3.23——实际问题和反比例函数
- 格式:doc
- 大小:180.50 KB
- 文档页数:6
《实际问题与反比例函数》知识全解一、教学内容:反比例函数教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、重点、难点:重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质4.反比例函数的应用。
三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=x k (k 为常数,k 不等于0)的形式,那么称y 是x 的反比例函数.从y=xk 中可知,x 作为分母,所以不能为零 3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线”,不能用折线4、反比例函数的性质 反比例函数()0≠=k x k y k 的取值范围 0>k 0<k图像性质 ①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小 ①x 的取值范围是0≠x ,y 的取值范围是0≠y ②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1)反比例函数是轴对称图形和中心对称图形;2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交;3)在利用图像性质比较函数值的大小时,前提应是“在同一象限”内。
实际问题与反比例函数〔根底〕【学习目的】1. 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解. 2.根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的严密联络,增强应用意识.【要点梳理】【高清课堂实际问题与反比例函数知识要点】要点一、利用反比例函数解决实际问题1.根本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2.一般步骤如下:〔1〕审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.〔2〕由题目中的条件,列出方程,求出待定系数.〔3〕写出函数解析式,并注意解析式中变量的取值范围.〔4〕利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1.当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2.当工程总量一定时,做工时间是做工速度的反比例函数;3.在使用杠杆时,假如阻力和阻力臂不变,那么动力是动力臂的反比例函数;4.电压一定,输出功率是电路中电阻的反比例函数.【典型例题】类型一、反比例函数实际问题与图象1、小明乘车从南充到成都,行车的平均速度y〔km/h〕和行车时间x〔h〕之间的函数图象是〔〕A B C D【答案】B;【解析】syx,而南充到成都的间隔 S为定值.【总结升华】对于函数图象的判断题,应首先求出函数解析式,分清函数的类型,然后再选择对应的图象,同时在实际问题中应注意自变量的取值范围.举一反三:【变式1】〔2019•广西〕矩形的面积为10,长和宽分别为x和y,那么y关于x的函数图象大致是〔〕A. B. C. D.【答案】C;提示:根据题意得:xy=10,∴y=,即y 是x 的反比例函数,图象是双曲线,∵10>0,x >0,∴函数图象是位于第一象限的曲线;【高清课堂 实际问题与反比例函数 例6】【变式2】在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度也随之改变.与V 在一定范围内满足m v ρ=,它的图象如下图,那么该气体的质量m 为〔 〕.A. 1.4kgB. 5kgC. 6.4kgD. 7kg【答案】D ;提示:由题意知,当V =5时, ∴1.45m =,故7m =. 类型二、利用反比例函数解决实际问题2、某商场出售一批名牌衬衣,衬衣的进价为80元,在营销中发现,该衬衣的日销售量y 〔件〕是日销售价x 元的反比例函数,且当售价定为100元时,每日可售出30件. 〔1〕恳求出y 关于x 的函数关系式〔不必写自变量x 的取值范围〕;〔2〕假设商场方案经营此种衬衣的日销售利润为1800元,那么其单价应是多少元? 【思路点拨】〔1〕因为y 与x 成反比例函数关系,可设出函数式(0)k y k x=≠,然后根据当售价定为100元/件时,每天可售出30件可求出k 的值.〔2〕设单价是x 元,根据每天可售出y 件,每件的利润是〔x -80〕元,总利润为1800元,根据利润=售价-进价可列方程求解.【答案与解析】解:〔1〕设所求函数关系式为(0)k y k x=≠, 那么因为当x =100时y =30,所以k =3000,所以3000y x=; 〔2〕设单价应为x 元,那么〔x - 80〕·3000x =1800, 解得x =200.经检验x =200是原方程的解,符合题意.即其单价应定为200元/件.【总结升华】此题考察反比例函数的概念,设出反比例函数,确定反比例函数,以及知道利润=售价-进价,然后列方程求解的问题.