人教版初三数学上册二次函数图象与系数的关系
- 格式:ppt
- 大小:48.50 KB
- 文档页数:5
二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。
由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。
二次函数图象的位置与系数之是的关系二次函数图像与系数的关系二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b和c分别是二次项系数、一次项系数和常数项。
这个函数的图像是一个抛物线。
二次函数的图像与系数之间存在着密切的关系。
具体地说,系数a、b和c的值可以影响二次函数的图像的位置、形状和方向。
下面将详细介绍二次函数图像与系数的关系。
一、关于a的值:1.当a>0时,二次函数的抛物线开口向上。
这意味着函数的值随着x的增加而增加,图像的顶点是最低点。
当a的绝对值越大时,抛物线的开口越宽,抛物线越平缓。
2.当a<0时,二次函数的抛物线开口向下。
这意味着函数的值在顶点处取得最大值,然后随着x的增加或减少而减小。
当a的绝对值越大时,抛物线的开口越窄,抛物线越陡峭。
二、关于b的值:1.当b>0时,二次函数的抛物线向右平移。
这意味着函数在x轴正方向上平移,距离顶点越远,平移量越大。
2.当b<0时,二次函数的抛物线向左平移。
这意味着函数在x轴负方向上平移,距离顶点越远,平移量越大。
三、关于c的值:1.当c>0时,二次函数的抛物线上移。
这意味着函数的值在y轴正方向上移动,距离为c的绝对值。
2.当c<0时,二次函数的抛物线下移。
这意味着函数的值在y轴负方向上移动,距离为c的绝对值。
综上所述,二次函数的图像与系数之间有以下关系:1.a的值决定了抛物线的开口方向和形状。
2.b的值决定了抛物线在x轴上的平移方向和距离。
3.c的值决定了抛物线在y轴上的平移方向和距离。
举例来说,考虑二次函数f(x)=x^2+2x-31.a=1,表示抛物线的开口向上,且形状较为平缓。
2.b=2,表示抛物线在x轴上向右平移2个单位。
3.c=-3,表示抛物线在y轴上向下平移3个单位。
根据这些系数的值,可以在坐标系上绘制出对应的抛物线图像。
通过改变系数的值,可以进一步观察抛物线图像的变化。
同时,通过分析抛物线的图像,也可以推断出系数的值。
《系数a ,b ,c 与二次函数2y=ax bx c ++图象的关系》教学设计一、 教学内容分析通过前几节课的学习,学生对二次函数图象有了初步的认识,并且知道二次函数2y=ax bx c ++的图象是一条抛物线,抛物线的开口方向及大小由二次项系数a 的符号和大小决定,抛物线在直角坐标系中的位置由系数a ,b ,c 的值决定,a ,b 共同决定对称轴的位置,c 决定抛物线与y 轴的交点坐标位置,以及2b 4ac -,a+b+c ,a-b+c 的符号等.通过本节课的学习,让学生掌握:|a|相同的抛物线全等.a ,b 同号,抛物线的对称轴(或顶点)即直线x=2ab-在y 轴左侧;a ,b 异号,抛物线的对称轴(或顶点)即直线x=2ab-。
在y 轴右侧;当b=0时,抛物线的对称轴为y 轴.当c>0时,抛物线与y 轴交于正半轴;当c<0时,抛物线与y 轴交于负半轴;当c=0时,抛物线与y 轴交点为原点;c 相同的抛物线均过点(0,c ).a ,b 相同的抛物线是以顶点为动点且沿对称轴平移而得到的一组抛物线系.另外,二次项系数a 相同的二次函数图象可通过平移互相转化;a 互为相反数的二次函数图象一定关于x 轴对称.理解这两点对于学生而言比较难,是学生的思维生长点.二、 学情分析学生前面已经学习过二次函数的图象与性质,理解了二次函数的一般式2y=ax bx c ++中的系数a ,b ,c 对抛物线有一定的影响,但只是零散的认知,所以本节课有必要帮助学生梳理一下这方面的知识,让学生更加清晰地掌握三个系数是怎样来影响抛物线的. 三、 教学目标1.理解系数a ,b ,c 与二次函数图象的关系.2.已知二次函数图象,能确定系数a ,b ,c 的取值范围.3.已知二次函数图象,能确定与系数a ,b ,c 有关的代数式取值范围.4.能从给定二次函数的图象中准确提取信息,体会数形结合思想.重点难点能从二次函数的图象中获取信息,得出相关结论,体会数形结合思想.四、评价设计学习评价量表五、教学活动设计(2)任何一条抛物线y=ax²+bx+c与y轴总有交点(0,c),那么与x轴的交点情况是怎样的?2.对于二次函数y=ax²+bx+c 图象上的特殊点,还有几个点需要了解,请大家计算当自变量x取1,-1,2,-2时,对应的纵坐标的值.例2 在同一直角坐标系中,一次函数y=ax+b和二次函数y=ax²+bx的图象可能为例3 已知二次函数y=mx²+2(m-1)x+m+2,根据下列条件求m的值:(1)图象经过原点;(2)图象关于y轴对称;(3)图象的顶点在x轴上例4 请观察以下二次函数解析式,你能根据解析式得出与图象有关的哪些结论?(1)y=ax²;(2)y=x²-4x+a;(3)y=ax²-4ax+3a;(4)y=mx²-2mx+m+1;(5)y=x²-ax+1;(6)y=x²-(a+1)x+a.1.已知下列各抛物线y=ax²+bx+c,根据图象判断系数a,b,c及b²-4ac的取值范围.2.如图是二次函数y=ax²+bx+c图象的一部分,给出下列结论:①a+b+c=0;②b>2a;③b²-4ac>0;④c>0.其中正确的是 . (填序号)3.在同一直角坐标系中,一次函数y=ax+1与二次函数y=x²+a的图象可能是()4.已知二次函数y=x²+mx+m-4m²,根据下列条件求m的值.(1)图象经过原点;(2)图象关于y轴对称;(3)图象的顶点在x轴上.六、板书设计系数a ,b ,c 与二次函数2y=ax bx c ++图象的关系一、a ,b ,c 与抛物线2y=ax bx c ++的关系 1.二次项系数a 决定抛物线的开口方向. a>0⇔台抛物线开口向上; a<0⇔台抛物线开口向下.2.常数项c 决定抛物线与y 轴的交点位置.c>0⇔台抛物线与y 轴交于正半轴; c<0⇔抛物线与y 轴交于负半轴; c=0⇔抛物线经过原点.3.二次项系数a 与一次项系数b 共同决定对称轴的位置. a ,b 同号台⇔2ab-<0⇔与对称轴在y 轴左侧; a ,b 异号台⇔2ab->0⇔对称轴在y 轴右侧; b=0⇔2ab-=0⇔台对称轴为y 轴. 4.一元二次方程2ax bx =0c ++根的判别式△=2b 4ac -的值决定抛物线y=2ax bx =0c ++与x 轴的交点情况.2b 4ac ->0⇔抛物线与x 轴有两个交点;2b 4ac -=0⇔抛物线与x 轴有一个交点(抛物线顶点在x 轴上); 2b 4ac -<0⇔抛物线与x 轴没有交点. 二、记清抛物线上的几个特殊点(1, a+b+c ),(-1,a-b+c ),(2,4a+2b+c ),(-2,4a-2b+c ).七、达标检测与作业A级1.抛物线y=ax²+bx+c与y=3-2x²的形状完全相同,只是位置不同,则a= .2.已知下列各抛物线y=ax²+bx+c,根据图象判断系数a,b,c及b²-4ac的取值范围.3.二次函数y=ax²+bx+c的图象如图所示,根据图象得:a-b+c 0.(填“>”“<”或“=”)4.已知抛物线y=ax²+bx+c在直角坐标系中的位置如图所示,则下列结论中正确的是()A.a>0B.b<0C.c<0D.a+b+c>o5.如图,二次函数y=ax²+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b²>0,④a+b+c<0,其中正确的是 .(填序号)6.二次函数y=ax ²+bx+c 的图象如图所示,则下列结论:①abc>0;②a-b+c>0;③4a+2b+c>0;④4ac-b ²>0中,其中正确的是 .(填序号)B 级7.已知一次函数y=ax+c 与二次函数y=2ax bx c ++,它们在同一直角坐标系内的图象大致是( )8.如图所示是二次函数y=2ax bx c ++图象的一部分,图象过点A (-3,0),对称轴为x=-1,给出四个结论:①2b >4ac ;②2a+b=0;③a-b+c=0;④5a<b ,其中正确的是 .(填序号)9.已知抛物线y=2ax bx c ++,根据下列条件判断a ,b ,c ,2b 4ac -的取值范围.(1)若抛物线的顶点是原点,则 ;(2)若抛物线经过原点,则 ;(3)若抛物线的顶点在y 轴上,则 ;(4)若抛物线的顶点在x 轴上,则 .10.二次函数y=2ax bx +(a>0,b>0)的图象经过第 象限.11.已知抛物线y=23x -3kx+k+42,根据下列条件求k 的值. (1)图象经过原点;(2)图象关于y 轴对称;(3)图象的顶点在x 轴上.C 级12.已知二次函数y=2x ax+b +,若a+b=0,则它的图象必经过点( )A.(-1,-1)B.(-1,1)C.(1,1)D.(1,-1)13.在直角坐标系xO 中,抛物线y=21x -x+22与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 对应的函数解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (t>0)个单位长度后与直线BC 只有一个公共点,求t 的取值范围八、教学反思通过前几节课的学习,学生对于系数a ,b ,c 对二次函数2y=ax bx c ++图象的影响已经有了一些认识,本节课带领同学们进行了梳理,让学生进一步体会二次函数2++图象的位置及形状与系数a,b,c之间有很大的关系,以及y=ax bx c数形结合思想在函数研究中的决定性作用.著名数学家华罗庚说过“数缺形时少直觉,形缺数时难入微”,寥寥数语把数形结合之妙说得淋漓尽致.如给定一条抛物线,其顶点坐标、对称轴、开口方向、在y轴上的截距、与x轴的交点等,都可以从图象上大致读出,但是要具体知道交点坐标还得通过解方程计算出来.本节课关注学生知识结构的构建,从已有知识出发,循序渐进,逐步架构起完整的知识体系,使学生通过二次函数图象能够读出一些信息,得到一些结论,反之知道系数或有关系数的代数式的符号也能大概确定图象的位置,由此进一步体会数形结合的思想.在本节课的“环节4”中,给出了例4这样一个开放性的问题,让学生体会“变中有不变”的思想,抓住问题最本质的东西,从而快速地解决问题,而且在这个过程中学生会逐渐学会一些程序化的操作,也就拥有了解决问题的办法教师作为引导者,课堂上尽管给了学生充足的思考时间,但还没有完全放开比如,在“提出问题”环节,可以让学生给出各种问题形式,而不是由老师给出例题.在最后解答例4时,应引导学生进行充分的讨论交流等.。
