材料科学基础 第一章 原子排列()
- 格式:ppt
- 大小:9.19 MB
- 文档页数:66
第一章晶体学基础材料中的原子(离子、分子)在三维空间呈规则,周期性排列。
原子无规则堆积。
非晶体:蜂蜡、玻璃金刚石、NaCl、冰等。
YX§1-1 空间点阵一、空间点阵的概念为了便于分析研究晶体的结构,进行如下处理:组成晶体的原子(或分子、原子集团)抽象几何点(点阵的结点自然形成三维阵列(空间点阵平行线连接空间格子(原子(离子)的刚球模型原子中心位置X Y Z a bcX Zab c §1-2晶面指数、晶向指数——Miller 指数晶面——穿过晶体中原子的平面。
晶向——晶体中任意原子列的直线方向。
§1-3常见晶体结构常见的晶体结构主要有:体心立方一、体心立方(BCC)体心立方结构可以缩写为BCC 钢球模型质点模型(face-centered cubic)a从晶体结构的钢球模型可以看出,原子与原子之间存在许多间隙。
分析这些间隙的数量、位置、形状和大小,对于了解晶体的性能、合金的相结构以及相变、扩散等问题都是十分重要的。
一、FCC 晶体FCC 中的间隙有2种:八面体间隙,四面体间隙1、正八面体间隙边长为:2a §1-4常见晶体结构的间隙八面体间隙四面体间隙§1-5 晶体的堆垛方式任何晶体都可以看作是由任意晶面的。
一般是以最密排晶面的堆垛方式作为晶体的堆垛方式。
一、BCC晶体视频最密排晶面:(110)堆垛次序:ABAB……§1-6 晶带所有相交于某一直线的或平行于此直线的晶面构成一个此直线称为晶带轴。
晶带轴[uvw]与该晶带的晶面存在如下关系——晶带方程hu+kv+lw例如:在正交(立方、正方、四方)点阵中,(101(100)、(010)、(110)、向平行,构成以[001]为晶带轴的晶带。
第一章 原子排列与晶体构造1. fcc 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 构造的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。
2. Al 的点阵常数为,其构造原子体积是,每一个晶胞中八面体间隙数为 ,四面体间隙数为 。
3. 纯铁冷却时在912e 发生同素异晶转变是从 构造转变成 构造,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。
4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于〔111〕平面上的方向。
在hcp 晶胞的〔0001〕面上标出)(0121晶面和]0121[晶向。
5. 求]111[和]120[两晶向所决定的晶面。
6 在铅的〔100〕平面上,1mm 2有多少原子?铅为fcc 面心立方构造,其原子半径R=×10-6mm 。
第二章 合金相构造一、 填空1〕 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。
2〕 阻碍置换固溶体溶解度大小的要紧因素是〔1〕 ;〔2〕 ;〔3〕 ;〔4〕 和环境因素。
3〕 置换式固溶体的不均匀性要紧表现为 和 。
4〕 依照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。
5〕 无序固溶体转变成有序固溶体时,合金性能转变的一样规律是强度和硬度 ,塑性 ,导电性 。
6〕间隙固溶体是 ,间隙化合物是 。
二、问答1、 分析氢,氮,碳,硼在-Fe 和-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。
元素的原子半径如下:氢:,氮:,碳:,硼:,-Fe :,-Fe :。
第一章原子结构与键合1. 主量子数n、轨道角动量量子数l i、磁量子数m i和自旋角动量量子数S i。
2. 能量最低原理、Pauli不相容原理,Hund规则。
3. 同一周期元素具有相同原子核外电子层数,但从左→右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上→下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低;4. 在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。
由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。
5. 52.0576. 73% (Cu63); 27% (Cu65)8. a:高分子材料;b:金属材料;c:离子晶体10.a) Al2O3的相对分子质量为M=26.98×2+16×3=101.961mm3中所含原子数为1.12*1020(个)b) 1g中所含原子数为2.95*1022(个)11. 由于HF分子间结合力是氢键,而HCl分子间结合力是范德化力,氢键的键能高于范德化力的键能,故此HF的沸点要比HCl的高。
第2章固体结构1.每单位晶胞内20个原子2.CsCl型结构系离子晶体结构中最简单一种,属立方晶系,简单立方点阵,Pm3m空间群,离子半径之比为0.167/0.181=0.92265,其晶体结构如图2-13所示。
从图中可知,在<111> 方向离子相接处,<100>方向不接触。
每个晶胞有一个Cs+和一个Cl-,的配位数均为8。
3.金刚石的晶体结构为复杂的面心立方结构,每个晶胞共含有8个碳原子。
