x k mx x y x y x S ⋅-⋅=⋅-⋅=-= 22222212||m k k m k +⋅+-=,整理得0)18()2164()18(22222242=-++++-m S k m m S S k S ,由题意知S 与k 无关,则⎪⎩⎪⎨⎧=++=-021*********m m S S S ,解得⎪⎪⎩⎪⎪⎨⎧-==21812m S . 所以21-=m . 【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分. 已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n .(1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)N (0*∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;(3)设130a λ=<,n n b λ=)N (*∈n ,求λ的取值范围,使得对任意m ,*∈N n ,0n a ≠,且 1(,6)6m na a ∈. 【答案】(1)56-=n a n ;(2)详见解析;(3))0,41(-.(3)因为n n b λ=,所以)(211n n n n a a λλ-=-++,当2≥n 时,112211)()()(a a a a a a a a n n n n n +-+⋅⋅⋅+-+-=---λλλλλλλ3)(2(2)(22211+-+⋅⋅⋅+-+-=---n n n nλλ+=n2,由指数函数的单调性知,}{n a 的最大值为0222<+=λλa ,最小值为λ31=a , 由题意,nm a a 的最大值及最小值分别是12321+=λa a 及31212+=λa a , 由61312>+λ及6123<+λ,解得041<<-λ,综上所述,λ的取值范围是)0,41(-. 【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2015年高考上海卷文数试题解析(精编版)(解析版)一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数x x f 2sin 31)(-=的最小正周期为 . 【答案】π2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U I. 【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U I . 【考点定位】集合的运算.3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a z -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a ,所以i z 2141+=. 【考点定位】复数的概念,复数的运算.4.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f . 【答案】32-5.若线性方程组的增广矩阵为 ⎝⎛02 13 ⎪⎪⎭⎫21c c 解为⎩⎨⎧==53y x ,则=-21c c . 【答案】166.若正三棱柱的所有棱长均为a,且其体积为316,则=a . 【答案】4【解析】依题意,3162321=⨯⨯⨯⨯a a a ,解得4=a . 【考点定位】等边三角形的性质,正三棱柱的性质.7.抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p . 【答案】2【解析】依题意,点Q 为坐标原点,所以12=p,即2=p . 【考点定位】抛物线的性质,最值.8. 方程2)23(log )59(log 1212+-=---x x 的解为 .【答案】2【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.9.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为.【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【考点定位】组合,分类计数原理.11.在62)12(x x +的二项式中,常数项等于 (结果用数值表示). 【答案】240【解析】由r r r r rrr x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .【答案】14422=-y x【考点定位】双曲线的性质,直线的斜率.13.已知平面向量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是 . 【答案】53+【考点定位】平向量的模,向量垂直.【名师点睛】本题考查分析转化能力.设向量a 、b 、c 的坐标,用坐标表示c b a ++,利用辅助角公式求三角函数的最值.即可求得||c b a ++的最大值.14.已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为. 【答案】8二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D. 218322>+++x x x 【答案】B17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C.211 D. 213 【答案】D因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2 【答案】A三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.【答案】1010arccos【考点定位】圆锥的性质,异面直线的夹角.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.【考点定位】函数的奇偶性、单调性.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米,所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题, 分段函数的值域,先求各段函数的值域,再求并集.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.已知椭圆1222=+yx ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=; (2)设kx y l =:1,)33,33(C ,31=S ,求k 的值;(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【答案】(1)详见解析;(2)1-=k 或51-=k ;(3)21-=m .