二次函数图像与系数的六种关系题型01a与图像的关系【典例分析】1(23-24九年级上·河北保定·期末)二次函数y=ax2的图象如图所示,则a的值可能为()A.2B.0C.-1D.-2【答案】A【分析】本题考查二次函数的图象与性质,根据二次函数的图象的开口方向求解即可.【详解】解:由图象知,二次函数y=ax2的图象开口向上,则a>0,故选项A符合题意,选项B、C、D不符合题意,故选:A2(2024九年级·全国·专题练习)在同一个平面直角坐标系中,二次函数y1=a1x2,y2=a2x2,y3=a3x2的图象如图所示,则a1,a2,a3的大小关系为.【答案】a3>a2>a1#a1<a2<a3【分析】本题考查了二次函数的性质,抛物线的开口方向和开口大小由a的值决定的,a 越大,开口越小,掌握抛物线的开口方向和开口大小由a的值决定是解题的关键.【详解】解:由抛物线开口方向可知,a1、a2、a3为正数,又由开口大小可得,a3>a2>a1,故答案为:a3>a2>a13(23-24九年级上·福建厦门·阶段练习)已知y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大.求k的值,并画出它的图象;【答案】k=-3【分析】根据二次函数定义以及当x<0时,y随x的增大而增大.可得出函数解析式,再描点画图即可;【详解】解:由y=k+2x k2+k-4是二次函数,且当x<0时,y随x的增大而增大,得k2+k-4=2,k+2<0解得:k=-3或k=2(舍去);二次函数的解析式为y=-x2,如图所示:【变式演练】1(23-24九年级上·山东青岛·阶段练习)图中与抛物线y=13x2,y=2x2,y=-13x2,y=-2x2,的图象对应的是()A.①②④③B.②①④③C.①②③④D.②①③④【答案】B【分析】本题考查了二次函数的图象.抛物线的形状与a和a 有关,根据a 的大小即可确定抛物线的开口的宽窄.【详解】解:∵①②开口向上,则a>0,∵②的开口最宽,∴y=13x2是②,y=2x2是①,∵③④开口向下,则a<0,∵④的开口最宽,∴y=-13x2是④,y=-2x2是③,综上,依次②①④③,故选:B2(23-24九年级上·吉林松原·阶段练习)二次函数y=k+2x2的图象如图所示,则k的取值范围是.【答案】k>-2【分析】由图示知,该抛物线的开口方向向上,则系数k+2>0,据此易求k的取值范围.【详解】解:如图,抛物线的开口方向向上,则k+2>0,解得k>-2.故答案为:k>-2.【点睛】本题考查了二次函数的图象.二次函数y=ax2的系数a为正数时,抛物线开口向上;a为负数时,抛物线开口向下;a的绝对值越大,抛物线开口越小3(24-25九年级上·全国·假期作业)已知函数y=(m+3)x m2+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图像的开口向下?(3)当m为何值时,该函数有最小值?(4)试说明函数的增减性.【答案】(1)m=-4或m=1(2)当m=-4时,该函数图像的开口向下(3)当m=1时,原函数有最小值(4)见解析【分析】(1)由二次函数的定义可得m2+3m-2=2m+3≠0故可求m的值.(2)图像的开口向下,则m+3<0,结合(1)中的结果,即可得m的值;(3)函数有最小值,则m+3>0,结合(1)中的结果,即可得m的值;;(4)根据(1)中求得的m的值,先求出抛物线的解析式,函数的增减性由函数的开口方向及对称轴来确定.【详解】(1)根据题意,得m2+3m-2=2 m+3≠0,解得m1=-4,m2=1 m≠-3,∴当m=-4或m=1时,原函数为二次函数.(2)∵图像开口向下,∴m+3<0,∴m<-3,∴m=-4,∴当m=-4时,该函数图像的开口向下.(3)∵函数有最小值,∴m+3>0,则m>-3,∴m=1,∴当m=1时,原函数有最小值.(4)当m=-4时,此函数为y=-x2,开口向下,对称轴为y轴,当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;当m=1时,此函数为y=4x2,开口向上,对称轴为y轴,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.【点睛】本题主要考查二次函数的性质,二次函数的最值,二次函数的增减性.二次函数的最值是顶点的纵坐标,当a>0时,开口向上,顶点最低,此时纵坐标为最小值;当a<0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.题型02b与图像的关系【典例分析】1(21-22九年级上·安徽合肥·开学考试)已知二次函数y=-x2+2m-1x-3,当x>1时,y随x的增大而减小,则m的取值范围是()A.m<32B.m≤32C.m≤12D.m<-12【答案】B【分析】本题主要考查二次函数图象对称轴,增减性,解一元一次不等式的问题,根据题意可得二次函数图象的对称轴为x=2m-22,结合函数图象的增减性可得2m-12≤1,由此即可求解,掌握二次函数图象的性质,解不等式的方法是解题的关键.【详解】解:二次函数y=-x2+2m-3x-3中,a=-1<0,b=2m-1,c=-3,∴图象开口向下,对称轴为x=-2m-12×-1=2m-12,∵当x>1时,y随x的增大而减小,∴2m-12≤1,解得,m≤3 2,故选:B2(2023·九年级上·西藏日喀则·)已知抛物线γ=x²+mx的对称轴为直线x=2.则m的值是() A.-4 B.1 C.4 D.-1【答案】A【分析】本题考查了二次函数y=ax2+bx+c的图象与性质,对于二次函数y=ax2+bx+c,其对称轴为直线x=-b2a,据此即可求解.【详解】解:由题意得:抛物线γ=x²+mx的对称轴为直线:x=-b2a=-m2×1=-m2,∴-m2=2解得:m=-4故选:A3(23-24九年级上·安徽淮北·阶段练习)抛物线y=-x2+2ax+3的对称轴位于y轴的右侧,与x轴交于点A,B(点B在点A的右边),且AB=4.(1)此抛物线的顶点坐标为.(2)当-1≤x≤m时,-5≤y≤4,则m的值为.【答案】1,44【分析】(1)令y=0,则x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.根据AB=4,得出x2-x1=4,结合完全平方公式得出x2-x12=x1+x22-4x1x2=16,求出a的值,即可求解;(2)根据二次函数的性质可得当x=1时,y取得最大值4.求出当x=-1时,y=0>-5,且-5≤y≤4,得出m>1,则当x=m时,y=-5,即可求解.【详解】解:(1)令y=0,则-x2+2ax+3=0,即x2-2ax-3=0.设A x1,0,B x2,0,则x1+x2=2a,x1x2=-3.∵AB=4,∴x2-x1=4,∴x2-x12=x1+x22-4x1x2=16,∴4a2+12=16,∴a=±1.∵抛物线的对称轴位于y轴的右侧,即a=1,∴y=-x2+2x+3=-x-12+4,∴抛物线的顶点坐标为1,4.(2)∵y=-x2+2x+3=-x-12+4,∴当x=1时,y取得最大值4.∵当x=-1时,y=0>-5,且-5≤y≤4,∴m>1,∴当x=m时,y=-5,∴-m2+2m+3=-5,∴m=4或m=2(舍去).故答案为:1,4,4.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握二次函数与x轴交点坐标的求法,将二次函数表达式化为顶点式的方法和步骤,以及二次函数的增减性【变式演练】1(22-23九年级上·福建厦门·期中)已知抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,当x >2时,y的值随着x值的增大而减小,则m的取值范围是()A.m≥1B.m<3C.-3<m≤1D.1≤m<3【答案】D【分析】先得出抛物线对称轴为直线x=3-m,根据抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,可得m<3,根据当x>2时,y的值随着x值的增大而减小,得出m≥1,即可求解.【详解】解:∵抛物线y=-x2+6-2mx-3的对称轴在y轴的右侧,∴x=-b2a =6-2m2=3-m>0,解得:m<3,又∵a=1<0,抛物线开口向下,当x>2时,y的值随着x值的增大而减小,则3-m≤2,解得:m≥1,综上所述,1≤m<3,故选:D.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键2(23-24九年级上·重庆合川·期末)关于x的二次函数y=x2+a-1x-1在y轴的右侧,y随x的增大而增大,且使得关于y的分式方程a-12-y+1y-2=2有非负数解的所有整数a的值之和.【答案】19【分析】本题主要考查了二次函数的性质、分式方程的解以及解一元一次不等式,依据题意,解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【详解】解分式方程a-12-y+1y-2=2可得y=6-a2,∵关于y的分式方程a-12-y +1y-2=2有非负数解,∴y=6-a2≥0且y=6-a2≠2,∴a≤6且a≠2,∵y=x2+a-1x-1,∴抛物线开口向上,对称轴为x=1-a2,∴当x>1-a2,时,y随x的增大而增大.∵在x>0时,y随x的增大而增大,≤0,解得a≥1.∴1-a2综上1≤a≤6且a≠2,∴满足条件的整数a的值为1,3,4,5,6.∴所有满足条件的整数a的值之和是1+3+4+5+6=19.故答案为:19.3(23-24九年级上·浙江宁波·期末)如图,已知二次函数y=x2+ax+2的图象经过点E1,5.(1)求a的值和图象的顶点坐标.(2)若点F m,n在该二次函数图象上.①当m=-2时,求n的值.②若n≤2,请根据图象直接写出m的取值范围.【答案】(1)a=2;-1,1(2)①n=2;②-2≤m≤0【分析】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.(1)把点E(1,5)代入y=x2+ax+2中,即可求出a;(2)①把m=-2代入解析式即可求n的值;②由n≤2,在此范围内求m即可.【详解】(1)把点E(1,5)代入y=x2+ax+2中,∴a=2,∴y=x2+2x+2=(x+1)2+1,∴顶点坐标为(-1,1);(2)①把m=-2代入n=m2+2m+2=(m+1)2+1,可得:n=2,②∵n≤2,对称轴为x=-1,∴-2≤m≤0.【典例分析】1(23-24九年级上·内蒙古呼和浩特·阶段练习)关于二次函数y=x2-6x+5下列说法中错误的是()A.用配方法可化成y=x-32-4 B.将它的图象向下平移5个单位,会经过原点C.函数有最小值,最小值为5D.当x<3时,y随x的增大而减小【答案】C【分析】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.运用配方法把一般式化为顶点式,由二次函数的顶点式可判断其开口方向、对称轴、顶点坐标;令x=0可求得与y轴的交点坐标;则可得出答案.【详解】解:y=x2-6x+5=x-32-4,故A正确,不符合题意;2-9+5=x-3∴其对称轴为直线x=3,开口向上,顶点坐标为3,-4,∴函数有最小值,最小值为-4,当x<3时,y随x的增大而减小,故C错误,符合题意,D正确,不符合题意;令x=0可得y=5,∴与y轴的交点坐标为0,5,∴将它的图象向下平移5个单位,会经过原点,故B正确,不符合题意;故选:C2(2023·九年级上·上海杨浦·)将抛物线y=x2-2x+3向下平移m个单位后,它的顶点恰好落在x轴上,那么m=.【答案】2【分析】将抛物线解析式改为顶点式,即可求出平移后的解析式,进而可求出平移后的顶点坐标,最后根据它的顶点恰好落在x轴上,即顶点的纵坐标为0,可求出答案.【详解】解:∵y=x2-2x+3=(x-1)2+2,∴该抛物线向下平移m个单位后的解析式为y=(x-1)2+2-m,∴此时顶点坐标为(1,2-m).∵此时它的顶点恰好落在x轴上,∴2-m=0,解得:m=2.故答案为:2.【点睛】本题考查二次函数图象的平移,二次函数的图象和性质.掌握二次函数图象的平移规律“上加下减,左加右减”是解题关键3(23-24九年级上·四川泸州·期中)写出抛物线y=-2x2-4x+5的开口方向、对称轴及顶点坐标,并指出抛物线y=-2x2-4x+5可由抛物线y=-2x2怎样平移得到.【答案】抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,抛物线y=-2x2-4x+5可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到.【分析】本题考查的知识点是二次函数的图像与性质、二次函数图像的平移,解题关键是理解抛物线y=ax2+bx+c的性质及掌握抛物线平移规律.先将抛物线y=-2x2-4x+5经配方转换为y=-2x+12+7,即可直接根据表达式判断抛物线开口方向、对称轴和顶点坐标;另根据抛物线平移规律“上加下减,左加右减”即可得出y=-2x2到y=-2x2-4x+5=-2x+12+7的平移过程.【详解】解:依题得抛物线y=-2x2-4x+5=-2x+12+7,则可根据抛物线性质得:抛物线y=-2x2-4x+5开口向下,对称轴为x=-1,顶点坐标为-1,7,∵根据抛物线平移规律“上加下减,左加右减”,∴y=-2x2-4x+5=-2x+12+7可由y=-2x2向上平移7个单位长度,向左平移1个单位长度得到【变式演练】1(23-24九年级上·安徽合肥·期末)若将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,则函数y=bx+c的图象可能是()A. B.C. D.【答案】C【分析】本题主要考查了二次函数及一次函数的图象,熟练掌握图象与系数的关系是关键.先根据题意判断 b<0,c>0,再判断经过的象限.【详解】∵将抛物线y=ax2(a>0)向右平移h(h>0)个单位,得到抛物线y=ax2+bx+c,∴y=ax2+bx+c对称轴在y轴的右侧,且交于y轴的正半轴,∴b<0,c>0,∴y=bx+c的图象过第一、二、四象限.