举一反三:【变式】某运输队要运300吨物资到江边防洪.〔1〕根据运输时间t〔单位:小时〕与运输速度v〔单位:吨/时〕有怎样的函数关系?〔2〕运了一半时,接到防洪指挥部命令,剩下的物资要在2小时之内运到江边,那么运输速度至少为多少?【答案】解:〔1〕由得vt=300.∴ t与v的函数关系式为300tv =.〔2〕运了一半后还剩300-150=150〔吨〕.∴ t和v关系式变为150tv=,将t=2代入150tv=,得1502v=,v=75.∴剩余物资要在2小时之内运完,运输速度为每小时至少运75吨.3、某闭合电路中,电源电压为定值,电流I〔A〕与电阻R〔Ω〕成反比例函数.如下图表示的是该电路中电流I与电阻R之间函数关系的图象,那么用电阻R表示电流I的函数关系式为〔〕A.6IR= B.6IR=- C.3IR= D.2IR=【答案】A;【解析】设UIR=,由于点B〔3,2〕在反比例函数图象上,那么有23U=,可求得U=6.从而可求得函数关系式为6IR =.【总结升华】从图象上可以看出,这是一个反比例函数关系的问题.电流I与电阻R成反比例关系,设UIR=,再求电压U.4、〔2019•衡阳〕某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y〔微克/毫升〕与服药时间x小时之间函数关系如下图〔当4≤x≤10时,y与x成反比例〕.〔1〕根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.〔2〕问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【思路点拨】〔1〕分别利用正比例函数以及反比例函数解析式求法得出即可;〔2〕利用y=4分别得出x的值,进而得出答案.【答案与解析】解:〔1〕当0≤x≤4时,设直线解析式为:y=kx,将〔4,8〕代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将〔4,8〕代入得:8=,解得:a=32,故反比例函数解析式为:y=;〔2〕当y=4,那么4=2x,解得:x=2,当y=4,那么4=,解得:x=8,∵8﹣2=6〔小时〕,∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【总结升华】此题主要考察了反比例函数的应用,根据题意得出函数解析式是解题关键.。
九年级数学下册《实际问题与反比例函数》
知识点人教版
知识点
反比例函数与几何图形、一次函数的综合应用
反比例函数与几何图形、一次函数知识综合起来应用可解决如下几种问题:
已知一次函数和反比例函数的解析式,求它们图象的交点坐标,这类题目可通过列方程组来求解;
判断含有同一字母系数的一次函数和反比例函数的图象在同一直角坐标系中的位置情况,可先由两者中的某一图象确定出字母系数的取值情况,再与另一图象相对照解决;
已知含有一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
利用反比例函数的几何意义求与面积有关的问题。
解这类问题要注意抓住其中的“定点”或对应的值解题。
两种函数有时还会综合到其他题目中,解决时要注意结合相关知识点。
反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式。
当电路中电压一定时,电流与电阻成反比例关系;
当做的功一定时,作用力与在力的方向上通过的距离成反比例关系;
气体质量一定时,密度与体积成反比例关系;
当压力一定时,压强与受力面积成反比例关系。
人教版九年级数学下册:26.2 《实际问题与反比例函数》说课稿1一. 教材分析人教版九年级数学下册第26.2节《实际问题与反比例函数》是本册教材中的重要内容。
本节内容通过引入实际问题,让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。
本节内容分为两个部分:一是反比例函数的定义及其性质;二是反比例函数在实际问题中的应用。
在第一部分中,学生需要理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等。
在第二部分中,学生需要能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。
二. 学情分析九年级的学生已经掌握了函数的基本概念和性质,具备了一定的函数知识基础。
但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要通过生动的实例和实际问题,引导学生理解反比例函数的定义和性质,并能够运用反比例函数解决实际问题。
三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的定义,掌握反比例函数的性质,包括图像、单调性、奇偶性等;学生能够将实际问题转化为反比例函数问题,并运用反比例函数解决实际问题。
2.过程与方法目标:通过实际问题的引入和解决,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣和好奇心,培养学生的团队合作意识和克服困难的勇气。