由(1)得2111221216|1|3|3333|21||21kk kx x y x y x S +-=-=-=由题意知31216|1|32=+-k k ,解得1-=k 或51-=k . (3)设kx y l =:1,则x kmy l =:2,设),(11y x A ,),(22y x C , 由⎩⎨⎧=+=1222y x kx y ,的221211k x +=, 同理2222222)(211m k k km x +=+=,由(1)知,||||||21||21||2121212111221x x k m k kx x k mx x y x y x S ⋅-⋅=⋅-⋅=-= 22222212||mk k m k +⋅+-=,整理得0)18()2164()18(22222242=-++++-m S k m m S S k S , 由题意知S 与k 无关,则⎪⎩⎪⎨⎧=++=-021640182222m m S S S ,解得⎪⎪⎩⎪⎪⎨⎧-==21812m S .所以21-=m . 【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n .(1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)N (0*∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;(3)设130a λ=<,n n b λ=)N (*∈n ,求λ的取值范围,使得对任意m ,*∈N n ,0n a ≠,且1(,6)6m na a ∈. 【答案】(1)56-=n a n ;(2)详见解析;(3))0,4(-.(3)因为n n b λ=,所以)(211nn n n a a λλ-=-++,当2≥n 时,112211)()()(aa a a a a a a n n n n n +-+⋅⋅⋅+-+-=--- λλλλλλλ3)(2(2)(22211+-+⋅⋅⋅+-+-=---n n n nλλ+=n 2,由指数函数的单调性知,}{n a 的最大值为0222<+=λλa ,最小值为λ31=a , 由题意,nma a 的最大值及最小值分别是12321+=λa a 及31212+=λa a ,由61312>+λ及6123<+λ,解得041<<-λ, 综上所述,λ的取值范围是)0,41(-.【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.。
1.函数x x f 2sin 31)(-=的最小正周期为___________. 【解析】根据题意可得212cos 23)2cos 1(231)(-=--=x x x f ,所以2ππ2T ==. 【答案】π2.设全集U =R .若集合{}1,2,3,4Α=,{}23Βx x =≤≤,则UΑΒ= .【解析】根据题意,可得{|32}UB x x x =><或,故{}1,4UΑΒ=.【答案】{}1,43.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .【解析】设()i ,z x y x y =+∈R ,所以i z x y =-,所以33i i 1i x y x y ++-=+,所以11,42x y ==.故11i.42z =+【答案】11i 42+4.设)(1x f -为12)(+=x x x f 的反函数,则=-)2(1f ___________.【解析】令212=+x x,解得32-=x ,即32)2(1-=-f .【答案】32-5.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭,解为3,5,x y =⎧⎨=⎩则12c c -= . 【解析】根据增广矩阵的定义可以还原成方程组⎩⎨⎧=+=+,0,3221c y c y x 把⎩⎨⎧==,5,3y x 代入,可得⎩⎨⎧==,5,2121c c 所以.1621=-c c 【答案】166.若正三棱柱的所有棱长均为a,且其体积为a = .【解析】由3164323213==⨯⨯⨯=⋅=a a a a S h V 底,可得4=a . 【答案】47.抛物线()220y px p =>上的动点Q 到焦点的距离的最小值为1,则p = .【解析】根据抛物线的性质,知当且仅当动点Q 运动到原点时,点Q 到抛物线焦点的距离最小,所以有12p=,所以2.p = 【答案】28.方程()()1122log 95log 322x x ---=-+的解为 . 【解析】由题意可得()11954320,x x ---=->所以()21134330,x x ---⋅+=即()()1133310,x x ----=解得1x =或2x =,检验知只有2x =符合题意.【答案】29.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-,0,2,0y y x y x 则目标函数y x f 2+=的最大值为___________.【解析】根据题意作出可行域,如图中阴影部分所示,由图可知,当直线20x y f +-=过()1,1A 时有最大值,且max 121 3.f =+⨯=【答案】310.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 .(结果用数值表示)【解析】由题意可分男1、女4,男2、女3和男3、女2三种情况,所以142332363636C C C C C C 456015120.++=++=【答案】120 11.在62)12(x x +的二项展开式中,常数项等于___________.(结果用数值表示) 【解析】由()666316621C 2C 2,rrrrr r r T x x x ---+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭令036=-r ,得2=r ,所以常数项为2436C 2240.T =⋅=【答案】24012.已知双曲线1C ,2C 的顶点重合,1C 的方程为1422=-y x .若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为___________.【解析】设2C 的方程为()22210,4x y b b -=>可得2C 的一条渐近线方程为2by x =.因为1C 的一条渐近线方程为,2x y =由题意可知1222b =⨯,解得 2.b =故2C 的方程为22 1.44x y -= 【答案】22144x y -= 13.已知平面向量,,a b c 满足⊥a b ,且{}{},,1,2,3=a b c ,则a +b+c 的最大值是___________.【解析】令,,,OA OB OC ===a b c ,OA OB OD +=+=a b 可知当OC 与OD 方向相同时++a b c 取最大值.因为{}{},,1,2,3=a b c ,所以经计算可知,当1,2,3,OA OB OC ===或2,1,3OA OB OC ===时,a +b+c 取最大值35+.【答案】35+14.已知函数()sin f x x =.若存在12,,,m x x x 满足1206m x x x ≤<<⋅⋅⋅<≤π,且()()()()()()1223112m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值为 .【解析】因为对任意的(),,1,2,,,i j x x i j m =()()()()max min 2i j f x f x f x f x -≤-=,若欲使m 取最小值,应尽可能多的让()1,2,,i x i m =取最值点.