故选:C2(22-23九年级上·浙江宁波·期末)将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,则m的值可能是()A.1B.3C.5D.7【答案】D【分析】根据将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限可知-6+m≥0,即可得出结果.【详解】解:∵将抛物线y=x2+3x-6向上平移m个单位后,得到的图象不经过第四象限,∴-6+m≥0,∴m≥6,∴m的值可能是7,故选:D.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,熟练掌握二次函数的性质是解题的关键3(21-22九年级上·广东中山·阶段练习)已知二次函数y=x2-2x-3.(1)请写出函数图象顶点坐标和对称轴∶(2)当函数值y为正数时,自变量x的取值范围∶(3)将该函数图象向右平移1个单位,再向上平移4个单位后,求所得图象的函数表达式.【答案】(1)1,-4,直线x=1(2)x<-1或x>3(3)y=x-22【分析】本题考查了二次函数的顶点式,对称轴,平移,不等式解集的确定,熟练掌握二次函数的性质是解题的关键.(1)化成顶点式,确定对称轴和顶点坐标即可.(2)求得x2-2x-3=0的两个根,进而即可求解.(3)根据右减上加的平移规律,即可求解.【详解】(1)∵y=x2-2x-3=x-12-4.∴对称轴为直线x=1,顶点为1,-4.(2)根据题意,得x2-2x-3=0,解得x1=-1,x2=3,∵y=x2-2x-3=x-12-4开口向上,故当x<-1或x>3时,y>0.(3)∵y=x2-2x-3=x-12-4.平移后的解析式为y=x-1-122-4+4即y=x-2题型04a,b与图像的关系【典例分析】1(23-24九年级上·浙江金华·期末)已知二次函数y=-mx2+2mx+4m>0,点经过点A-2,y1 B1,y2,那么y1,y2,y3的大小关系为(),点C3,y3A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【答案】B【分析】本题考查利用二次函数性质比较函数值大小,涉及二次函数图像与性质、比较二次函数值大小等知识,根据二次函数图像与性质,利用图像上点到对称轴距离比较函数值大小即可得到答案,熟练掌握利用距离比较二次函数值大小的方法是解决问题的关键.【详解】解:由二次函数y=-mx2+2mx+4m>0可知抛物线开口向下,对称轴为x=-2m-2m=1,∴抛物线上点到对称轴距离越近,函数值y越大,∵二次函数y=-mx2+2mx+4m>0经过点A-2,y1,点B1,y2,点C3,y3,∴三个点A、B、C到对称轴的距离为3、0、2,∴y1<y3<y2,故选:B.2(23-24九年级上·广东广州·期中)若点A-134,y1B-1,y2,C53,y3为二次函数y=-ax2-4ax+5a<0图象上的三个点,则y1,y2,y3的大小关系是.【答案】y3>y1>y2【分析】本题考查了二次函数的图象及性质,根据题意得抛物线开口向上,对称轴为直线x=-2,则点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,根据二次函数的性质即可求解,熟练掌握二次函数的图象及性质是解题的关键.【详解】解:∵y=-ax2-4ax+5a<0,∴-a>0,对称轴为直线x=--4a2×-a=-2,∴抛物线开口向上,∴点A-134,y1关于直线x=-2的对称点54,y1在抛物线y=-ax2-4ax+5a<0上,∵-2<-1<54<53,∴y3>y1>y2,故答案为:y3>y1>y23(23-24九年级上·云南昆明·阶段练习)已知关于x的二次函数y=mx2+3m+1x+3.(1)求证:不论m为任何实数,方程mx2+3m+1x+3=0总有实数根;(2)若抛物线与x轴交于两个不同的整数点,m为正整数,点P x1,y1与Q x1+n,y2在抛物线上(点P, Q不重合),且y1=y2,求代数式4x21+12x1n+5n2+16n+8的值.【答案】(1)证明见解析;(2)24【分析】本题主要考查了二次函数与一元二次方程的关系以及二次函数的图象与性质等知识;(1)用根的判别式可以直接证明;(2)令y=0,方程可以化为mx+1x+3=0,解得x=-3或x=-1m,又m为正整数,可以求解m的值,进而可求出函数解析式;点P、Q在抛物线上,且y1=y2,可将x1、x1+n代入解析式联立方程,用含n的式子表示出x1,然后带入代数式化简求解即可.【详解】(1)解:由题意可知m≠0,∵Δ=b2-4ac=(3m+1)2-4m×3=(3m-1)2≥0∴此方程总有实数根;综上,不论m为任何实数时,方程总有实数根.(2)解:令y=0,则有mx+1x+3=0解得:x1=-3,x2=-1 m,因为抛物线与x轴交于两个不同的整数点,且m为正整数,所以m=1,所以抛物线为y=x2+4x+3.∵点P、Q在抛物线上,且y1=y2,∴x12+4x1+3=(x1+n)2+2(x1+n)+3∴2x1n+n2+4n=0即:n(2x1+n+4)=0,∵P、Q不重合,∴n≠0,∴2x1=-n-4∴4x12+12x1n+5n2+16n+8=(2x1)2+2x1∙6n+5n2+16n+8=(n+4)2+6n(-n-4)+5n2+16n+8=24所以代数式 4x21+12x1n+5n2+16n+8的值为24【变式演练】1(23-24九年级上·浙江杭州·期末)已知关于x的二次函数y=ax2-4ax a>0.若P m,n和Q5,b是抛物线上的两点,且n>b,则m的取值范围为()A.m<-1B.m>5C.m<-1或m>5D.-1<m<5【答案】C【分析】本题考查了二次函数图象上点的坐标特征,二次函数的性质,由抛物线的解析式可知开口方向和对称轴为直线x=2,根据函数的对称性和增减性即可求解;熟练掌握二次函数的对称性和增减性是解题的关键.【详解】解:∵二次函数y=ax2-4ax a>0.∴抛物线开口向上,对称轴为直线x=--4a2a=2,∵P m,n和Q5,b是抛物线上的两点,∴当n=b时,m=-1,∵抛物线上的点到对称轴的距离越远,函数值越大,∴n>b时,m的取值范围为m<-1或m>5;故选:C.2(23-24九年级上·浙江杭州·期末)已知二次函数y=ax2-4ax+2(a为常数,且a≠0) (1)若函数图象过点1,0,求a的值;(2)当2≤x≤5时,函数的最大值为M,最小值为N,若M-N=18,求a的值.【答案】(1)a=2 3(2)a=±2【分析】本题考查了求二次函数的表达式、二次函数的性质,熟练掌握二次函数的性质是解题的关键.(1)将点1,0的坐标代入表达式求解即可;(2)分类讨论a的正负,结合对称轴和图象的增减性即可得出答案.【详解】(1)解:函数图象过点1,0得a-4a+2=0解得:a=2 3(2)由y=ax2-4ax+2可知对称轴为直线x=2①当a>0时,开口方向向上,当2≤x≤5时当x=2时取最小值,当x=5时取最大值∴M=5a+2,N=-4a+2∵M-N=5a+2--4a+2=9a=18解得a=2,满足题意.②当a<0时,开口方向向下,当2≤x≤5时当x=2时取最大值,当x=5时取最小值∴M=-4a+2,N=5a+2∴M-N=-4a+2-5a+2=-9a=18解得a=-2 满足题意.综上所述:a=±2.3(23-24九年级上·安徽合肥·阶段练习)如图所示,抛物线y=ax2+bx+4(a≠0)经过点A(-1,0),点B(4,0),与y轴交于点C,连接AC,BC.点M是线段OB上不与点O、B重合的点,过点M作DM⊥x 轴,交抛物线于点D,交BC于点E.(1)求抛物线的表达式;(2)过点D作DF⊥BC,垂足为点F.设M点的坐标为M(m,0),请用含m的代数式表示线段DF的长,并求出当m为何值时DF有最大值,最大值是多少?【答案】(1)抛物线的表达式为:y=-x2+3x+4(2)当m=2时,DF有最大值为22【分析】(1)利用待定系数法求函数解析式.(2)先求出B,C所在直线解析式可得∠OBC=∠OCB=45°,通过DF=22DE可表示DF长度的代数式,再配方求解即可.【详解】(1)把点A(-1,0),点B(4,0)分别代入y=ax2+bx+4a≠0中,得:a-b+4=016a+4b+4=0解得:a=-1 b=3∴抛物线的表达式为:y=-x2+3x+4.(2)把x=0代入y=-x2+3x+4中,得:y=4∴C0,4设BC所在直线解析式为y=kx+b,把B4,0,C0,4代入y=kx+b中,得:0=4k+b 4=b解得k=-1 b=4∴y=-x+4设M m,0,则D(m,-m2+3m+4),E m,-m+4∴DE=-m2+3m+4+m-4=-m2+4m ∵OB=OC=4,OC⊥OB∴∠OBC=∠OCB=45°∵DM⊥x轴∴∠DEF=∠BEM=45°又∵DF⊥BC∴DF=22DE=22-m2+4m=-22(m-2)2+22∵-22<0∴当m=2时,DF有最大值为22.【点睛】本题考查二次函数与图形的结合,解题关键是掌握待定系数法求函数解析式,掌握配方法求代数式的最值题型05a,c与图像的关系【典例分析】1(23-24九年级上·广东梅州·期末)如图所示是二次函数y=ax2-x+a2-1的图象,则a的值是()A.a=-1B.a=12C.a=1D.a=1或a=-1【答案】C【分析】此题考查了二次函数的图象.由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2 -1=0,解得a的值.【详解】解:由图象得,此二次函数过原点0,0,把点0,0代入函数解析式得a2-1=0,解得a=±1;又因为此二次函数的开口向上,所以a>0;所以a=1.故选:C.2(23-24九年级上·浙江丽水·期末)已知二次函数y=ax²+2x+c a≠0的图象如图所示.(1)写出c的值;(2)求出函数的表达式.【答案】(1)3(2)y=-x²+2x+3【分析】本题着重考查了待定系数法求二次函数解析式,综合利用已知条件求出抛物线的解析式是解题的关键.(1)将点0,3即可求出c;代入y=ax²+2x+c a≠0(2)把点A3,0即可求出函数表达式.代入y=ax²+2x+3a≠0【详解】(1)解:∵二次函数y=ax²+2x+c a≠0;的图象经过点0,3∴将点0,3得;代入y=ax²+2x+c a≠0c=3.(2)解:设函数的表达式为y=ax²+2x+3a≠0;∵函数图象经过点A3,0;∴把点A3,0得;代入y=ax²+2x+3a≠0a=-1;∴函数的表达式为:y=-x²+2x+33(23-24九年级上·广东广州·阶段练习)如图,二次函数y=ax2-2x+c的图象与x轴交于点A-3,0和点B,点y轴交于点C0,3.(1)求二次函数的解析式;(2)求B点坐标,并结合图象写出y<0时,x的取值范围;【答案】(1)y=-x2-2x+3;(2)B1,0,x<-3或x>1.【分析】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质,利用数形结合思想解答是解题的关键.(1)利用待定系数解答,即可求解;(2)根据当y=0时,-x2-2x+3=0,求出点B1,0,进而根据图象可得出答案.【详解】(1)解:∵二次函数y=ax2-2x+c的图象经过点A-3,0,C0,3,∴9a+6+c=0 c=3,解得:a=-1 c=3,∴该二次函数的解析式为y=-x2-2x+3;(2)解:由(1)可知,二次函数的解析式为y=-x2-2x+3,当y=0时,-x2-2x+3=0,解得x1=1,x2=-3,∴B1,0,根据图象可知,当y<0时,x的取值范围为x<-3或x>1【变式演练】1(23-24九年级上·广西崇左·期末)已知二次函数y=m+2x2+m2-9有最大值,且图象经过原点,则m的值为()A.±3B.3C.-3D.±4.5【答案】C【分析】本题考查二次函数的基本性质,根据二次函数有最大值得出m<-2,根据二次函数图象经过原点得出m=±3,即可得出答案,掌握二次函数的性质是解题的关键.【详解】解:∵二次函数的解析式为:y=m+2x2+m2-9有最大值,∴m+2<0,∴m<-2,∵二次函数y=m+2x2+m2-9的图象经过原点,∴m2-9=0,∴m=-3或m=3,∵m<-2,∴m=-3.故选:C2(20-21九年级上·全国·单元测试)如图所示,抛物线y=ax2-x+c的图象经过A-1,0、B0,-2两点.1 求此抛物线的解析式;2 求此抛物线的顶点坐标和对称轴;3 观察图象,求出当x取何值时,y>0?