金刚石的密度(g/cm3)对于1g碳,当它为金刚石结构时的体积(cm3)当它为石墨结构时的体积(cm3)故由金刚石转变为石墨结构时其体积膨胀4.]101[方向上的线密度为1.6. 晶面族{123}=(123)+(132)+(213)+(231)+(321)+(312)+)231(+)321(+)132(+)312(+)213(+)123(+)321(+)231(+)312(+)132(+)123(+)213(+)312(+)213(+)321(+)123(+)132(+)231(晶向族﹤221﹥=[221]+[212]+[122]+]212[+]122[+]221[+]122[+]212[+]221[+]122[+]221[+]212[7. 晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0;将晶带轴[001]代入,则h×0+k×0+l×1=0;当l=0时对任何h,k取值均能满足上式,故晶带轴[001]的所有晶带面的晶面指数一般形式为(hk0)。
中南大学材料科学基础课后习题答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 原子排列与晶体结构1. [110], (111), ABCABC…, , 12 , 4 , a r 42=; [111], (110) , , 8 , 2 , a r 43= ; ]0211[, (0001) , ABAB , , 12 , 6 , 2a r =。
2., 4 , 8 。
3.FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。
4.解答:见图1-1 5. 解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有:h+k-l=0,2h-l=0。
可以求得(hkl )=(112)。
6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为a r 42=,故可求得a =×10-6mm 。
则(100)平面的面积S =a 2=×0-12mm 2,每个(100)面上的原子个数为2。
所以1 mm 2上的原子个数s n 1==×1012。
第二章 合金相结构一、 填空1) 提高,降低,变差,变大。
2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别3) 存在溶质原子偏聚 和短程有序 。
4) 置换固溶体 和间隙固溶体 。
5) 提高 ,降低 ,降低 。
6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于时形成的复杂结构的化合物。
二、 问答1、 解答: -Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为,即R =,八面体间隙半径为,即R =。
氢,氮,碳,硼由于与-Fe 的尺寸差别较大,在-Fe 中形成间隙固溶体,固溶度很小。
-Fe 的八面体间隙的[110]方向R= Ra ,间隙元素溶入时只引起一个方向上的点阵畸变,故多数处于-Fe 的八面体间隙中心。
考研必备之《材料科学基础》学霸笔记材料科学基础笔记第⼀章原⼦结构与键合概述:决定材料性能的最根本的因素是组成材料的各元素的原⼦结构,原⼦间的相互作⽤、相互结合,原⼦或分⼦在空间的排列分布和运动规律以及原⼦集合体的形貌特征等。
为此,我们需要了解材料的微观构造,即其内部结构和组织状态,以便从其内部的⽭盾性找出改善和发展材料的途径。
第⼀节原⼦结构1 物质的组成物质是由⽆数微粒按⼀定⽅式聚集⽽成的,这些微粒可能是原⼦、分⼦或离⼦;分⼦是能单独存在且保持物质化学特性的⼀种微粒;原⼦是化学变化中的最⼩微粒。
2 原⼦的结构(原⼦结构直接影响原⼦间的结合⽅式)3 原⼦的电⼦结构3.1电⼦既有粒⼦性⼜具有波动性,具有波粒⼆象性。
3.2电⼦的状态和在某处出现的机率可⽤薛定谔⽅程的解/波函数来描述,即原⼦中每个电⼦的空间位置和能量可⽤四个量⼦数来确定:a主量⼦数(n):决定原⼦中电⼦的能量及与核的平均距离(⼀般能量低的趋向近轨道,r较⼩,反之则反),即表⽰电⼦所处的量⼦壳层。
如K、L、M…,n=1,2,3;b 轨道⾓动量量⼦数(l):表⽰电⼦在同⼀壳层内所处的能级,与电⼦运动的⾓动量有关。
如s、p、d、f…(0,1,2,…n-1);c 磁量⼦数(m):给出每个轨道⾓动量量⼦数的能级数或轨道数,为2l+1,决定电⼦云的空间取向;d ⾃旋⾓动量量⼦数(s):反映电⼦不同的⾃旋⽅向,其值可取*只有n,l决定能量和能级3.3能级和能级图把电⼦不同状态对应着相同能量的现象称为简并。
将所有元素的各种电⼦态(n,l)按能量⽔平排列成能级图。
3.4核外电⼦的排布规则a 能量最低原理:电⼦的排布总是尽可能使体系的能量最低;b Pauling不相容原理:在⼀个原⼦中,不可能有上述运动状态完全相同的两个电⼦,即不能有上述四个量⼦数都相同的两个电⼦;c 洪德Hund规则:在同⼀个亚层中的各个能级中,电⼦的排布尽可能分占不同的能级,⽽且⾃旋⽅向相同(尽可能保持⾃旋不成对);3.5 元素周期表元素是具有相同核电荷数的同⼀类原⼦的总称;元素的外层电⼦结构随着原⼦序数的递增⽽呈周期性的变化规律称为元素周期律;元素周期表是元素周期律的表现形式;元素的性质、原⼦结构和该元素在周期表中的位置三者之间有着密切的关系。