因为1206m x x x ≤<<<≤π,()()()()()()()*12231122,m m f x f x f x f x f x f x m m --+-++-=≥∈N ,所以按照下图所示取值即可满足条件.所以m 的最小值为8. 【答案】815.设12,C z z ∈,则“12,z z 均为实数”是“12z z -是实数”的( ). A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【解析】选 A.充分性显然成立.必要性不成立,因为若12z z -是实数,可设1i z a c =+,()2i ,,,0z b c a b c c =+∈≠R ,显然1z ,2z 均为虚数.16.下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A.2)32)(8(2<+++x x x B.)32(282++<+x x xC.823212+<++x x x D.218322>+++x x x 【解析】选 B.因为()22231220x x x ++=++≥>恒成立,所以由不等式的性质可得()28223x x x +<++.17.已知点Α的坐标为(),将ΟΑ绕坐标原点Ο逆时针旋转π3至ΟΒ,则点Β的纵坐标为( ). ABC .112D .132【解析】选D.由题意可知7OA =,所以1sin 7AOx ∠=,cos AOx ∠=,所以13sin sin 7sin cos cos sin .33332B y OB AOx OA AOx AOx AOx ππππ⎛⎫⎛⎫⎛⎫=∠+=∠+=∠⋅+∠⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.设(),n n n Ρx y 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ). A.1- B.12-C.1D.2 【解析】选A.当n →∞时,直线()*21nx y n n -=∈+N 趋向于21x y -=,直线与圆的交点趋向于点()1,1P .1lim1n n n y x →∞--可以理解为过点()1,1P 所作的圆的切线的斜率k ,设切线方程为()11y k x -=-,由222x y +=的圆心到切线的距离等于半径,=解得1k =-,即1lim11nnnyx→∞-=--.19.如图,圆锥的顶点为P,底面圆心为O,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点.已知2,1PO OA==.求三棱锥P AOC-的体积,并求异面直线PA和OE所成的角的大小.【解析】1112.323P AOCV-=⨯⨯=因为//AC OE,所以PAC∠为异面直线PA与OE所成的角或其补角.由2,1PO OA OC===,得5, 2.PA PC AC===在PAC∆中,由余弦定理得10cos10PAC∠=,故异面直线PA与OE所成的角的大小为10arccos.1020.已知函数21()f x axx=+,其中a为常数.(1)根据a的不同取值,判断函数()f x的奇偶性,并说明理由;(2)若(1,3)a∈,判断函数()f x在[1,2]上的单调性,并说明理由.【解析】(1)()f x的定义域为{|0,}x x x≠∈R,关于原点对称.2211()()f x a x axx x-=-+=--,当0a=时,()()f x f x-=-,故()f x为奇函数.当0a≠时,由(1)1,(1)1f a f a=+-=-,知(1)(1)f f-≠且(1)(1)f f-≠-,故()f x既不是奇函数也不是偶函数.(2)设1212x x≤<≤,则22212121122112111()()()[()]f x f x ax ax x x a x x x x x x -=+--=-+-, 由1212x x ≤<≤,得210x x ->,1224x x <+<,1214x x <<,121114x x -<-<-, 又13a <<,所以122()12a x x <+<, 得12121()0a x x x x +->,从而21()()0f x f x ->,即21()()f x f x >, 故当(1,3)a ∈时,()f x 在[1,2]上单调递增.21.如图,,,O P Q 三地有直道相通,3OP =千米,4PQ =千米,5OQ =千米.现甲、乙两警员同时从O 地出发匀速前往Q 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是OQ ,速度为5千米/小时,乙的路线是OPQ ,速度为8千米/小时.乙到达Q 地后在原地等待.设1t t =时,乙到达P 地;2t t =时,乙到达Q 地. (1)求1t 与1()f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当12t t t ≤≤时,求()f t 的表达式,并判断()f t 在12[,]t t 上的最大值是否超过3?说明理由.【解析】(1)138t =. 记乙到P 时甲所在地为R ,则158OR =千米. 在OPR ∆中,2222cos PR OP OR OP OR O =+-∠, 所以1341()f t PR ==(千米).(2)278t =,如图建立平面直角坐标系. 设经过t 小时,甲、乙所在位置分别为,.M N 当37[,]88t ∈时,(3,4),(3,83)M t t N t -,222()(33)(43)254218f t t t t t =-+-+=-+.()f t 在37[,]88上的最大值是3341()88f =,不超过3.22.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点,A B 和,C D ,记AOC ∆的面积为S .(1)设1122(,),(,)A x y C x y ,用,A C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y =-; (2)设1:l y kx =,33,C ⎛⎫ ⎪ ⎪⎝⎭,13S =,求k 的值; (3)设1l 与2l 的斜率之积为m .求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变. 【解析】(1)证明:直线111:0l y x x y -=,点C 到1l 的距离12122211d x y=+.因为2211||AO x y =+,所以122111||||22S OA d x y x y ==-. (2)解:由22,21,y kx x y =⎧⎨+=⎩得212112x k =+. 由(1),122111211333|1|||||22612k S x y x y x kx k-=-=-=+. 由题意,23|1|13612k k -=+,解得15k =-或1-.(3)解:设1:l y kx =,则2:m l y x k=. 设1122(,),(,)A x y C x y . 由22,21,y kx x y =⎧⎨+=⎩得212112x k=+.同理2222221212()k x m k m k==++. 