【答案】1 y=x2-x-2;2 抛物线的对称轴是直线x=12;顶点坐标是12,-94;3当x取x<-1或x>2时,y>0.【分析】(1)把A点和B点坐标代入y=ax2-x+c得到关于a、c的方程组,然后解方程组求出a、c即可得到抛物线解析式;(2)把一般式配成顶点式,然后根据二次函数的性质求解;(3)先通过解方程x2-x-2=0 得到抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.然后写出函数图象在x轴上方所对应的自变量的取值范围即可.【详解】1 ∵二次函数y=ax2-x+c的图象经过A-1,0、B0,-2,∴a+1+c=0c=-2,解得a=1c=-2∴此二次函数的解析式是y=x2-x-2;2 ∵y=x2-x-2=x-122-94,∴抛物线的对称轴是直线x=12;顶点坐标是12,-94 ;3 当y=0时,x2-x-2=0,解得x1=-1,x2=2,即抛物线y=x2-x-2与x轴的另一个交点的坐标为2,0.所以当x取x<-1或x>2时,y>0.【点睛】待定系数法求二次函数解析式, 二次函数的性质,二次函数与一元二次方程的关系等,掌握待定系数法求二次函数解析式是解题的关键3(23-24九年级上·江苏扬州·期末)如图,已知二次函数y=ax2+bx+3的图象经过点A1,0,B-2,3(1)求a+b的值;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图象,直接写出当y≤3时,x的取值范围是.【答案】(1)a+b=-3(2)见解析(3)x≤-2或x≥0【分析】本题考查了待定系数法求二次函数的解析式、二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想是解此题的关键.(1)利用待定系数法求解即可;(2)根据二次函数图象的对称性可得出抛物线的对称轴;(3)观察函数图象,结合方程,即可得出结论.【详解】(1)解:将A1,0,B-2,3代入二次函数y=ax2+bx+3得:a+b+3=0 4a-2b+3=3,解得:a=-1 b=-2,∴a+b=-1+-2=-3;(2)解:如图,直线l为所求对称轴,,由(1)得二次函数的解析式为y=-x2-2x+3=-x+12+4,∴可以得出顶点坐标为-1,4,对称轴为直线x=-1;(3)解:令y=3,则-x2-2x+3=3,解得:x=0或x=-2,结合图象得:x≤-2或x≥0时,y≤3,故答案为:x≤-2或x≥0题型06a,b,c与图像的关系【典例分析】1(23-24九年级上·山东济南·期末)二次函数y=ax2+bx+c a≠0的图像如图所示,则下列结论中:①abc<0;②2a-b=0;③当-2<x<3时,y<0;④当x≥1时,y随x的增大而减小,正确的个数是()A.1B.2C.3D.4【答案】A【分析】本题考查二次函数图像与系数的关系,二次函数的性质.根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图像确定y<0时,x的范围,根据二次函数的性质确定增减性.掌握二次函数的图像和性质、灵活运用数形结合思想是解题的关键.【详解】解:①∵二次函数的图像开口向上,∴a>0,∵二次函数图像的对称轴在y轴的右侧,∴-b>0,2a∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故结论①不正确;②∵a>0,b<0,∴2a-b>0,故结论②不正确;③∵二次函数的图像开口向上,对称轴为:x=1,该图像与x轴的位于对称轴左边的交点的坐标为-2,0,∴该图像与x轴的位于对称轴右边的交点的坐标为4,0,∴当-2<x<4时,y<0,∴当-2<x<3时,y<0,故结论③正确;④∵二次函数的图像开口向上,对称轴为:x=1,∴当x≥1时,y随x的增大而增大,故结论④不正确,∴正确的个数是1个.故选:A2(23-24九年级上·湖北随州·期末)已知二次函数y=ax2+bx+c的图象如图所示抛物线的顶点坐标是1,1在该抛物线上,则am2+bm ,有下列结论①a>0;②b2-4ac>0;③4a+b=1;④若点A m,n+c≥a+b+c.其中正确的结论是.【答案】①③④【分析】本题考查二次函数图象与系数之间的关系,开口方向判断①,与x轴的交点个数,判断②,特殊点判断③,最值判断④.【详解】解:∵抛物线的开口向上,∴a>0;故①正确;∵抛物线与x轴没有交点,∴b2-4ac<0;故②错误;∵顶点坐标为1,1,,图象过3,3∴a+b+c=1,9a+3b+c=3,两式相减,得:8a+2b=2,∴4a+b=1;故③正确;∵当x=1时y=a+b+c=1值最小,∴am2+bm+c≥a+b+c,故④正确;故答案为:①③④3(23-24九年级上·河南洛阳·期末)已知二次函数y=ax2+2ax-m.(1)当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,求m的取值范围;(2)若二次函数y=ax2+2ax-m的部分图象如图所示,①求二次函数y=ax2+2ax-m图象的对称轴;②求关于x的一元二次方程ax2+2ax-m=0的解.【答案】(1)m>-1(2)①直线x=-1;②x1=1,x2=-3【分析】(1)将a=1代入二次函数y=ax2+2ax-m中,然后根据当a=1时,二次函数y=ax2+2ax-m的图象与x轴有两个交点,可知 22-4×1×-m>0,然后即可求得m的取值范围;(2)①将函数解析式化为顶点式,即可得到该函数的对称轴;②根据图象与x轴的一个交点和二次函数的性质,可以写出该函数图象与x轴的另一个交点,然后即可写出关于x的一元二次方程ax2+2ax-m=0的解;本题考查了抛物线与x轴的交点、二次函数的性质,解题的关键是明确题意,利用数形结合熟练掌握以上知识的应用.【详解】(1)当 a=1时,y=ax2+2ax-m,∵当a=1时,二次函数y=ax²+2ax-m的图象与x轴有两个交点,∴22-4×1×-m>0,解得m>-1;(2)①∵y=ax2+2ax-m=a x+12-a-m,∴二次函数y=ax2+2ax-m的图象的对称轴是直线x=-1;②由图象可知:二次函数y=ax2+2ax-m的图象与x轴交于点(1,0),由①知,该函数的对称轴为直线x=-1,∴该函数与x轴的另一个交点为-3,0,∴关于x的一元二次方程ax2+2ax-m=0的解是x1=1,x2=-3【变式演练】1(23-24九年级上·云南昭通·阶段练习)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()A.b<0B.当x>0时,y>0C.a-3=cD.2a+b=0【答案】D【分析】本题考查抛物线与坐标轴的交点、二次函数的性质.解答本题的关键是明确题意,利用数形结合的思想解答.根据函数图象的开口方向,对称轴,与y轴的交点位置,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,A.该函数图象的开口向下,∴a<0,∵对称轴位于y轴右侧,∴-b>0,2a∴b>0,故此选项不符合题意;B.由图象可得:当x>0时,y不一定大于0,故此选项不符合题意;C.该函数图象与y轴交于正半轴,∴c>0,而a<0,∴a-c<0,∴a-c=3错误,即a-3=c错误;故此选项不符合题意;D.该函数的对称轴为直线x=1,=1,∴x=-b2a∴b=-2a,即2a+b=0,故选项符合题意.故选:D2(23-24九年级上·宁夏吴忠·阶段练习)二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是.(填序号)。
二次函数的各项系数与图象的位置关系一、知识点1.a的正负决定抛物线开口方向,a>0,开口向上;a<0,开口向下.2.a的绝对值决定抛物线开口大小,|a|越大,抛物线开口越小.3.a、b同号,对称轴在y轴左侧;a、b在异号,对称轴在y轴右侧;b=0时,对称轴为y轴.4.c>0时,抛物线与y轴交点在轴上方;c=0时,抛物线过坐标原点;c﹤0时,抛物线与y轴交点在轴下方.5.b2-4ac﹥0,抛物线与轴有两个交点;b2-4ac=0,抛物线与轴有一个交点;b2-4ac﹤0,抛物线与轴无交点.二、例题【例1】二次函数y=a2bc的图象如图26-1所示,则下列结论正确的是()A.a>0,b﹤0,c>0 B.a﹤0,b﹤0,c>0 C.a﹤0,b>0,c﹤0 D.a﹤0,b>0,c>0【例2】二次函数y=a2bc的图象如图26-2所示,则下列5个代数式:ab,ac,a-bc,b2-4ac,2ab中,值大于0的个数有()A.5B.4 C.3D.2三、强化练习1.满足a﹤0,b>0,c=0的函数y=a2bc的图象是图26-3中的()2.在二次函数y=2bc中,若bc=0,则它的图象一定经过点()A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)3.若ac﹤0,则二次函数y=a2bc的图象与轴交点个数为()A.2个B.l个C.0个D.无法确定4.已知,图26-4为二次函数y=a2bc的图象,则一次函数y=abc的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知抛物线y=a2bc的图象如图26-5所示,则关于的方程a2bc-3=0的根的情况是()A.有两个不相等的正实根B.有两个异号实数根C.有两个相等的实数根D.没有实数根6.已知二次函数y=a2bc的图象如图26-6所示,下列结论中:①abc﹥0;②b=2a;③abc<0;④a-bc>0.正确的个数是()A.4个B.3个C.2个D.l 个7.已知一次函数y=ac与二次函数y=a2bc,它们在同一坐标系内的大致图象是图26-7中的()8.已知反k的图象如图26-8所示,则二次函数y=22-2的图象比例函数y=x大致为图26-9中的()9c(a﹤c)的图象可能是图.在同一坐标系中,函数y=a2c与y=x26-10中的()10.在同一坐标系中,函数y=a2与y=a-1(a≠0)的图象可能是图26-11中的()11.如图26-12,已知二次函数y=a2bc的图象的对称轴是直线=1.下面给出了4个结论:①a﹤0,b>0;②2ab=0;③abc>0;④4a2bc=0.正确结论的序号是.四、解答【例1】二次函数y=a2bc的图象如图26-1所示,则下列结论正确的是()A.a>0,b﹤0,c>0 B.a﹤0,b﹤0,c>0 C.a﹤0,b>0,c﹤0 D.a﹤0,b>0,c>0思维入门指导:由抛物线开口方向,对称轴位置,与y轴交点位置来判断.解:∵抛物线开口向下,∴a﹤0.∵对称轴在y 轴右侧,∴-a b 2>0.又a ﹤0,∴b>0. ∵抛物线与y 轴交点在轴上方,∴c>0.∴选D .点拨:直接推导a 、b 、c 符号即可.【例2】二次函数y=a 2bc 的图象如图26-2所示,则下列5个代数式:ab ,ac ,a-bc ,b 2-4ac ,2ab 中,值大于0的个数有()A .5B .4C .3D .2思维入门指导:当=-1时,y=a-bc .解:∵抛物线开口向上,∴a>0.∵对称轴在y 轴左侧,∴a,b 同号.又a >0,∴b>0.∵抛物线与y 轴的交点在轴下方,∴c﹤0.∴ab>0,ac ﹤0.∵抛物线与轴有两个交点,∴b 2-4ac >0.∵对称轴=-a b 2=-1,∴b=2a.∴2ab﹥0 当=-1时,y=a-bc ﹤0.∴选C .点拨:abc ,a-bc 分别是=l ,=-1时,函数y=a 2bc (a≠0)的函数值.参考答案1.C 点拨:∵a﹤0,b ﹥0,∴对称轴在y 轴右侧.∵c=0,∴抛物线过坐标原点.2.D 点拨:∵bc=0,∴b=-c ,y=a 2-cc .当=-1时,y=1cc=2c1;当=1时,y=1bc=1.∴过(1,1)点.3.A 点拨:ac ﹤0,∴a≠0,b 2-4ac ﹥0,∴抛物线与轴有两个交点.4.B 点拨:∵抛物线开口向上,∴a﹥0.∵对称轴在y 轴左侧,∴b﹥0.∵与y 轴交点在轴下方,∴c﹤0.∴一次函数y=abc 的图象过一、三、四象限.5.C 点拨:由图象知,抛物线顶点纵坐标为3,∴原图象向下平移3个单位得到y=a 2bc-3.∴方程a 2bc-3=0有两个相等的实数根.6.A 点拨:由图象知,a ﹤0,b ﹤0,c ﹥0.当=1时,y=abc ﹤0;当=-1时,y=a-bc ﹥0.对称轴-a b 2=-1,∴b=2a. 7.C 点拨:由y=ac 过一、二、四象限得a ﹤0,c ﹥0;抛物线y=a 2bc 开口向下,与y 轴交点(0,c )在轴上方,得a ﹤0,c ﹥0;抛物线与直线交于同一点(0,c ).8.D 点拨:由y=x k 的图象知,﹤0,∴y=22-2的图象开口向下,对称轴在y 轴左侧,与y 轴交于正半轴.9.A点拨:若抛物线开口向上,即a﹥0,则c﹥0.∴C、D 均错.若抛物线开口向下,即a﹤0.由A、B可知c﹥0,则双曲线只可能在第一、三象限.10.B点拨:若y=a2开口向上,则a﹥0.∴y=a-1过一、三、四象限.若y=a2开口向下,则a﹤0,∴y=a-1过二、三、四象限.11.①②③④。
