燃气轮机13-储运
- 格式:ppt
- 大小:560.00 KB
- 文档页数:49
重型燃气轮机的作用
重型燃气轮机是一种高效、节能的发电设备,广泛应用于电力、冶金、化工、石油、天然气、航空航天等领域。
其主要作用如下:
1. 电力发电:重型燃气轮机可以将燃气热能转化为电力,实现电力的高效、稳定、可靠、环保的生产,为城市、乡村、工业园区等提供稳定供电。
2. 燃气输送:从燃气田将产生的天然气输送到城市或工业园区等地点,需要通过燃气管道进行输送。
在这个过程中,燃气轮机可以提供足够的压力和流量,确保燃气能够平稳地被输送到目的地。
3. 压缩机站:重型燃气轮机可以作为压缩机站的动力来源,将气体压缩成高压,用于工业生产或气体输送等需求中。
4. 储气库:重型燃气轮机还可以驱动储气库,将气体压缩存放于储气罐中,随时为工业生产或民用需要提供稳定的气体供应。
5. 航空航天:重型燃气轮机可以驱动飞机、船舶等交通工具,提供动力,保障航空航天的发展。
6. 化工:重型燃气轮机的高温燃烧可以提供足够的热能,用于化工生产中的蒸汽制造、高温试验、加热和蒸馏等工艺过程。
7. 热力发电站:重型燃气轮机可以作为热力发电站的核心设备,将燃气热能转化为电力和热能,实现能源的高效利用。
8. 环保:重型燃气轮机的燃气燃烧比传统发电方式的SO2和NOx排放更低,对环境的影响更小,更符合现代社会对环保、低碳、高效、节能的要求。
总之,重型燃气轮机在现代社会的工业、能源、交通、航空航天等领域中拥有十分重要的作用,是实现高效、稳定、可靠、环保的能源供应和工业生产的最佳选择之一。
㊀收稿日期:2020 ̄01 ̄08㊀㊀㊀㊀㊀㊀作者简介:由㊀岫(1971 ̄)ꎬ女ꎬ硕士ꎬ高级工程师ꎮ从事燃气轮机科研工作ꎮGT13E2燃气轮机技术特点由㊀岫ꎬ王㊀辉ꎬ卜一凡(哈尔滨电气股份有限公司ꎬ哈尔滨150028)摘要:以E级燃机的典型代表GT13E2为研究对象ꎬ详细地介绍了GT13E2的主要性能参数㊁主要部件(转子㊁压气机㊁燃烧室㊁透平)的结构形式与特点㊁GT13E2与其它同级别产品的结构及性能对比ꎮ对比数据可为燃气轮机选型提供依据ꎬ经对比发现:GT13E2机组在E级燃气轮机中处于领先地位ꎮ关键词:GT13E2ꎻ性能参数ꎻ结构特点分类号:TK479㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1001 ̄5884(2020)03 ̄0179 ̄03TheTechnicalFeaturesofGT13E2GasTurbineYOUXiuꎬWANGHuiꎬBUYi ̄fan(HarbinElectricGroupCo.ꎬLTDꎬHarbin150028ꎬChina)Abstract:ThispapertakesGT13E2ꎬatypicalrepresentativeofe ̄classgasturbineꎬastheresearchobjectꎬintroducesindetailthemainperformanceparametersofGT13E2ꎬthestructuralformsandcharacteristicsofmaincomponents(rotorꎬcompressorꎬcombustionchamberꎬturbine)ꎬthecomparisonofGT13E2withotherproductsofthesamegradeinstructureandperformance.ThecomparisondatacanprovidethebasisforgasturbineselectionꎬaftercomparisonꎬwefoundthattheGT13E2unitisintheleadingpositionintheE ̄classgasturbine.Keywords:GT13E2ꎻperformanceparameterꎻstructuralfeatures0㊀前㊀言自从上世纪30年代第一台燃气轮机问世至今ꎬ历经80年的发展ꎬ燃气轮机的技术已经非常成熟ꎬ透平入口温度㊁简单循环效率㊁联合循环效率㊁机组热效率等核心参数不断提高ꎬ已有燃气轮机厂商推出J级燃气轮机ꎮ虽然目前已经有技术更先进的F级㊁G级㊁H级㊁J级燃气轮机ꎬ但由于E级燃气轮机具有技术成熟㊁运行参数低㊁机组可靠性高㊁建造成本低等特点ꎬ仍然有大量的用户采购ꎮ目前ꎬ全球E级燃机市场的主要产品有美国GE公司的9E.03/04机型[1]㊁德国SIEMENS公司的SGT5-2000E(V94.2)[2]㊁日本MITSUBISHI的M701DA机型[3]以及法国ALSTOM公司(2015年被GE公司收购)的GT13E2机型[4](如图1所示)ꎮ1㊀GT13E2的主要性能参数自1993年首台GT13E2在日本运行以来[5]ꎬ该机型共经历了3次重要升级改造ꎬ机组的性能得到了明显地提升[6-7]ꎬ保证了该机型在E级燃机市场的竞争力ꎮ目前ꎬGT13E2在全球运行机组已达到160余台ꎬ已通过大于66000次启动和870万h的运行验证ꎮ该机型与主要竞争对手的性能参数对比见表1㊁表2所示ꎮ图1㊀GT13E2(12)型燃气轮机由表1㊁表2可以看出:㊀㊀(1)05版本GT13E2的整体性能参数已经优于其它竞争对手ꎬ12版本的GT13E2在E级燃机产品中处于绝对领先的地位ꎮ(2)05版本的GT13E2机组出力为185MWꎬ已经接近机组出力最优秀竞争产品SGT5-2000E的187MWꎬ12版本的GT13E2机组出力为203MWꎬ比SGT5-2000E的机组出力高出10%ꎬ同时GT13E2有具有比SGT5-2000E更低的热耗率及更高的热效率ꎮ(3)对于12版的GT13E2来说ꎬ得益于采用F级燃气轮机GT26的压气机ꎬ使压比达到了18.4ꎬ远远优于其它机型ꎮ(4)与同级别的竞争对象相比ꎬGT13E2具有更低的排气温度及排气流量ꎮ(5)在基本负荷(@15%O2)下ꎬ12版本GT13E2的NOx排放达到了15ppmꎬ与9E.04机型相同ꎬ优于其它产品的25ppmꎮ(6)与其它E级燃气轮机相比ꎬGT13E2具有更快速的启动时间ꎬ升负荷速率与其它机型相当ꎮ㊀㊀(7)对于一拖一的联合循环来说ꎬ05版本GT13E2的机第62卷第3期汽㊀轮㊀机㊀技㊀术Vol.62No.32020年6月TURBINETECHNOLOGYJun.2020㊀㊀表1E级燃机简单循环性能对照表厂商型号频率Hz机组出力MW简单循环热耗率kJ/(kW h)ꎬLHV简单循环净效率%ꎬLHV压比GEGT13E2(05)50185952437.816.4GEGT13E2(12)5020394743818.2GE9E.045014597143712.6SIEMENSSGT5-2000E(V94.2)50187994536.212.8MITSUBISHIM701DA50144981034.814厂商排气流量kg/s排气温度ħ基本负荷(@15O2)下NOx排放ꎬppmvd启动时间(常规启动/调峰启动)ꎬmin升负荷率MW/minGE5105052525/1512GE5015011515/1014GE-5421530/1016SIEMENS5585362512(调峰)-MITSUBISHI4535422530(常规)9㊀㊀表2E级燃机联合循环性能对照表厂商型号1拖1机组出力MW1拖1机组效率%ꎬLHV2拖1机组出力MW2拖1机组效率%ꎬLHVGEGT13E2(05)2645553055.2GEGT13E2(12)2895558155.2GE9E.0421254.442854.9SIEMENSSGT5-2000E(V94.2)27553.355153.3MITSUBISHIM701DA212.551.4426.651.6组出力为264MWꎬ与SGT5-2000E的275MW非常接近ꎬ高于9E.04的212MW及M701DA的212.5MWꎬ12版本的GT13E2机组出力为289MWꎬ领先其它竞争对手ꎮ(8)对于二拖一的联合循环机组来说ꎬ05版本GT13E2的机组出力为530MWꎬ稍落后于SGT5-2000E的551MWꎬ高于9E.04的428MW及M701DA的426.6MWꎬ12版本的GT13E2机组出力为581MWꎬ领先其它竞争对手ꎮ(9)对于联合循环来说ꎬGT13E2的效率高于其它的竞争对手ꎮ2㊀GT13E2的结构特点GT13E2采用了整体的焊接转子㊁高效的亚音速压气机㊁