由(1),21212212112111||||||||222||x mx k m S x y x y x kx x x k k ⋅-=-=-=⋅⋅ 22222k m=+,整理得24222222(81)(4162)(81)0S k S S m m k S m -++++-=.由题意知,S 与k 无关,则2222810,41620,S S S m m ⎧-=⎪⎨++=⎪⎩得21,81,2S m ⎧=⎪⎪⎨⎪=-⎪⎩ 所以12m =-. 23.已知数列{}n a 与{}n b 满足112(),*n n n n a a b b n ++-=-∈N . (1)若35,n b n =+且11a =,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(*)n n a a n ≥∈N .求证:{}n b 的第0n 项是最大项;(3)设130a λ=<,(*)nn b n λ=∈N ,求λ的取值范围,使得对任意,*m n ∈N ,0n a ≠,且1,66m n a a ⎛⎫∈ ⎪⎝⎭. 【解析】(1)解:由13n n b b +-=,得16n n a a +-=, 所以{}n a 是首项为1,公差为6的等差数列,故{}n a 的通项公式为*65,n a n n =-∈N .(2)证明:由112()n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-. 所以{2}n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-, 因为0*,n n a a n ≥∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥.故{}n b 的第0n 项是最大项.(3)解:因为nn b λ=,所以112()n n n n a a λλ++-=-,当2n ≥时,112211()()()n n n n n a a a a a a a a ---=-+-++-+11222()2()2()3n n n n λλλλλλλ---=-+-++-+2n λλ=+.当1n =时,13a λ=,符合上式.所以2nn a λλ=+.因为130a λ=<,且对任意*11,(,6)6n a n a ∈∈N ,故0n a <.特别地,2220a λλ=+<, 于是1(,0)2λ∈-.此时对任意*,0n n a ∈≠N .当102λ-<<时,2212212||,2||n n n n a a λλλλλλ--=+>=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=.由题意,m na a 的最大值及最小值分别为12321a a λ=+及21213a a λ+=.由21136λ+>及3621λ<+,解得104λ-<<. 综上所述,λ的取值范围为1(,0)4-.。
2015上海高考数学(文)试题及答案满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共4小题)1.设、,则“、均为实数”是“是实数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件2.下列不等式中,与不等式解集相同的是()A.B.C.D.3.已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为()A.B.C.D.4.设是直线与圆在第一象限的交点,则极限()A.B.C.D.二、填空题(共14小题)5.函数的最小正周期为____________.6.设全集.若集合,,则__________.7.若复数满足,其中是虚数单位,则________.8.设为的反函数,则___________.9.若线性方程组的增广矩阵为解为,则__________.10.若正三棱柱的所有棱长均为,且其体积为,则___________.11.抛物线上的动点到焦点的距离的最小值为1,则_________.12.方程的解为___________.13.若满足,则目标函数的最大值为___________14.在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).15.在的二项展开式中,常数项等于(结果用数值表示).16.已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为17.已知平面向量、、满足,且,则的最大值是______.18.已知函数.若存在,,,满足,且,则的最小值为三、解答题(共5小题)19.如图,圆锥的顶点为,底面圆为,底面的一条直径为,为半圆弧的中点,为劣弧的中点,已知.求三棱锥的体积,并求异面直线和所成角的大小.20.已知函数,其中为常数(1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.21.如图,三地有直道相通,千米,千米,千米,现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为千米/小时,乙的路线是,速度为千米/小时,乙到达Q地后在原地等待.设时,乙到达地,时,乙到达地.(1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米,当时,求的表达式,并判断在上的最大值是否超过3?说明理由.22.已知椭圆,过原点的两条直线和分别与椭圆交于点、和、,记的面积为.(1)设,用、的坐标表示点到直线的距离,并证明;(2)设,,,求的值;(3)设与的斜率之积为,求的值,使得无论和如何变动,面积保持不变.23.已知数列与满足.(1)若且,求的通项公式;(2)设的第项是最大项,即,求证:的第项是最大项;(3)设,,求的取值范围,使得对任意,,且答案部分1.考点:充分条件与必要条件复数的加减试题解析:若、均为实数,则必为实数,故充分性成立;反之,则不一定成立,如时,是实数,但、不是实数.故选A.答案:A2.考点:不等式的性质试题解析:因为,由不等式性质原不等式两边同乘以,得,故选B.答案:B3.考点:两角和与差的三角函数试题解析:如下图:设,则,由题意求得.又.因,所以点B的纵坐标为.故选D.答案:D4.考点:数列极限试题解析:当时,且,而由,得所以而则为该圆在(1,1)处切线的斜率,又且故.故选A.答案:A5.考点:三角函数的图像与性质倍角公式试题解析:因为, 所以的最小正周期为.答案:6.考点:集合的运算试题解析:,所以答案:7.考点:复数综合运算试题解析:设,则,所以,.故.答案:8.考点:反函数试题解析:根据反函数的知识知,若适合,则适合. 由,得.故.答案:9.考点:矩阵试题解析:因为方程组的解为,将之分别代入则有,所以16.答案:1610.考点:空间几何体的表面积与体积试题解析:若正三棱柱的所有棱长均为,则其体积为,由,解得.答案:411.考点:抛物线试题解析:根据抛物线定义,抛物线上的点满足到焦点距离等于到准线的距离,故可转化为抛物线上的动点Q到准线的距离最小即可,故此点应为抛物线的顶点(0,0).由,故.答案:212.考点:指数与指数函数对数与对数函数试题解析:原方程可化为,由对数函数的单调性知即,设,则,解得,,故而当时,原方程无意义,应舍去,故其解为.答案:213.考点:线性规划试题解析:结合如图所示的线性规划知识知,目标函数在点处取得最大值,.