二次函数图象与系数的关系最全总结二次函数是初中数学的重点也是难点内容之一,它的图象是一条抛物线,其形状、开口方向、位置等与表达式中的系数的关系非常密切。
所以,二次函数图象与a、b、c的关系是非常重要的一个知识点,今天,小培就为大家总结一下二次函数图像与系数的关系变化。
1. a决定抛物线的开口方向及大小具体内容:•a>0,抛物线开口向上•a<0,抛物线开口向下•|a|越大,抛物线的开口越小•|a|越小,抛物线的开口越大我们知道抛物线平移前后形状及开口方向不变,只是位置发生改变,那么只要两个二次函数的a相同,那么就可以由其中一个二次函数通过平移得到另一个二次函数.图象:抛物线开口向上,a>0,抛物线开口向下,a<0,开口大的抛物线的|a|小于开口小的抛物线的|a|.图象示例:2. a、b共同决定抛物线对称轴的位置对称轴的位置具体内容:•b=0时,对称轴为y轴•b/a>0,对称轴在y轴左侧(即a、b同号,则对称轴在y轴左侧,简记为“左同”)•b/a<0,对称轴在y轴右侧(即a、b异号,则对称轴在y轴右侧,简记为“右异”)上述当b≠0时,a、b的符号及对称轴与y轴的位置可简记为“左同右异”图象:对称轴在y轴,则b=0,对称轴在y轴左侧,根据“左同右异”判断a、b同号,对称轴在y轴右侧,根据“左同右异”判断a、b异号.图象示例:3. c决定抛物线与y轴交点的位置具体内容:•c=0,抛物线过原点•c>0,抛物线与y轴交于正半轴•c<0,抛物线与y轴交于负半轴可根据c是抛物线与y轴交点的纵坐标来理解记忆这一点内容图象示例:4. b2-4ac决定抛物线与x轴的交点的个数具体内容:•b2-4ac=0时,与x轴有唯一交点(即顶点)•b2-4ac>0时,与x轴有两个交点(即开口向上时顶点在x轴下方,开口向下顶点在x轴上方)•b2-4ac<0时,与x轴没有交点(即开口向上时顶点在x轴上方,开口向下顶点在x轴下方)图象示例:5. 特例•当x=1时,y=a+b+c•当x=-1时,y=a-b+c•当x=2时,y=4a+2b+c•当x=-2时,y=4a-2b+c•若a+b+c<0,即当x=1时,y<0•若a-b+c>0,即当x=-1时,y>0•当对称轴为直线x=1时,则2a+b=0•当对称轴为直线x=-1时,则2a-b=0从上述中我们可以得出从二次函数的图象也可以得出关于系数a、b、c的相关信息,做此类问题一定要注意数形结合.例题讲解例1二次函数y=ax2+bx+c的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据图象开口向下可得a<0,根据对称轴在y轴右侧可得a、b异号,则b>0,抛物线与y轴交于正半轴,可得c>0,所以<0,则点M(b,)符合第四想象点的坐标特征(+,-),故选D.例2若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>- 4/9C.a>9/4D.a<9/4且a≠0【分析】根据抛物线与x轴有两个交点,则b2-4ac>0,即32-4a×1>0,解得a<9/4,根据二次函数定义可知a≠0.故选D.▲易错警示▲不要忽视二次函数表达式中二次项系数不为0这一条件.例3 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a 中正确个数为()A.4个B.3个C.2个D.1个【分析】•a+b+c是当x=1时y的值,根据图象可知当x=1时,图象上对应的点在x轴下方,则y=a+b+c<0,故①正确;•a-b+c是当x=-1时y的值,根据图象可知当x=-1时,图象上对应的点在x 轴上方,则y=a-b+c>0,故②正确;•根据图象开口向下可得a<0,根据对称轴在y轴左侧,可得a、b同号,故b<0,根据图象与y轴交于正半轴可得c>0,所以abc>0,故③正确;•由图象得抛物线的对称轴为直线•x=-b/2a=-1,则b=2a,故④正确;故本题选A.。
专题03二次函数图像与系数关系的三种考法类型一、函数图像与a,b,c关系A.4【答案】B【分析】根据二次函数与x=时,y③,根据1A .①②B .①④【答案】D 【分析】由抛物线的开口向下,与不符合题意;当0x =与2x =-时的函数值相等,可得最大,可得()a b m am b -≥+,故③不符合题意;由点()()()314132--=>---=,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.A .①②⑤B 【答案】C 【分析】根据抛物线开口向上,与抛物线2y x bx c =++与当13x <<时,二次函数值小于一次函数值,可得A.1个【答案】C【分析】根据二次函数的对称性即可判断①;由开口方向和对称轴即可判断②;根据抛物线与有两个即可判断③;根据抛物线的开口方向、对称轴,与【详解】解:∵对称轴为直线A.①②③B.②③④【答案】B【分析】根据抛物线的开口方向,判定abc<;根据对称轴是直线从而判定0++的坐标,从而得到a b所以,2OE OB =,所以1OB =,即()10B ,,所以0a b c ++=,所以5c a =-,所以22()(5a c b a a +-=-例.在同一平面直角坐标系中,函数2y ax k =+与()0y kx a a =+≠的图象可能是()A .B .C .D .【分析】对比各个选项中二次函数和一次函数图象的规律,可分别得到各个函数系数的取值范围;通过函...D .【分析】根据一次函数与二次函数的性质,分析解析式中的一次函数y cx b =+中0,c >c ....【答案】B【分析】根据一次函数图象与系数的关系,二次函数图象和系数的关系进行判断;【详解】解:当0a >时,,二次函数开口向上,当0b >时一次函数过一,二,四象限,当次函数过二,三,四象限;时,0a ->,二次函数开口向下,当时一次函数过一,二,三象限,当....【答案】D【分析】根据一次函数的1b =和二次函数的即可判断出二次函数的开口方向和一次函数经过轴,从而排除A 和C ,分情况探讨m 的情况,即可求出答案.....【答案】C【分析】根据一次函数与二次函数的性质判断即可.【详解】解:∵0a >,∴||y a x =经过一、三象限;()20y a a -≠开口向上,与y 轴的交点在负半轴上,A ....【答案】D【分析】根据二次函数图像与系数的关系,确定二次函数2y ax =【详解】解:根据题意得,二次函数c +中,0,a c <>A....【答案】D【分析】由抛物线开口方向,对称轴位置及抛物线与y轴交点位置判断a,b,c的符号,从而可得直线与反比例函数图象的大致图象.【详解】解:∵抛物线开口向上,.B ...【答案】C【分析】根据一次函数图象可得0,0a b ><,根据反比例函数可得,据此即可求解.【详解】解:∵一次函数x b α=+的图象经过一、三、四象限,0b <,....【答案】D【分析】根据2y ax =+可知,二次函数图象与y 轴交点为y =时,即二次函数图象过原点.再分两种情0>,0a <时结合二次函数2y ax =中a ,b 同号对称轴在轴左侧,a ,b图像,则二次函数A ....【答案】B【分析】根据一次函数与反比例函数的图象位置,确定出a b c ,,的正负,进而利用二次函数图象与性质判断即可.【详解】解:观察图象可得:00a b c ><<,,二次函数图象开口向上,对称轴在y 轴右侧,与y 轴交点在负半轴,的图象可能是故选:B .【点睛】本题主要考查了反比例函数的图象,一次函数图象,以及二次函数的图象,熟练掌握各自图象的性质是解本题的关键.课后训练1.已知抛物线y ax =时,抛物线与x 轴必有一个交点在点A.1个B.【答案】B【分析】由抛物线的开口方向判断轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①函数的对称轴在①正确;A.①③B.②③【答案】C【分析】根据二次函数的性质得出断.轴右侧,即A....【答案】Ck>,,进而确定二次函数开口向上,对称轴在【分析】先根据一次函数图象确定0可得到答案.=+的图象经过第一、二、三象限且与y kx bA....【答案】②③⑤【分析】根据抛物线的开口向下,对称轴及与x-时所对应点的位置可判断②;根据图当=1x-时的函数值可判断④;由于抛物线的顶点坐标及及=1【详解】解:由于抛物线的开口向下,因此【点睛】本题主要考查了二次函数的图象与系数的关系,二次函数的图象与性质,解答此题的关键是熟练的符号,与【答案】4【分析】利用抛物线开口方向得到与y轴的交点坐标得到入可得13a<-,抛物线的顶点坐标为01x<<时,利用二次函数图象在一次函数图象上方得到当01x <<时,21ax bx c kx ++>+,2ax bx kx ∴+>,ax b k ∴+>,故④正确.∴正确有①②③④共4个,故答案为:4.【点睛】本题考查了二次函数图象与系数的关系:当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c .。
二次函数图像与系数关系的三种考法类型一、函数图像与a ,b ,c 关系 例.如图,抛物线2y ax bx c =++与x 轴相交于点(2,0)A −,(6,0)B ,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac −>;②40a b +=;③当0y <时,26x −<<;④0a b c ++>.其中正确的个数为( )A .4B .3C .2D .1【答案】B 【分析】根据二次函数与x 轴交点个数可判断①,根据二次函数的对称轴可判断②,直接观察图像可判断③,根据1x =时,y 的值的正负可判断④.【详解】∵抛物线与x 轴有两个交点,∴240b ac −>,∴①正确;∵抛物线2y ax bx c =++与x 轴相交于点(2,0)A −,(6,0)B ,∴抛物线的对称轴为2622()b x a −+=−=,22b a ∴−= 4b a ∴−=,40a b ∴+=,∴②正确;观察图像可知当0y <时,26x −<<,∴③正确;由2y ax bx c =++得,1x =时,y a b c =++,由图知,1x =时,0y <,∴0a b c ++<,∴④错误.综上,正确的有3个,故选:B .【点睛】本题主要考查了二次函数的图像与系数之间的关系,二次函数图像的性质等知识.掌握数形结合思想,以及二次函数图像与系数的关系是解题的关键. 【变式训练1】已知二次函数2y ax bx c =++的图象如图所示,给出下列结论:①0abc <;②420a b c −+>;③()a b m am b −>+(m 为任意实数);④若点()13,y −和点()23,y 在该图象上,则12y y >.其中正确的结论是( )A .①②B .①④C .②③D .②④【答案】D 【分析】由抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,可得a<0,0c >, 0b <,故①不符合题意;当0x =与2x =−时的函数值相等,可得420a b c c −+=>,故②符合题意;当=1x −时函数值最大,可得()a b m am b −≥+,故③不符合题意;由点()13,y −和点()23,y 在该图象上,而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.【详解】解:∵抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,∴a<0,0c >,02b x a =−<,∴0b <,∴0abc >,故①不符合题意;∵对称轴为直线=1x −,∴当0x =与2x =−时的函数值相等,∴420a b c c −+=>,故②符合题意;∵当=1x −时函数值最大,∴a b c am bm c −+≥++,∴()a b m am b −≥+;故③不符合题意;∵点()13,y −和点()23,y 在该图象上, 而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小, ∴12y y >.