水声通信及海洋定位导航解决方案ppt
- 格式:pptx
- 大小:2.01 MB
- 文档页数:28
海洋船舶北斗定位导航系统解决方案华云科技有限公司2013年10月目录一、综述 (4)二、系统解决方案 (5)(一)设计目标与原则 (5)1.设计目标 (5)2.设计原则 (6)(二)总体方案设计 (6)1. 卫星导航运营中心 (7)2. 岸端监控中心 (8)3. 船载北斗定位导航终端 (8)(三)岸端监控中心功能设计 (9)1.岸船信息互通 (9)2.位置监控 (9)3.应急调度 (9)4.船舶报警 (10)5.增值信息服务 (11)6.系统管理 (11)7.系统接口 (12)(四)船载北斗定位导航终端 (13)1.主要特点 (14)2.终端功能 (14)3.主要性能指标 (19)(五)硬件环境要求 (20)1. 主机存储 (20)2. 网络 (21)3. 系统支撑软件 (21)三、系统造价 (23)(一)概算一(终端含屏及本地导航) (24)(二)概算二(终端不含屏) (25)一、综述最古老的航海导航的方法是罗盘和星历导航,人类通过观察星座的位置变化来确定自己的方位;最早的导航仪是中国人发明的指南针,后来发展成一直为人类广泛应用的磁罗经。
在随后的两个世纪里,人类通过综合利用星历知识、指南针和航海表来进行导航和定位。
卫星技术应用于海上导航可以追溯到20世纪60年代的第一代卫星导航系统Transit,但是它有不连续导航、定位的时间间隔不稳定等缺点。
GPS系统的出现克服了Transit系统的局限性,而且提高了定位精度、可进行连续的导航、有很强的抗干扰能力,取代了陆基无线电导航系统,在航海导航中发挥了划时代的作用。
2000年我国建成北斗卫星导航试验系统,中国成为第三个拥有自主卫星导航系统的国家。
截至2012年底,北斗卫星导航系统已经成功发射16颗卫星,并组网运行,形成区域服务能力。
目前在北京、郑州、西安、乌鲁木齐等地区,中国卫星导航定位精度可达7米,在东盟国家等低纬度地区,定位精度可达到5米左右。
随着新一代北斗导航卫星的发射,以及在技术以及管理上的诸多创新,北斗卫星导航精度有望继续提高。
烧脑的“水下通信”水下通信是指在水下进行信息传输的一种无线通信技术。
通常来说,水下通信是由水下无线电通信、水声通信和光纤通信等方式组成的综合系统。
这些通信方式在水下作业和海洋探测等方面有着非常重要的应用。
本文将对水下通信的技术原理、应用及存在的问题进行探讨。
水下通信的技术原理水下通信在技术原理上与陆地通信存在很大的不同。
由于水的折射率高,电磁波在水下传播会受到很强的衰减,传输距离会受到很大的限制。
因此,水下通信通常采用的是水声通信和光纤通信。
水声通信是指利用水声波进行通信的一种技术。
水声波具有能在水中传播的特点,并且能够在深海中保持较大的强度。
利用水声通信可以在水下传输语音、数据等信息。
光纤通信则是利用光纤传输光信号进行通信的一种技术。
光纤通信具有传输速度快、抗干扰能力强等优点。
在水下通信中,利用光纤通信可以构建强大的海洋观测网络,用于实时监测海洋环境和海洋生物。
水下通信在军事、科学研究、海洋勘探等领域有着广泛的应用。
在军事方面,水下通信被广泛应用于水下战争中。
军方利用水下通信来进行指挥、情报收集和情报传输等任务。
水下通信可在深海中传输信号,既能进行低频率的超长波传输,也能进行高频率的红外线传输。
这些信号的传输距离不受地球曲率的限制,能在千米范围内进行远距离通信。
在科学研究方面,水下通信被广泛应用于海洋物理学、海洋生物学、海洋地质学等领域。
水下通信可用于实时监测海洋环境、测量海水温度、盐度及深度等参数。
同时,还可以用于探测海洋生物的分布、生态习性及物种数量等信息。
在海洋勘探方面,水下通信被广泛应用于油气勘探、海洋矿产资源勘探等项目中。
水下通信可用于定位、导航和测量操作,同时能实现海上到海底的双向数据传输。
水下通信存在的问题虽然水下通信应用广泛,但是在实践中仍然存在着很多问题。
其中最主要的是水下通信的传输距离和传输速度受到了限制。
传输距离问题主要是由于水下通信受到水的折射率的影响,因此通信距离有限。