答案:314.考点:组合与组合的运用试题解析:9名教师中选取5人,共有种,不符合题意的选取办法,即只从6名女教师中选取5人,有种,故符合要求的选取种数为120种.答案:12015.考点:二项式定理与性质试题解析:由二项式定理的通项公式得,解,得.故其常数项为.答案:24016.考点:双曲线试题解析:双曲线的渐近线方程为,顶点为. 故双曲线的渐近线方程为,顶点为,所以双曲线的方程为.答案:17.考点:平面向量的几何运算试题解析:分三种情况考虑:(1)时,的最大值如图所示为.(1)时,的最大值如图所示为.(1)时,的最大值如图所示为.三者比较大小后知应选.答案:18.考点:三角函数的图像与性质试题解析:结合正弦函数的图像(如下图),欲的值最小,需最大,故按如下图所示取点符合要求,即,,,,,,,.此时.而当时,因的最大值是2,结合,故其总和达不到12.故的最小值是8.答案:819.考点:空间的角空间几何体的表面积与体积试题解析:解:.因为,所以∠PAC为异面直线PA与OE所成的角或其补角.由PO=2,OA=OC=1,得PA=PC=,AC.在△PAC中,由余弦定理得,故异面直线PA与OE所成角的大小为.答案:三棱锥的体积;异面直线和所成角的大小为20.考点:函数的奇偶性函数的单调性与最值试题解析:(1)的定义域为关于原点对称.,当时,故为奇函数.当时,由,知且,故既不是奇函数也不是偶函数.(2)设,则,由得,,,又,所以得从而,即.故当时,在上单调递增.答案:见解析21.考点:余弦定理分段函数,抽象函数与复合函数试题解析:(1).设乙到时甲所在地为,则千米,在中,, 所以(千米).(2).如图建立平面直角坐标系,设经过小时,甲,乙所在位置分别为.当时,,.在上的最大值是,不超过3.答案:(1);(2)见解析22.考点:圆锥曲线综合试题解析:(1)证明:直线:,点C到的距离.因为,所以.(2)解:由,得.由(1),得.由题意得,解得或-1.(3)设则. 设.由得.同理.由(1),整理得.由题意知与无关,则得所以.答案:(1)见解析(2)(3)23.考点:数列综合应用试题解析:(1)由,得,故是首项为1,公差为6的等差数列,所以的通项公式是(2)由,得,所以为常数列,,即,因为所以即,故的第项是最大项.(3)因为,所以,当时,=当时,符合上式.所以,因为且对任意,故,特别地,于是.此时对任意,.当时,,,由指数函数的单调性知,的最大值为,最小值为.由题意,的最大值及最小值分别为及.由及,解得.综上所述,的取值范围为.答案:(1)(2)见解析(3)的取值范围。
上海市黄浦区2015年高考模拟考数学试卷(文)(2015年4月21日)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.一、填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.函数0(2)()lg(3)1x f x x x -=-++的定义域是 .2.函数22log (1)y x =-的单调递减区间是 .3.已知集合{}{}2|160,R ,|3,R A x x x B x x a x =-≤∈=-≤∈,若B A ⊆,则正实数a 的取值范围是 .4.若二次函数222(2)31y x m x m =+--+是定义域为R 的偶函数,则函数()2(1,mf x x m x x x=-+≤∈的反函数1()f x -= . 5.已知角α的顶点与平面直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点()3,4P a a -(0,R)a a ≠∈,则cos 2α的值是 .6.在△ABC 中,内角A B C 、、所对的边分别为a b c 、、,且2222sin a b c bc A =+-,则∠A = .7.在等差数列{}n a 中,若8103,1a a =-=,9m a =,则正整数m = . 8.已知点(2,3)(1,4)A B --、,则直线AB 的点法向式方程是 .9.已知抛物线216y x =的焦点与双曲线2221(0)12x y a a -=>的一个焦点重合,则双曲线的渐近线方程是 .10.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .11.若二次函数()y f x =对一切R x ∈恒有2224()245x x f x x x -+≤≤-+成立,且(5)27f =,则(11)f = .12.(文科) 设点(,)x y 位于线性约束条件32102x y x y y x +≤⎧⎪-+≤⎨⎪≤⎩所表示的区域内(含边界),则目标函数2z x y =+的最大值是 .13. (文科) 一个不透明的袋中装有大小形状质地完全相同的黑球、红球、白球共10个,从中任意摸出1个球,得到黑球的概率是25,则从中任意摸出2个球得到至少1个黑球的概率是 . 14. (文科) 在ABC ∆中,||1AB BC = ,且||cos =||cos AC B BC A,则AC AB ⋅ 的数值是 .二、选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在空间中,下列命题正确的是 [答] ( ).A .若两直线a ,b 与直线l 所成的角相等,那么a ∥bB .空间不同的三点A BC 、、确定一个平面 C .如果直线l //平面α且l //平面β,那么βα//D .若直线a 与平面M 没有公共点,则直线a //平面M16.设实数1212,,,a a b b 均不为0,则“1122a b a b =成立”是“关于x 的不等式110a x b +>与220a x b +>的解集相同”的 [答] ( ).A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件17.若复数z 同时满足2i z z -=,i z z =,则z = (i 是虚数单位,z 是z 的共轭复数) [答] ( ).A .1i -B .iC .1i --D . 1i -+18.已知数列{}n a 共有5项,满足123450a a a a a >>>>≥,且对任意(15)i j i j ≤≤≤、,有i j a a -仍是该数列的某一项,现给出下列4个命题: (1)50a =;(2)414a a =;(3)数列{}n a 是等差数列;(4)集合{}|,15i j A x x a a i j ==+≤≤≤中共有9个元素.则其中真命题的序号是 [答]( ). A .(1)、(2)、(3)、(4) B .(1)、(4) C .(2)、(3) D .(1)、(3)、(4) 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(文科)(1) 求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面);(2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).第19题图20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知函数1g()sin 221R 22x x x x =-+∈,,函数()f x 与函数()g x 的图像关于原点对称.