故④符合题意;故选:D .【点睛】本题考查的是二次函数的图象与性质,熟记二次函数的开口方向,与y 轴的交点坐标,对称轴方程,增减性的判定,函数的最值这些知识点是解本题的关键.【分析】根据抛物线开口向上,与y 轴交于正半轴,对称轴大于0,得出0,0,0a c b >><,即可判断①;由抛物线2y x bx c =++与x 轴无交点,可得240b c −<,判断②;当3x =时,933y b c =++=,即可判断③;当13x <<时,二次函数值小于一次函数值,可得2x bx c x ++<来求解④;把()1,1和()3,3两点代入2y x bx c =++求出抛物线解析式,进而求出抛物线与双曲线的交点坐标,分第一象限内和第三象限内来求解⑤.【详解】解:∵抛物线开口向上,与y 轴交于正半轴,对称轴大于0,得出0,0,0a c b >><,∴0abc <,故①不正确;∵抛物线2y x bx c =++与x 轴无交点,∴240b c −<,故②正确;当3x =时,933y b c =++=,即360b c ++=,故③正确;∵当13x <<时,二次函数值小于一次函数值,∴2x bx c x ++<,∴()210x b x c +−+<,故④正确;把()1,1和()3,3两点代入2y x bx c =++得: 11933b c b c ++=⎧⎨++=⎩,解得:33b c =−⎧⎨=⎩,∴抛物线的解析式为233y x x =−+ , 当2x =时,2331y x x =−+=,21y x ==, 抛物线和双曲线的交点坐标为()2,1, ∴当22x bx c x ++>时,2x >或0x <,故⑤不正确.综上所述,正确的有②③④.故选:C .【点睛】本题考查了一次函数与二次函数的综合应用,二次函数与反比例函数图象综合,注意掌握数形结合思想的应用,熟练掌握二次函数图象的性质是解题的关键. A .1个【答案】C 【分析】根据二次函数的对称性即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x 轴的交点有两个即可判断③;根据抛物线的开口方向、对称轴,与y 轴的交点即可判断④.【详解】解:∵对称轴为直线1x =,121x −<<−, ∴234x <<,①正确,∵12b a −= = 1, ∴2аb =−,∴3234a b a a a =−=−+,∵0a >,∴320a b +<,②正确;∵抛物线与x 轴有两个交点,∴240b ac −>,③正确;∵抛物线开口向上,与y 轴的交点在x 轴下方,∴00a c ><,,∴a c >,即④错误.故选C .【点睛】本题主要考查图像与二次函数系数之间的关系、二次函数图像的性质等知识点,掌握数形结合思想以及二次函数图像与系数的关系是解答本题的关键. A .①②③B .②③④【答案】B 【分析】根据抛物线的开口方向,判定0a >;对称轴的位置,判定0b >;抛物线与y 轴的交点,判定0c <,从而判定0abc <;根据对称轴是直线22b x a =−=−,确定4b a =;根据5OA OB =,得2OE OB =,求出点B 的坐标,从而得到0a b c ++=,确定5c a =−,可以判定②③;计算函数的最小值为:2244(5)(4)944ac b a a a y a a a −⨯−−===−,从而得到29am bm c a ≥++-,代入化简,判定④.【详解】解:因为抛物线的开口方向,所以0a >;因为对称轴是直线2x =−, 所以22bx a =−=−,40b a =>; 因为抛物线与y 轴的交点位于负半轴,所以0c <,所以0abc <;故①错误;因为5OA OB =,所以,2OE OB =,所以1OB =,即()10B ,,所以0a b c ++=,所以5c a =−,所以222222()(5)(4)16160a c b a a a a a +−=−−=−=,即②正确;所以94920110a c a a a +=−=−<根据题意,得抛物线有最小值,且最小值为:2244(5)(4)944ac b a a a y a a a −⨯−−===−,所以29am bm c a ≥++-,所以29954am bm a c a a a ≥+--=-+=-,所以224248am bm b a b a a ≥++-+=-+,所以224am bm b a ++≥,④正确.故选B .【点睛】本题考查了抛物线的图像及其性质、对称轴、最值、抛物线与x 轴的交点坐标等知识点,熟练掌握抛物线的性质,特别是对称性和最值是解题的关键.类型二、二次函数与一次函数关系例.在同一平面直角坐标系中,函数2y ax k =+与()0y kx a a =+≠的图象可能是( )A .B .C .D .【答案】D【分析】对比各个选项中二次函数和一次函数图象的规律,可分别得到各个函数系数的取值范围;通过函数系数对比,即可得到答案.【详解】解:A 选项中,2y ax k =+开口朝上,与y 轴交点在原点下方,∴0a >,0k <,而y kx a =+函数y 随x 增大而增大,与y 轴交点在原点下方,∴0k >,a<0,∴A 选项不符合题意;B 选项中,2y ax k =+开口朝上,与y 轴交点在原点上方,∴0a >,0k >,而y kx a =+函数y 随x 增大而减少,与y 轴交点在原点上方,∴0k <,0a >,∴B 选项不符合题意;C 选项中,2y ax k =+开口朝下,与y 轴交点在原点下方,∴a<0,0k <,而y kx a =+函数y 随x 增大而减少,与y 轴交点在原点上方,∴0k <,0a >,∴C 选项不符合题意;D 选项中,2y ax k =+开口朝下,与y 轴交点在原点上方,∴a<0,0k >, 而y kx a =+函数y 随x 增大而增大,与y 轴交点在原点下方,∴0k >,a<0,∴D 选项符合题意;故选:D .【点睛】本题考查了二次函数和一次函数的知识;求解的关键是熟练掌握二次函数、一次函数图象的性质,从而完成求解.【变式训练1】一次函数y cx b =+与二次函数2y ax bx c =++在同一坐标系内的图象可能为( )A .B .C .D .【答案】B【分析】根据一次函数与二次函数的性质,分析解析式中的,b c 的符合,即可求解.【详解】解: A. 一次函数y cx b =+中0,0c b >>,二次函数2y ax bx c =++中,0,0,0a b c ><>,矛盾,不合题意;B. 一次函数y cx b =+中0,0c b ><,二次函数2y ax bx c =++中,0,0,0a b c ><>,符合题意;C.一次函数y cx b =+中0,0c b >>,二次函数2y ax bx c =++中,0,0,0a b c <><,矛盾,不合题意; D.一次函数y cx b =+中0,0c b >>,二次函数2y ax bx c =++中,0,0,0a b c <<>,矛盾,不合题意;故选:B .【点睛】本题考查了一次函数与二次函数的性质,熟练掌握一次函数与二次函数的性质是解题的关键.. . . . 【答案】B【分析】根据一次函数图象与系数的关系,二次函数图象和系数的关系进行判断;【详解】解:当0a >时,0a −<,二次函数开口向上,当0b >时一次函数过一,二,四象限,当0b <时一次函数过二,三,四象限;当a<0时,0a −>,二次函数开口向下,当0b >时一次函数过一,二,三象限,当0b <时一次函数过一,三,四象限.所以B 正确.故选:B .【点睛】本题考查了一次函数图象,二次函数的图象,熟练掌握函数的性质是解题的关键. 【变式训练3】在同一坐标系中,一次函数1y mx =−+与二次函数,2y x m =+的图象可能是( )A .B .C .D . 【答案】D【分析】根据一次函数的1b =和二次函数的1a =即可判断出二次函数的开口方向和一次函数经过y 轴正半轴,从而排除A 和C ,分情况探讨m 的情况,即可求出答案.【详解】解:二次函数为2y x m =+ ,10a ∴=>,∴二次函数的开口方向向上,∴排除C 选项.一次函数1y mx =−+,1>0b ∴=,一次函数经过y 轴正半轴,∴排除A 选项.当0m >时,则0m −<,一次函数经过一、二、四象限,二次函数2y x m =+经过y 轴正半轴,∴ 排除B 选项.当0m <时,则0m −>,一次函数经过一、二、三象限,二次函数2y x m =+经过y 轴负半轴,∴D 选项符合题意.故选:D.【点睛】本题考查了一次函数和二次函数的图像性质,解题的关键在于熟练掌握图像性质中系数大小与图像的关系.【变式训练4】函数||y a x =与()20y ax a a =−≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .【答案】C【分析】根据一次函数与二次函数的性质判断即可. 【详解】解:∵0a >,∴||y a x =经过一、三象限;当0a >时,二次函数()20y ax a a =−≠开口向上,与y 轴的交点在负半轴上,当0a <时,二次函数()20y ax a a =−≠开口向下,与y 轴的交点在正半轴上,∴只有选项C 符合题意;故选:C .【点睛】题目主要考查一次函数与二次函数图象的判断,熟练掌握一次函数与二次函数的性质是解题关键. 类型三、二次函数与反比例函数 A . . . . 【答案】D【分析】根据二次函数图像与系数的关系,确定二次函数2y ax bx c =++中系数的符号,由此即可求解. 【详解】解:根据题意得,二次函数2y ax bx c =++中,0,0a c <>,对称轴212b x a −<=−<−, ∴0a −>,∴420a b a <<<,∵二次函数2y ax bx c =++与x 轴有交点, ∴240b ac −>,从图像可知2x =时,二次函数420y a b c =++<,∴一次函数24y ax b ac =+−的图像经过第一、二、四象限,反比例函数42a b cy x ++=的图像经过第二、四象限,∴A 选项,一次函数图像经过第一、三、四象限,反比例函数经过第一、三象限,不符合题意; B 选项,一次函数图像经过第一、二、三象限,反比例函数经过第一、三象限,不符合题意;C 选项,一次函数图像经过第一、二、四象限,反比例函数经过第一、三象限,不符合题意;D 选项,一次函数图像经过第一、二、四象限,反比例函数经过第二、四象限,符合题意;故选:D .【点睛】本题主要考查二次函数,一次函数,反比例函数图像的综合,掌握二次函数图像、一次函数图像、反比例函数图像与系数的关系是解题的关键.A . . . .【答案】D【分析】由抛物线开口方向,对称轴位置及抛物线与y 轴交点位置判断a ,b ,c 的符号,从而可得直线与反比例函数图象的大致图象. 【详解】解:∵抛物线开口向上, ∴0a >,∵抛物线对称轴在y 轴左侧, ∴0b >, ∴0b −<∵抛物线与y 轴交点在x 轴下方, ∴0c <,∴直线y ax b =−经过第一,三,四象限,反比例函数cy x =图象分布在第二、四象限,故选:D .【点睛】本题考查二次函数的性质,解题关键是掌握函数图象与系数的关系. A .B . . .【答案】C【分析】根据一次函数图象可得0,0a b ><,根据反比例函数可得0c <,据此即可求解. 【详解】解:∵一次函数y x b α=+的图象经过一、三、四象限, ∴0,0a b ><,∵反比例函数cy x =的图象在第二、四象限,∴0c <,∴抛物线的开口向上,对称轴在y 轴的右侧,与y 轴交于负半轴, 故选:C .【点睛】本题考查了一次函数、反比例函数、二次函数图象综合判断,熟练掌握以上函数图象的性质是解题的关键.. . . .【分析】根据2y ax ax =+可知,二次函数图象与y 轴交点为0y =时,即二次函数图象过原点.再分两种情况即0a >,0a <时结合二次函数2y ax bx c =++中a ,b 同号对称轴在y 轴左侧,a ,b 异号对称轴在y 轴右侧来判断出二次函数与反比例函数图象所在象限,找到符合题意的即为正确答案.【详解】解:①当0a >时,二次函数2y ax ax =+开口向上,过原点,对称轴在y 轴左侧,故二次函数在一、二、三象限,反比例函数在一、三象限;②当0a <时,二次函数2y ax ax =+开口向下,过原点,对称轴在y 轴左侧,故二次函数在二、三、四象限,反比例函数在二、四象限, 观察图象可知只有D 符合, 故选:D .【点睛】本题主要考查了二次函数图象以及反比例函数图象的性质,解题的关键是根据二次函数中a 的取值确定二次函数以及反比例函数的图象.. . . . 