海洋船舶北斗定位导航系统解决方案华云科技有限公司2013年10月目录一、综述 (4)二、系统解决方案 (5)(一)设计目标与原则 (5)1.设计目标 (5)2.设计原则 (6)(二)总体方案设计 (6)1. 卫星导航运营中心 (7)2. 岸端监控中心 (8)3. 船载北斗定位导航终端 (8)(三)岸端监控中心功能设计 (9)1.岸船信息互通 (9)2.位置监控 (9)3.应急调度 (9)4.船舶报警 (10)5.增值信息服务 (11)6.系统管理 (11)7.系统接口 (12)(四)船载北斗定位导航终端 (13)1.主要特点 (14)2.终端功能 (14)3.主要性能指标 (19)(五)硬件环境要求 (20)1. 主机存储 (20)2. 网络 (21)3. 系统支撑软件 (21)三、系统造价 (23)(一)概算一(终端含屏及本地导航) (24)(二)概算二(终端不含屏) (25)一、综述最古老的航海导航的方法是罗盘和星历导航,人类通过观察星座的位置变化来确定自己的方位;最早的导航仪是中国人发明的指南针,后来发展成一直为人类广泛应用的磁罗经。
在随后的两个世纪里,人类通过综合利用星历知识、指南针和航海表来进行导航和定位。
卫星技术应用于海上导航可以追溯到20世纪60年代的第一代卫星导航系统Transit,但是它有不连续导航、定位的时间间隔不稳定等缺点。
GPS系统的出现克服了Transit系统的局限性,而且提高了定位精度、可进行连续的导航、有很强的抗干扰能力,取代了陆基无线电导航系统,在航海导航中发挥了划时代的作用。
2000年我国建成北斗卫星导航试验系统,中国成为第三个拥有自主卫星导航系统的国家。
截至2012年底,北斗卫星导航系统已经成功发射16颗卫星,并组网运行,形成区域服务能力。
目前在北京、郑州、西安、乌鲁木齐等地区,中国卫星导航定位精度可达7米,在东盟国家等低纬度地区,定位精度可达到5米左右。
随着新一代北斗导航卫星的发射,以及在技术以及管理上的诸多创新,北斗卫星导航精度有望继续提高。
1.技术方案一、水下通信定位系统研制方案一、概述和系统功能随着人类对海洋资源开发的探人,水下蛙人及水下设备在海底资源探测、科学数据搜集等领域发挥着越来越重要的作用。
为保证水下蛙人安全、准确地完成预定任务,需要有相应的设备对其进行定位、导航。
目前,国内外从事水声导航和定位技术研究的单位很多,如挪威的Kongsbe.g Simrd公司、法国的OCEANO Tech公司和英国的PMES公司等,它们都有成熟的产品出售。
英国PMES公司的Smarta.k系统和哈尔滨工程大学研制的GRAT系统都是由浮标阵组成的长基线水声定位系统,主要功能是对控制平台的水平航迹进行定位,深度测量则要依赖于在目标上加装压力传感器或特定的信号体制。
法国的OCEANO Tech公司的水声导航系统主要是由接收终端阵组成,兼有一定的水声遥控通信功能,但因为单阵元设备水声作用距离有限,对接收终端的控制管理范围很小,使系统的工作范围受到限制。
本项目设计所介绍的分布式系统是一套集高精度导航定位功能、无线电通信功能和水声遥控通信功能于一体的大型联合网络系统。
应用长基线工作原理对控制平台进行导航和定位,具有三维测量能力。
相比于国内外的设备,本系统功能更加强大,在工程上巳经得到实现,并且经过了海上试验的验证。
本水下通信定位系统由控制平台和末端接收终端组成,控制平台能够实时显示潜水小组的相对位置信息;能与组员进行通讯;能够实现对小组人员的行动控制。
小组人员末端接收终端能够接收组长口令,并与组长进行通讯,回应组长口令;能够显示自身与组长和组员编队的相对位置信息;能够主动与组长通讯。
能够提前预设通讯信息内容,包括:指令信息、水下状态信息、遇险求援信息及其他必要信息。
控制平台由测距仪分系统和显控分系统组成。
末端接收终端由接收终端分系统(工作时由多个接收终端组成阵)和显控分系统组成。
1)测距仪分系统。
控制平台上的测距仪工作在水下模式,发送测距询问信号,并接收接收终端的应答信号,测量出时延值,传进给显控计算机解算,完成导航功能。