(1)求()y f x =的解析式; (2)(文科) 当[,]42x ππ∈-时,求函数()f x 的取值范围.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块铁皮零件,其形状是由边长为40cm 的正方形截去一个三角形ABF 所得的五边形ABCDE ,其中12,10AFcm BF cm ==,如图所示.现在需要用这块材料截取矩形铁皮DMPN ,使得矩形相邻两边分别落在,CD DE 上,另一顶点P 落在边CB 或BA 边上.设DM x =cm ,矩形DMPN 的面积为y 2cm .A BC D 1A 1C 1D(1)试求出矩形铁皮DMPN 的面积y 关于x 的函数解析式, 并写出定义域;(2)试问如何截取(即x 取何值时),可使得到的矩形DMPN 的面积最大?第21题图22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分. (文科)已知数列{}n a 满足12a =,对任意*N m p ∈、都有m p m p a a a +=⋅. (1)求数列{}n a (*N n ∈)的通项公式n a ;(2)数列{}n b 满足31223+21212121n n n b b b ba =+++++++ (*N n ∈),求数列{}nb 的前n 项和n B ; (3)设2n n n B c =,求数列{}n c (*N n ∈)中最小项的值.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知点12(F F 、,平面直角坐标系上的一个动点(,)P x y 满足12||+||=4PF PF.设动点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆22:(3)1N x y -+=的任意一条直径,求MG MH ⋅的取值范围;(3)(理科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥(O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程.(文科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥(O 是坐标原点),试证明:原点O 到直线AB 的距离是定值.黄浦区2015年高考模拟考数学试卷(文理合卷)参考答案 (2015年4月21日)一、填空题1.(3,)+?; 8.7(2)3(3)0 7(1)3(4)0x y x y ++-=-++=也可以是; 2.(,1)-?; 9.y =?;3.(0,1] ; 10.100p ; 4.1()11)f x x -=-?; 11.153;5.725-; 12143;6.4p ; 13.(理科)2.7;(文科)23;7.14 ; 14.(理科)4.(文科)2或32.二、选择题 15.D 16.B 17.D 18.A 三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. (理科)解 (1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C .由1O 是11AC 中点,可得1(1,1,3)O .于是,111(1,1,3),(2,0,0)BO A D =--=- .设异面直线1BO 与11A D 所成的角为θ,则1111111c o s ||||BO A D BO A D θ⋅===. 因此,异面直线1BO 与11A D 所成的角为. (2)设(,,)n x y z =是平面ABD 的法向量.∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ D z又11(0,2,3),(2,0,3)BA BC =-=-,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =,可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BAC 的一个法向量是(3,3,2)n = . ∴||n DB d n ⋅=11=. (文科)解(1) 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC .∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又 1C C BC ⊥,∴113tan 2C C C BC BC ∠==. ∴异面直线1BC 与11A D 所成的角是3tan 2arc .20.(本题满分12分) 本题共有2个小题,第1小题满分5分,第2小题满分7分.解(1)设点(,)x y 是函数()y f x =的图像上任意一点,由题意可知,点(,)x y --在()y g x =的 图像上,于是有1sin(2)2)1,2R y x x x -=--+∈. 所以,1()sin 2212f x x x =-,R x ∈.(理科)(2)由(1)可知,1()sin 221sin(2)1,[0,]23f x x x x x ππ=-=+-∈,记[0,]D π=.由222,Z 232k x k k πππππ-≤+≤+∈,解得5,1212Z k x k k ππππ-≤≤+∈, 则函数()f x 在形如5[,],1212k k k Z ππππ-+∈的区间上单调递增. 结合定义域,可知上述区间中符合题意的整数k 只能是0和1.令0k =得15[,]1212D ππ=-;1k =时,得1713[,]1212D ππ=.所以,1[0,]12D D π= ,27[,]12D D ππ= .于是,函数()f x 在[0,]π上的单调递增区间是[0,]12π和7[,]12ππ.(文科)(2)由(1)可知,1()sin 221sin(2)123f x x x x π=-=+-.又[,]42x ππ∈-, 所以,42633x πππ-≤+≤.考察正弦函数sin y x =的图像,可知,sin(2)13x π≤+≤,[,]42x ππ∈-.于是,1sin(2)103x π≤+-≤. 所以,当[,]42x ππ∈-时,函数()f x的取值范围是()0f x ≤≤.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解(1)依据题意并结合图形,可知:1 当点P 在线段CB 上,即030x <≤时,40y x =;2 当点P 在线段BA 上,即3040x <≤时,由PQ BFQA FA=,得6485QA x =-.于是,26765y DM PM DM EQ x x =⋅=⋅=-. 所以,240,030676.30405 < x x y x x x ≤⎧⎪=⎨-<≤⎪⎩定义域(0,40]D =. (2)由(1)知,当030x <≤时,01200y <≤;当3040x <≤时,2266953610361076()55333y x x x =-=--+≤,当且仅当953x =时,等号成立. 因此,y 的最大值为36103. 