【分析】根据一次函数与反比例函数的图象位置,确定出a b c ,,的正负,进而利用二次函数图象与性质判断即可.【详解】解:观察图象可得:000a b c ><<,,,∴二次函数图象开口向上,对称轴在y 轴右侧,与y 轴交点在负半轴,则二次函数2y ax bx c =++的图象可能是,故选:B .【点睛】本题主要考查了反比例函数的图象,一次函数图象,以及二次函数的图象,熟练掌握各自图象的性质是解本题的关键.课后训练【分析】把点()1,0−代入抛物线的解析式即可确定①,根据24b ac −的值的情况即可确定②,根据抛物线的对称轴和()1,0−即可确定③,根据抛物线的对称轴的公式即可确定④.从而可得答案.【详解】解:把点()1,0−代入()20y ax bx c a =++≠中,得:0a b c −+=, 故①正确,由10a b ca b c =++⎧⎨=−+⎩, 得221a c +=,1,2b =即a =122c −,22211211442420,4242c b ac c c c c æö-ç÷\-=-´´=-+=-³ç÷èø24,b ac \³ ②错误,当a<0时,抛物线开口向下,而1,2b =,∴抛物线的对称轴x =11224a a −÷=−0>, 又∵抛物线经过()1,0−,∴另一个交点到y 轴的距离大于1, ∴抛物线与x 轴必有一个交点在()10,的右侧,∴③正确,④正确, 正确的为①③④,共3个 故选C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小,当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于()0c ,.A .1个B .【答案】B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断y 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①函数的对称轴在y 轴右侧,则0ab <,抛物线与y 轴交于负半轴,则0c <,则0abc >,故①正确;②函数的对称轴为1x =,函数和x 轴的一个交点是()3,0,则另外一个交点为()1,0−,当=1x −时,0y a b c =−+=,故②错误;③函数的对称轴为12b x a =−=,即2b a =−,故③错误; ④由②③得,2b a =−,0a b c −+=,故30a c +=,而抛物线开口向上,则0a >,即50a >,故80a c +>,故④正确;故选:B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换是解题的关键.A .①③B .②③【答案】C【分析】根据二次函数的性质得出a ,b 的符号,再利用图上点的坐标得出a ,b 关系,进一步即可作出判断.【详解】解:∵抛物线()20y ax bx c a =++≠开口向下,对称轴2bx a =−在y 轴右侧,即02b a −>,∴a<0,0b >, 由抛物线()20y ax bx c a =++≠过点()12,0,()0,2.4,代入得:144120a b c ++=, 2.4c =,得15b a =−−,而11205b a =−−>,解得:160a <−,故此选项①正确,②错误;111312 2.413 2.413555a b c a a a a ⎛⎫−+=−−−+=++=+⎪⎝⎭, ∵160a <−,∴13131314313560560a +<−+=, ∴无法判断a b c −+与0的大小关系,故③错误; 由图象可知,抛物线的对称轴的横坐标小于6 即62ba −<,∵a<0,∴12b a <−,∴012b a <<−,故此选项④正确; 综上可知,①④正确,故选:C .【点睛】此题主要考查了二次函数的图象和性质,根据题意得出图象上的点进而得出a ,b 的关系是解决问题的关键.4.如图是一次函数y kx b =+的图象,则二次函数22y kx bx =++的图象可能为( )A .B .C .D .【答案】C【分析】先根据一次函数图象确定00k b >>,,进而确定二次函数开口向上,对称轴在y 轴左侧,由此即可得到答案.【详解】解:∵一次函数y kx b =+的图象经过第一、二、三象限且与y 轴交于y 轴的正半轴, ∴00k b >>,,∴二次函数22y kx bx =++的图象的开口向上, ∵二次函数的对称轴为直线02bx k =−<,∴二次函数的对称轴在y 轴左侧,∴四个选项中只有C 选项中的函数图象符合题意, 故选C .【点睛】本题主要考查了一次函数图象与二次函数图象综合判断,正确求出00k b >>,是解题的关键.. . . .【答案】A【分析】由二次函数的图象可得:>0a ,>0b ,0c <,可得一次函数y ax b =−的图象经过一,三,四象限,cy x =的图象在二,四象限,从而可得答案.【详解】解:由二次函数的图象可得:>0a ,>0b ,0c <, ∴一次函数y ax b =−的图象经过一,三,四象限,cy x =的图象在二,四象限,∴B ,C ,D 不符合题意,A 符合题意; 故选A【点睛】本题考查的是由二次函数的图象判断各项系数的符号,一次函数与反比例函数的图象,熟记一次函数与反比例函数的图象的性质是解本题的关键.6.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >;②b a c −>;③420a b c ++>;④3a c >−;⑤()()1a b m am b m +>+≠.其中正确的是 (填序号).【答案】②③⑤【分析】根据抛物线的开口向下,对称轴及与y 轴交点位置判断出0a <, 0b >,0c >,据此可判断①;根据图当=1x −时所对应点的位置可判断②;由抛物线的对称性以及图象可判断③;由对称轴为12b x a=−=及=1x −时的函数值可判断④;由于抛物线的顶点坐标及()1x m m =≠时的函数值可判断⑤.【详解】解:由于抛物线的开口向下,因此0a <,由于抛物线的对称轴是直线10x =>,所以a 、b 异号,而0a <,所以0b >, 由于抛物线与y 轴的交点在y 轴的正半轴,因此0c >, 所以0abc <, 因此①不正确;由图象可知,当=1x −时,0y a b c =−+<,即b a c −>, 因此②正确;由抛物线的对称性以及图象可知,2x =与0x =对应的函数值相同,等于c ,c 大于0,当2x =时,420y a b c =++>, 因此③正确;因为对称轴为12b x a =−=,即20a b +=,而当=1x −时,0y a b c =−+<, 所以30a c +<, 即3a c <−, 因此④不正确;由于抛物线的顶点坐标为()1,a b c ++,即1x =时,y 的值最大,即a b c ++最大,当()1x m m =≠时,2y am bm c a b c =++<++,即()()1a b m am b m +>+≠,因此⑤正确;综上所述,正确的结论有:②③⑤, 故答案为:②③⑤.【点睛】本题主要考查了二次函数的图象与系数的关系,二次函数的图象与性质,解答此题的关键是熟练掌握:抛物线的开口方向确定a 的正负,对称轴的位置及a 的符号确定b 的符号,与y 轴交点的位置确定c 的符号.【答案】4【分析】利用抛物线开口方向得到a<0,利用抛物线对称轴得到20b a =−>,求出一次函数1y kx =+(0k ≠)与y 轴的交点坐标得到1c =,则可对①进行判断;利用=1x −时,0y >得到10a b −+>,然后把2b a =−代入可得13a <−,抛物线的顶点坐标为()1,1a −+),然后把()1,1a −+代入1y kx =+可对②③进行判断;当01x <<时,利用二次函数图象在一次函数图象上方得到211ax bx kx ++>+,则可对④进行判断.【详解】解:该函数图象开口方向向下,<0a ∴,抛物线的对称轴为直线12b x a =−=,20b a ∴=−>,一次函数1(0)y kx k =+≠与y 轴的交点为(0,1),1c ∴=,<0abc ∴,故①正确;1x =−时,0y a b c =−+<,210a a ∴++<,13a ∴<−,故②正确;当1x =时,211y a b c a a a =++=−+=−+, ∴抛物线的顶点坐标为(1,1)a −+,把(1,1)a −+代入1y kx =+可得,11a k −+=+,a k ∴=−,故③正确;当01x <<时,21ax bx c kx ++>+,2ax bx kx ∴+>,ax b k ∴+>,故④正确.∴正确有①②③④共4个, 故答案为:4.【点睛】本题考查了二次函数图象与系数的关系:当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c .。
专题复习二 二次函数图象与系数的关系(1)系数a 决定抛物线的开口方向和大小,a>0时,开口向上;a<0时,开口向下.(2)对称轴在y 轴的左侧,a ,b 同号;对称轴在y 轴的右侧,a ,b 异号.(3)c>0时,图象与y 轴交点在x 轴上方;c=0时,图象过原点;c<0时,图象与y 轴交点在x 轴下方.(4)b 2-4ac 的符号决定抛物线与坐标轴的交点个数.1.已知二次函数y=ax 2+bx 的图象如图所示,那么a ,b 的符号为(C ).A.a >0,b >0B.a <0,b >0C.a >0,b <0D.a <0,b <0(第1题) (第2题) (第5题)2.如图所示为二次函数y=ax 2+bx+c 的图象,对称轴是直线x=1,则下列结论错误的是(D ).A.c >0B.2a+b=0C.b 2-4ac >0D.a-b+c >03.二次函数y=ax 2-a 与反比例函数y=xa (a ≠0)在同一平面直角坐标系中可能的图象为(A ).A. B. C. D.4.二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点(D ).A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)5.抛物线y=ax 2+bx+c 的顶点为D(-1,2),与x 轴的一个交点A 在(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:①b 2-4ac <0;②a+b+c <0;③c-a=2;④方程ax 2+bx+c-2=0有两个相等的实数根.其中正确的结论有(C ).A.1个B.2个C.3个D.4个6.已知抛物线y=ax 2+2x+c 与x 轴的交点都在原点的右侧,则点M(a ,c)在第 三 象限.7.如图所示为二次函数y=ax 2+bx+c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出以下结论:(第7题)①abc <0;②b 2-4ac >0;③4b+c <0;④若B (-25,y 1),C (-21,y 2)为函数图象上的两点,则y 1>y 2; ⑤当-3≤x ≤1时,y ≥0.其中正确的结论有 ②③⑤ (填序号).8.已知二次函数y=ax 2+bx+c 的图象开口向下,顶点落在第二象限.(1)试确定a ,b ,b 2-4ac 的符号,并简述理由.(2)若此二次函数的图象经过原点,且顶点在直线x+y=0上,顶点与原点的距离为32,求抛物线的二次函数的表达式.【答案】(1)∵抛物线开口向下,∴a <0.∵顶点在第二象限,∴⎪⎪⎩⎪⎪⎨⎧>-<-044022ab ac a b ,∴b <0,b 2-4ac >0.(2)由题意可得c=0,此时顶点坐标为(-a b 2,-a b 42).∵顶点在直线x+y=0上,∴-a b 2-a b 42=0. ∴b=-2.此时顶点坐标为(a 1,-a 1).∴21a +21a =(32)2.∴a=-31或a=31 (舍去).∴抛物线的函数表达式为y=-31x 2-2x. 9.已知函数y=x 2-2mx 的顶点为点D.(1)求点D 的坐标(用含m 的代数式表示).(2)求函数y=x 2-2mx 的图象与x 轴的交点坐标.(3)若函数y=x 2-2mx 的图象在直线y=m 的上方,求m 的取值范围.【答案】(1)y=x 2-2mx=(x-m)2-m 2,∴顶点D(m ,-m 2).(2)令y=0,得x 2-2mx=0,解得x 1=0,x 2=2m.∴函数的图象与x 轴的交点坐标为(0,0),(2m ,0).