四. 说教学重难点1.教学重点:反比例函数的定义及其性质,反比例函数在实际问题中的应用。
2.教学难点:反比例函数的性质的理解和应用,将实际问题转化为反比例函数问题的方法的掌握。
五. 说教学方法与手段本节课采用讲授法、引导法、讨论法、实例教学法等教学方法。
同时,利用多媒体教学手段,如PPT、教学软件等,展示反比例函数的图像和实际问题的数据,帮助学生更好地理解和掌握反比例函数的性质和应用。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考反比例函数的概念。
实际问题与反比例函数教学目标:1.结合反比例函数的图象,认识反比例函数的值随自变量的变化的规律;2.会分析实际问题中变量之间的关系,建立反比例函数模型解决实际问题;3.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
教学重难点:1. 理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题;2. 建立反比例函数的模型,进而解决实际问题。
题型一几何问题例1.某市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,公司临时改变计划,把储存室的深度改为15m.相应地,储存室的底面积应改为多少?(结果保留小数点后两位)练习1.已知某小区要规划修建一个面积为200m2的矩形草坪.(1)写出其长y(单位m)与宽x(单位m)之间的函数表达式.(2)当草坪的长为20m时,求宽为多少?当草坪的宽为8m,求其长为多少?(3)如果要求草坪的长不小于16m,其宽至多要多少?m,现要铺贴地板砖.2.正在新建中的饿某会议厅的地面约5002(1)所需地板砖的块数n与每块地板砖的面积S有怎样的函数关系?(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,每块地板砖的规cm,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?格为80×802题型二工程问题例1.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?例2.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的关系式;(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?练习1.学校食堂开学初购进一批瓶装液化石油气,现在知道:按每天用气6升计算,一学期(按150天计算)刚好用完.若每天的用气量为x升,那么这批石油气能用y天.(1)写出y与x之间的函数关系;(2)画出函数图象;(3)若每天节约1升气,则这批石油气能多用多少天?2.设每名工人一天能做某种型号的工艺品x 个。
实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。
教学辅导教案
授课时间:2013年 3月23 日(16:10 -18:10 )学科:数学年级:八年级课时:2 学生姓名:授课教师:
课题名称反比例函数与实际问题
教学目标1、会求反比例函数的解析式;
2、理解反比例函数的图像和意义;
3、利用反比例函数的性质和概念去实际问题。
教学重点教学难点重点:利用反比例思想去解决实际问题;难点:建立反比例函数关系的方法。
教学过程一、家庭作业的讲解;
二、课前复习练习:
反比例函数当堂练习:
一、选择题
1.下列函数中,y是x的反比例函数的是()
A.y=x-1 B.y=
2
8
x
C.2
=
x
y
D.y=
x2
1 2.如果点A(-2,a),B(b,1)是反比例函数y=-x
6
图象上的两点,那么
a,b的值分别是()
A.3,6 B.-3,6 C.3,-6 D.-3,-6
3.已知y=(m+1)x2-m是反比例函数,则函数的图象在()
A.一、三象限B.二、四象限C.一、二象限D.三、四象限
4.在同一坐标系中,函数x
k
y=和3
+
=kx
y的图像大致是()
A B C D
5.下列函数中,当x>0时,y随x的增大而减小的是()
A.y=x B.y=
x
1
C.y=-
x
1
D.y=x2
6.已知反比例函数)0
(<
=k
x
k
y的图像上有两点A(
1
x,
1
y),B(
2
x,
2
y),且
2
1
x
x<,
A B C 则21y y -的值是( )
A .正数
B .负数
C .非正数
D .不能确定
7.已知圆柱的侧面积是100πcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h 关于r 的函数的图象大致是 ( )
二、填空题
8.已知反比例函数x
m y 2
3-=
,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.
9.如果双曲线x
m
y =经过点(2,-1),那么m = ;该函数图象位于第____象限.
10.已知y 与x 成反比例,并且x =3时y =7,则y 和x 之间的函数关系式是____ .