答:先在DE 上截取线段953DM cm =,然后过点M 作DE 的垂线交BA 于点P ,再过点P 作DE 的平行线交DC 于点N ,最后沿MP 与PN 截铁皮,所得矩形面积最大,最大面积为361032cm .22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.(理科)解(1) 对任意*N m p ∈、都有m p m p a a a +=⋅成立,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈.∴数列{}n a (*N n ∈)的递推公式是1*111,2, N .n na a a a n +⎧=⎪⎨⎪=⋅∈⎩ (2)由(1)可知,数列{}n a (*N n ∈)是首项和公比都为12的等比数列,于是*1()2N n n a n =∈. 由131223(1)21212121n n n nb b b b a +=-+-++-++++ (*N n ∈),得 31121231(1)21212121n n n n b b b ba ---=-+-++-++++ (2n ≥). 故111(1)(1)(1)(2)212n n n n n n nn b a a b n +--=-⇒=-+≥+. 当1n =时,1113212b a b =⇒=+.所以*31)21(1)(1).(2,)2 ( N n n nn b n n ⎧=⎪⎪=⎨⎪-+≥∈⎪⎩,(3) ∵2n n n c b λ=+,∴当3n ≥时,12(1)(1)2nnn n c =+-+λ, 111112(1)(1)2n n n n c ----=+-+λ,依据题意,有1132(1)(2)02n nn n n c c λ---=+-+>,即12(1)322n nn λ-->-+.01 当n 为大于或等于4的偶数时,有12322n n λ->-+ 恒成立,又12322n -+ 随n 增大而增大,则1min2128(4)33522n n n -⎛⎫⎪== ⎪ ⎪+⎝⎭,故λ的取值范围为12835λ>-; 02 当n 为大于或等于3的奇数时,有12322n λ-<+恒成立,故λ的取值范围为3219λ<;03 当2n =时,由22153(2)(2)042c c λλ-=+-+>,得8λ<.综上可得,所求λ的取值范围是128323519λ-<<. (文科)解(1) 对任意*N m p ∈、都有m p m p a a a +=⋅成立,12a =,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈. ∴数列{}n a (*N n ∈)是首项和公比都为2的等比数列.∴1*122(N )n n n a a n -=⋅=∈. (2) 由31223+21212121n n n b b b ba =+++++++ (*N n ∈),得 31121231+21212121n n n b b b ba ---=+++++++ (2n ≥). 故121112(21)22(2)21n n n n n n n n n b a a b n -----=⇒=+=+≥+. 当1n =时,111621ba b =⇒=+.于是,211*1)22.(2,)n n n n b n n --=⎧=⎨+≥∈⎩ ( N 6,当1n =时,116B b ==; 当2n ≥时,123221231241212131411311 =6+(2+2+2++2)+(2+2+2++2)2(14)2(12) =6+141224 =42.33n nn n n n n n B b b b b ⋅-⋅-⋅-⋅-------=++++--+--⋅++ 又1n =时,112442633n B =⋅++=,综上,有*2442N .33n n n B n =⋅++∈,(3) 2nn n B c =,11132B c ==, ∴24121332n n n c =⋅+⋅+,*N n ∈.1111124124121(21)33233221=(2)0(2).32n n n n n n n n c c n -----∴-=⋅+⋅+-⋅+⋅+->≥∴数列{}n c (*N n ∈)是单调递增数列,即数列{}n c 中数值最小的项是1c ,其值为3.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解(1)依据题意,动点(,)P x y4=.又12||4F F =<,因此,动点(,)P x y 的轨迹是焦点在x轴上的椭圆,且24,2a b c =⎧⎪⇒=⎨=⎪⎩ 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+.GH 是直径, ∴NH NG =- .又||=1NG,22=()()=()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅--∴22200||(3)(0)MN x y =-+-=201(6)72x --. 由22142x y +=,可得22x -≤≤,即022x -≤≤.2221||25||||24M N M N N G ∴≤≤≤-≤ ,0. ∴M G M H ⋅ 的取值范围是024MG MH ≤⋅≤.(另解21||25MN ≤≤ :结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(理科)(3)证明 因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则 2222(c o s (),s i n ())(s i n ,c o s )22B r rr rππθθθθ++=-. 利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 因此,22121134r r +=.所以,243d =,即d所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=. (文科)(3)证明 设原点到直线AB 的距离为d ,且A B 、是曲线C 上满足OA OB ⊥的两个动点.01若点A 在坐标轴上,则点B 也在坐标轴上,有11||||||22OA OB AB d =⋅,即3d ==.02若点(,)A A A x y 不在坐标轴上,可设1:,:OA y kx OB y x k==-. 由221,42.x y y kx ⎧+=⎪⎨⎪=⎩ 得222224,124.12A Ax k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩设点(,)B B B x y ,同理可得,222224,24.2B B k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩于是,||OA =||OB =||AB =. 利用11||||||22OA OB AB d =⋅,得d = 综合012和可知,总有3d =,即原点O 到直线AB的距离为定值3. (方法二:根据曲线C 关于原点和坐标轴都对称的特点,以及OA OB ⊥,求出A B 、的一组坐标,再用点到直线的距离公式求解,也可以得出结论)。
格致中学 二〇一四学年度 第二学期 模拟考试
高三年级 数学(文科)试卷(共4页)
(测试120分钟内完成,总分150分,试后交答题卷)
一、填空题:(本大题共14小题,每小题4分,满分56分)。
把答案直接填写在答题卷的相应位置上。