(3)∵函数y=x 2-2mx 的图象在直线y=m 的上方,∴顶点D 在直线y=m 的上方.∴-m 2>m ,即m 2+m <0.∴m 的取值范围是-1<m <0.10.已知抛物线y=ax 2+3x+(a-2),a 是常数且a <0,下列选项中,可能是它大致图象的是(B).A.B.C.D.11.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:①4ac-b 2<0;②4a+c <2b ;③3b+2c <0;④m(am+b)+b <a(m ≠-1).其中正确的结论有(B ).A.4个B.3个C.2个D.1个(第11题) (第12题) (第14题)(第15题)12.函数y=x 2+bx+c 与y=x 的图象如图所示,则下列结论:①b 2-4c <0;②c-b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b-1)x+c <0.其中正确结论的个数为(C ).A.1B.2C.3D.413.二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 的取值范围是 0<t <2 .14.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则a b 的值为 -2 ,a c 的取值范围是 -8<ac <-3 . 【解析】∵抛物线的对称轴为直线x=1,∴x=-a b 2=1,即a b =-2.由图象知当x=-2时,y >0,即4a-2b+c >0①,当x=-1时,y <0,即a-b+c <0②,将b=-2a 代入①②,得c >-8a ,c <-3a. 又∵a >0,∴-8<ca <-3.15.如图所示为抛物线y=ax 2+bx+c 的图象,A ,B ,C 为抛物线与坐标轴的交点,且OA=OC=1,则a ,b 之间满足的关系式为 a-b+1=0 .(第16题)16.如图所示为二次函数y=ax 2+bx+c(a ≠0)的图象.(1)判断a ,b ,c 及b 2-4ac 的符号.(2)若OA=OB ,求证:ac+b+1=0.【答案】(1)a>0,b<0,c<0,b 2-4ac>0.(2)∵OA=OB ,且OB=|c|=-c ,∴ax 2+bx+c=0有一根为x=c.∴ac 2+bc+c=0.∴ac+b+1=0.17.对于二次函数y=ax 2+bx+c ,如果当x 取任意整数时,函数值y 都是整数,那么我们把该函数的图象叫做整点抛物线(例如:y=x 2+2x+2).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的函数表达式: y=21x 2+21x .(不必证明) (2)请探索:是否存在二次项系数的绝对值小于21的整点抛物线?若存在,请写出其中一条抛物线的表达式;若不存在,请说明理由.【答案】(1)y=21x 2+21x (2)假设存在符合条件的抛物线,则对于抛物线y=ax 2+bx+c ,当x=0时,y=c;当x=1时,y=a+b+c. 由整点抛物线定义知:c 为整数,a+b+c 为整数,∴a+b 必为整数.又当x=2时,y=4a+2b+c=2a+2(a+b )+c 是整数,∴2a 必为整数.∴|a|≥21.∴不存在二次项系数的绝对值小于21的整点抛物线.(第18题)18.【攀枝花】二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列命题中,正确的是(D ).A.a >b >cB.一次函数y=ax+c 的图象不经过第四象限C.m(am+b)+b <a(m 是任意实数)D.3b+2c >0【解析】由二次函数的图象可知a >0,c <0;由x=-1得-ab 2=-1,故b >0,b=2a ,则b >a >c ,故A 错误.∵a >0,c <0,∴一次函数y=ax+c 的图象经过第一、三、四象限,故B 错误.当x=-1时,y 最小,即a-b+c 最小,故a-b+c <am 2+bm+c ,即m(am+b)+b >a ,故C 错误. 由图象可知当x=1时y >0,即a+b+c >0,∵b=2a ,∴a=21b.∴21b+b+c >0.∴3b+2c >0,故D 正确.故选D.19.【杭州】在平面直角坐标系中,设二次函数y 1=(x+a)(x-a-1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式.(2)若一次函数y 2=ax+b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的表达式.(3)已知点P(x 0,m)和点Q(1,n)在函数y 1的图象上,若m <n ,求x 0的取值范围.【答案】(1)函数y 1的图象经过点(1,-2),得(a+1)(-a)=-2,解得a 1=-2,a 2=1.当a1=-2时,y1=(x-2)(x+2-1)=x 2-x-2;当a2=1时,y1=(x+1)(x-2)=x 2-x-2.综上所述,函数y1的表达式为y=x 2-x-2.(2)当y=0时,(x+a)(x-a-1)=0,解得x 1=-a ,x 2=a+1.∴y 1的图象与x 轴的交点是(-a ,0),(a+1,0).当y2=ax+b 经过(-a ,0)时,-a 2+b=0,即b=a 2;当y2=ax+b 经过(a+1,0)时,a 2+a+b=0,即b=-a 2-a.(3)由题意知,函数y 1的对称轴为直线x=21.当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,(1,n)与(0,n)关于对称轴对称,由m <n ,得0<x 0≤21;当点P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得21<x 0<1.综上所述,m <n ,所求x 0的取值范围0<x 0<1.20.如图所示,二次函数y=ax 2+2ax-3a(a ≠0)图象的顶点为H ,与x 轴交于A ,B 两点(点B 在点A 右侧),点H ,B 关于直线l:y=33x+3对称.(1)求A ,B 两点坐标,并证明点A 在直线l 上.(2)求二次函数的表达式.(3)过点B 作直线BK ∥AH 交直线l 于点K,M,N 分别为直线AH 和直线l 上的两个动点,连结HN,NM,MK ,求HN+NM+MK 的最小值.(第20题)图1图2(第20题答图)【答案】(1)由题意得ax 2+2ax-3a=0(a ≠0),解得x 1=-3,x 2=1.∴点A 的坐标为(-3,0),点B 的坐标为(1,0).∵直线y=33x+3,当x=-3时,y=33×(-3)+ 3=0,∴点A 在直线l 上.(2)∵点H ,B 关于过点A 的直线y=33x+3对称,∴AH=AB=4.∵AH=BH ,∴△ABH 为正三角形.如答图1所示,过顶点H 作HC ⊥AB 于点C ,则AC=21AB=2,HC=23,∴顶点H(-1,23),代入二次函数表达式,解得a=-23.∴二次函数表达式为y=-23x 2-3x+233. (3)易求得直线AH 的函数表达式为y=3x+33,直线BK 的函数表达式为y=3x-3.由⎪⎩⎪⎨⎧-=+=33333x y x y ,解得⎩⎨⎧==323y x ,即K(3,23).∴BK=4.∵点H ,B 关于直线AK 对称,∴HN+MN 的最小值是MB.如答图2所示,过点K 作直线AH 的对称点Q,连结QK,交直线AH 于点E ,则QM=MK,QE=EK=KD=23,则QK=43,AE ⊥QK.∴BM+MK 的最小值是BQ,即BQ 的长是HN+NM+MK 的最小值.∵BK ∥AH,∴∠BKQ=∠HEQ=90°.由勾股定理可求得QB=8.∴HN+NM+MK 和的最小值为8.。
二次函数y=ax2+bx+c(a≠0)图象与各项系数之间的关系一、知识梳理1、二次项系数a:①a>0时,抛物线开口向上;a<0时,抛物线开口向下。
②|a|越大,开口越小;|a|越小,开口越大。
2、一次项系数b:a,b共同决定了抛物线对称轴的位置,“左同右异”。
3、常数项c:决定抛物线与y轴交点的位置4、△= b2-4ac>0方程ax2+bx+c=0有两个不相等的实数根函数y=ax2+bx+c与x轴有两个交点;△= b2-4ac=0方程ax2+bx+c=0有两个相等的实数根函数y=ax2+bx+c与x轴只有一个交点;△= b2-4ac<0方程ax2+bx+c=0没有实数根函数y=ax2+bx+c与x轴没有交点;5、抛物线的特殊位置与系数的关系:(1)顶点在x轴上:b²-4ac=0;(2)顶点在y轴上:b=0;(3)顶点在原点:b=c=0;(4)抛物线经过原点:c=0.6、特殊代数式:二、典型例题例1.已知二次函数y=ax2+bx+c(a≠0)的图象如图,现有下列结论:①b2-4ac>0;②abc>0;③a-b+c>0;④9a+3b+c<0;⑤2a+b=0,⑥3a+c<0,⑦8a+c>0;⑧am2+bm>a+b(m≠1).则其中结论正确的是( )例2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①;②;③;④当x<0时,y随x增大而增大;则其中结论正确的是( )例3.当b<0时,一次函数与二次函数在同一坐标系内的图象可能是()x变式练习1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①②当x=1时,函数有最大值。
③当x=-1或x=3时,函数y的值都等于0. ④4a+2b+c<0其中正确结论的个数是()A.1B.2C.3D.4(第1题)(第2题)(第3题)2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①ab c>0;②b<a+c;③4a+2b+c >0;④b2-4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个3、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列判断不正确的是()A、abc>0;B、b2-4ac>0;C、2a+b>0;D、4a+2b+c<04、二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的个数是()①a+b+c<0;②a-b+c>0;③abc>0;④b=2aA、4B、3C、2D、15、已知二次函数y=ax2+bx+c其中a,b,c满足a+b+c=3和9a+3b+c=3,则该二次函数图象的对称轴是直线.6、已知y=ax2+bx+c中a<0,b>0,c<0,△<0,函数的图象经过象限。
二次函数图象与系数的关系教学设计一、知识梳理 ax ²+bx+c1. a>0a<0.2. |a||a||a|3. a 、ba 、b Y a 、b 异号Y 轴的右侧.4. c 的符号决定抛物线与Yx=0Y=c,即抛物线与Y 轴的交点为(0,c)c>0Yc=0c<0Y 轴负半轴相关. 5.二次函数()的图象与其表达式中各项系数的符号有着十分密切的关系:决定抛物线的开口轴交点的位置,交点的坐决定对称轴的位置,对称轴为轴同学们既可以根据a、b、c的符号判定抛物线的位置,也可以根据抛物线的位置确定a、b、c的符号或关系二、上课步骤1、课前热身环节的填空,就涉及所有二次函数图象与系数关系的所有考点,运用了数形结合思想,有效的唤醒了学生的记忆;2、是通过练习教学,进一步夯实了双基,明确了各知识点的能力要求,熟练了通性通法,再加上各练习解决后的小结,让学生的思维品质有了提升。
三、课后反思1、本节课让学生经历知识的回顾、归纳、运用、构建知识网络的过程。
理解二次函数图象与系数关系的意义,理姐a、b、c对二次函数图像的影响,掌握数形之间的相互转化,并能在具体的问题中运用解决问题。
2、同时,渗透多种数学思想方法,通过这节课的复习,起到了把旧的知识、遗忘的知识重新建立起来,把没有掌握的知识补上来,使新的意义确立和巩固,从而在全面了解的基础上开始学习,更加深化新学的知识内容,达到经过多次反复,逐步提高认识的层次。
特别是让学生议、说、画、写,把课堂还给了学生,改变了复习课变成习题课、复习课成了题目评讲课的现状,值得借鉴。
3、由于九年级学生在数学方面更呈现分化较为严重的现象,为了能让好学生“既吃饱又吃好”、跟队生“吃得饱”,对于练习题的设计可以考虑不用一刀切,分层要求学生完成练习,跟队生完成较简单的基础题,优等生补充一些有难度的中考综合题,真正体现到分层优化。