11.反比例函数x
k
y =
与一次函数m kx y +=的图象 有一个交点是(-2,1),则它们的另一个交点的坐标是 .
12.如图,面积为3的矩形OABC 的一个顶点B 在反比例
函数x
k
y =
的图象上,另三点在坐标轴上,则k = . 13.将x =32代入反比例函数y =-x
1
中,所得函数值记为y 1,又将x =y 1+1代入函数中,
所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,……如此继续下去,则y 2008=________________.
三、解答题
14. 水池中有水若干吨,若单开一个出水口,水流速度v 与全池水放光所用时间t 如下表: 用时t (小时) 10
5
3
10
2
5 2
4
5 1
——……→逐渐减少
第12题 O
r
h
D
出水速度(吨/小时)
1 2 3 4 5 8 10
——……→逐渐增大
① 写出放光池中水用时t (小时)与放水速度v (吨/小时)之间的函数关系. ② 这是一个反比例函数吗?
15. 已知y 与x 2成反比例,并且当x =3时,y =4.求当x =1.5时,y 的值.
16.如图,一次函数y =kx +b 的图像与反比例函数y=x m
的图像相交于A 、B 两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像写出使一次函数的值小于反比例函数的值的x 的取值范围.
实际问题与反比例函数: 反比例函数与实际问题: 例1近视眼镜的度数y (度)与焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为0.25m . (1)试求眼镜度数y 与镜片焦距x 之间的函数关系式; (2)求1 000度近视眼镜镜片的焦距.
【分析】 把实际问题转化为求反比例函数的解析式的问题. 解:(1)设y=
k x ,把x=0.25,y=400代入,得400=0.25
k
,
所以,k=400×0.25=100,即所求的函数关系式为y=100
x
.
(2)当y=1 000时,1000=100
x
,解得=0.1m.
例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.
(1)请你根据图象提供的信息求出此蓄水池的蓄水量;
(2)写出此函数的解析式;
(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?
(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?
【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.
解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).
(2)因为此函数为反比例函数,所以解析式为:V=48000
t
;
(3)若要6h排完水池中的水,那么每小时的
排水量为:V=48000
6
=8000(m3);
(4)如果每小时排水量是5 000m3,那么要排
完水池中的水所需时间为:t= 48000
6
=8000(m3)
备选例题
(2005年中考·四川)制作一种产品,需先
将材料加热到达60℃后,再进行操作.设该材料
温度为y(℃),从加热开始计算的时间为x(分
钟).据了解,设该材料加热时,温度y与时间x
完成一次函数关系;停止加热进行操作时,温度y
与时间x•成反比例关系(如图所示).已知该材料
在操作加工前的温度为15℃,加热5•分钟后温度
达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时
的关系式为y=300
x
(x>5);(2)20分钟.
夯实基础
1.A、B两城市相距720千米,一列火车从A城去B城.
(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是 v=720
t
.
(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时.
2.有一面积为60的梯形,其上底长是下底长的1
3
,若下底长为x,高为y,则y与x的
函数关系是 y=90
x
.
3.(2005年中考·长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为(A)
4.下列各问题中,两个变量之间的关系不是反比例函数的是(C)
A.小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系
B.菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系
C.一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系 D.压力为600N时,压强p与受力面积S之间的关系
5.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是(C)
6.(2005年中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系
I=U
R
.
(1)当哪个量一定时,另两个量成反比例函数关系?
(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏
7.在一定的范围内,•某种物品的需求量与供应量成反比例.•现已知当需求量为500吨时,
市场供应量为10 000吨,•试求当市场供应量为16 •000•吨时的需求量是 •312.5吨.
2.某电厂有5 000吨电煤.
(1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)•之间的函数关系是();
(2)若平均每天用煤200吨,这批电煤能用是天;
(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是天.
布置作业:
三年中考,五年模拟P21-23
教学后记
课后小评:
下节课计划:
教师建议:教研主任
审批。