1、已知集合{}
2A x x =≤,501x B x
x ⎧+⎫
=≤⎨⎬-⎩⎭
,则A
B = _______。
2、若函数()y f x =与2x y e +=的图像关于直线x y =对称,则()f x = ______。
3、已知角α的终边上的一点的坐标为22sin
,cos 33P ππ⎛⎫
⎪⎝
⎭
,
则角α的最小正值为 。
4、已知z 和
3
1z i
+-都是纯虚数,那么=z 。
5、若抛物线2
2y px =的焦点恰好是双曲线2
2
2x y -=的右焦点,则p =_________。
6、设{}n a 为等差数列,若π=++951a a a ,则()28tan a a +的值为__________。
7、已知()5
1ax +的展开式中3
x 的系数是10,则实数a 的值是__________。
8、对于空间中的三条直线,有以下四个条件:①三条直线两两相交;②三条直线两两平行;
其中使这三条直线共面的充分条件有 个。
9、已知向量AC 、AD 和AB 在正方形网格中的位置如图所示,若
AC AB AD λμ=+,则λμ+=___________。
10、一个圆锥的正(主)视图和侧(左)视图都是边长为1cm 的正三角形,则此圆锥的表面积为____________2
cm 。
11、已知锐角A 、B 满足()tan 2tan A B A +=,则tan B 的最大值是____________。
12、已知1F 、2F 分别是椭圆
22
11612x y +=的左、右焦点,点P 是椭圆上的任意一点,则12
1
PF PF PF -的取值范围是____________。
班级____________姓名________________学号____________准考证号______________
13、已知函数()32
log ,031108,3
3
3x x f x x x x ⎧<<⎪
=⎨-+≥⎪⎩,若存在实数,,,a b c d ,满足()()()
()f a f b f c f d ===
,
其中d c b a >>>,则a b c d 取值范围是____________。
14、已知数列{}n a 满足:11a =,2a x =(x N *
∈),21n n n a a a ++=-,若前2014项中恰好含有667项为0,则x 的值为___________。
二、选择题:(本大题共4小题,每小题5分,满分20分)。
每小题所给的四个选项中只有一个是正确的,请将正确答案的选项填在答题卷的相应位置上。
15、下面给出的四个点中,位于10
10x y x y ++>⎧⎨
-+<⎩
表示的平面区域内,且到直线10x y -+=的
( ) A )()1,1- B )()2,0- C )()0,3 D )()1,1
16、如果i +2是关于x 的实系数方程02
=++n mx x 的一个根,则圆锥曲线12
2=+n
y m x
的焦点坐标是 ( ) A )()1,0± B )()0,1± C )()3,0± D )()0,3±
17、某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,
其他班有5位。
若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )
A )
101 B )201 C )401 D )120
1 18、设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M 、N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω。
若Ω是边长为1的正方形,给出下列三个结论: ①()x Ω
②()()x y Ω+Ω
的取值范围是2,⎡⎣;
③()()x y Ω-Ω恒等于0。
其中所有正确结论的序号是 ( )
A )①
B )②、③
C )①、②
D )①、②、③
三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤。
每题解题过程写在该题的答题框内,否则不计分。
19、(本题共2小题,其中第1小题6分,第2小题6分,满分12分)
如图,四面体P ABC -中,PAB ∆为边长为1的等边三角形,PBC ∆与PAC ∆均为斜边为PC
的直角三角形,且PC 。
E 、D 分别为AB 、PC 的中点。
(1)求证:PE 与AC 不垂直;
(2)求异面直线PB 与AD 所成角的大小。
20、(本题共2小题,其中第1小题4分,第2小题10分,满分14分)
设ABC ∆三个内角A 、B 、C 所对的边分别为a 、b 、c ,已知3
C π
∠=
,
cos cos a A b B =。
(1)求角A 的大小;
(2)如图,在ABC ∆的外角ACD ∠内取一点P ,使得2PC =。
过点P 分别作直线CA 、CD 的垂线PM 、PN ,垂足分别是M 、N 。
设PCA α∠=,求PM PN +最大值及此时
α的取值。
21、(本题共2小题,其中第1小题4分,第2小题10分,满分14分)
定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M >,都有
()f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界。
已知函数()11124x x
f x a ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭。
(1)当1a =时,求函数()f x 在(),0-∞的值域,并判断函数()f x 在(),0-∞上是否为有界函数,请说明理由;
(2)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围。
(第20题图)
A
B
D
C
M
N
P
α第19题图
22、(本题共3小题,其中第1小题4分,第2小题6分,第3小题6分,满分16分)
在平面直角坐标系xOy 中,已知三点()0,0O ,()1,1A -,()1,1B ,曲线C 上任意—点(),M x y 满足:()
1
42
MA MB OM OA OB +=-⋅+。
(1)求曲线C 的方程;
(2)设点P 是曲线C 上的任意一点,过原点的直线l 与曲线相交于M 、N 两点,若直线
PM 、PN 的斜率都存在,并记为PM k 、PN k ,试探究PM PN k k ⋅的值是否与点P 及直线l 有
关,并证明你的结论;
(3)设曲线C 与y 轴交于D 、E 两点,点()0,Q m 在线段DE 上,点P 在曲线C 上运动,若当点P 的坐标为()0,2时,QP 取得最小值,求实数m 的取值范围。
23、(本题共3小题,其中第1小题4分,第2小题6分,第3小题8分,满分18分) 已知等比数列{}n a 的首项12013a =,公比1
2
q =-,数列{}n a 前n 项和记为n S ,前n 项积记为n T 。
(1)证明:21n S S S ≤≤;
(2)求n 为何值时,n T 取得最大值;
(3)证明:若数列{}n a 中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为12,,,n d d d ,则数列{}n d 为等比数
列。