具有环保型燃烧器的环形燃烧室㊁高效的透平ꎬ使GT13E2具有开停机操作简单㊁免维护的转子㊁现场组装叶片㊁主要部件维修方便等特点ꎮ下面将从GT13E2的转子㊁压气机㊁燃烧室㊁透平等方面的结构入手ꎬ对比其与主要竞争产品的差异ꎬ分析产品的优劣ꎮGT13E2机组的长㊁宽㊁高分别为11.18m㊁5.4m㊁5.185mꎬ与竞争产品相似ꎮ总重量343Tꎬ在同级别产品中处于中游水平ꎮ机组气缸采用垂直装配ꎬ装配完成后加工骑缝销ꎬ机组总装采用卧式装配ꎬ在总装台上进行找中ꎮ2.1㊀GT13E2转子的结构特点及技术优势GT13E2采用焊接转子ꎬ由6段锻件焊接而成ꎬ转子的结构如图2所示ꎮ焊接运用氩弧焊打底的电弧自动焊ꎬ焊缝经图2㊀GT13E2(05)转子结构过严格处理与检验ꎬ性能与母材相当ꎮ由图2可知ꎬ转子中间存在一定的空腔结构ꎬ但所占比例不大ꎬ强度余量较高ꎬ设计偏向保守ꎮ对于压气机部分的转子来说ꎬ由于所处的环境温度较低ꎬ热应力问题不突出ꎬ材料便于焊接ꎬ使用焊接转子可以使毛坯简化ꎬ降低成本ꎮ对于透平部分的转子来说ꎬ由于温度梯度较大ꎬ热应力的影响较大ꎬ为保证该位置的焊接质量ꎬ每次提升温度等级或更改冷却系统后ꎬ都需要重新验证透平转子的可靠性ꎮGT13E2与其竞争产品的转子结构对比见表3ꎮ㊀㊀表3E级燃机转子结构对比厂商型号转子形式GEGT13E2(12)焊接GE9E.04拉杆SIEMENSSGT5-2000E(V94.2)中心拉杆+hirth齿MITSUBISHIM701DA拉杆081汽㊀轮㊀机㊀技㊀术㊀㊀第62卷2.2㊀GT13E2压气机的结构特点及技术优势GT13E2燃气轮机的压气机采用轴流形式及高效的三维动静叶设计ꎬ使其具有流量大㊁效率高的优点ꎮ05版的GT13E2采用21级的压气机设计ꎬ优化了各级的载荷分配ꎻ具有一级可转导叶ꎬ保证了启动及低负荷情况下机组的性能ꎻ压比为16.4ꎬ保证了空气流量及机组的效率ꎻ叶片的材料采用12Cr钢ꎬ保证了叶片的耐腐蚀能力ꎻ同时ꎬ1-5级叶片具有防腐蚀涂层ꎬ进一步提高了压气机入口的耐腐蚀能力ꎮ相对于05版的GT13E2来说ꎬ12版的GT13E2采用F级燃气轮机GT26压气机前16级作为GT13E2的压气机ꎬ使得机组轴向距离缩短的同时ꎬ压比达到了18.2ꎬ进一步增加了机组的空气流量及效率ꎻ将05版本的一级可转导叶调整为三级可转导叶ꎬ进一步提高了机组在低负荷情况下的性能ꎬ节约燃料成本ꎬ减少污染物排放ꎮGT13E2(12)与其竞争产品的压气机结构对比见表4ꎮ㊀㊀表4E级燃机压气机结构对比厂商型号级数压比可转导叶GEGT13E2(12)16级18.23级GE9E.0417级12.61级SIEMENSSGT5-2000E(V94.2)17级12.81级MITSUBISHIM701DA19级141级㊀㊀由表4可以看出ꎬGT13E2(12)采用了16级压气机ꎬ是所有对比产品中级数最少的ꎬ保证了机组的轴向尺寸在所有对比产品中是最小的ꎬ这样有利于机组在实际应用场景的布置ꎻ级数少的同时ꎬGT13E2的压比达到了18.2ꎬ又是各对比产品中压比最高的ꎬ保证了GT13E2在同级别产品中有最好的空气流量㊁机组效率ꎻGT13E2具有三级可转导叶ꎬ相对于其它同级别来说ꎬ在低负荷工况下具有更好的性能ꎮ2.3㊀GT13E2燃烧室的结构特点及技术优势GT13E2燃气轮机采用环形燃烧室的设计形式[8]ꎬ具有尺寸小㊁结构紧凑㊁空间利用率高等特点ꎮ05版本的GT13E2燃烧室ꎬ采用了72个EV燃烧器ꎻ在燃烧室1区㊁2区使用热障涂层(TBC)及膜式冷却方式ꎬ降低燃烧室的寿命损耗ꎬ保证了火焰的稳定ꎬ降低了NOx排放ꎻ对之前版本的油㊁气双燃料切换系统进行优化ꎬ达到满负荷切换燃料的目的ꎮ在05版本GT13E2燃烧室的基础上ꎬ12版本的GT13E2燃烧室采用了48个AEV燃烧器(如图3所示)ꎮ相对于EV燃烧器来说:AEV燃烧器升级了燃料与空气混合区域的结构ꎬ增加了燃料与空气的混合时间ꎬ使燃料与空气的混合更加均匀ꎬ降低了NOx的排放ꎬ达到15ppmꎻ优化了喷嘴的空气动力学ꎬ使燃烧空气的流量增高ꎬ减少了燃烧器的使用数量ꎻAEV燃烧器可使燃气生成稳定点火源的回流ꎬ减少了火焰的消失和跳动ꎬ提高燃烧的稳定性与均匀性ꎬ可使燃烧器在整个负荷范围内连续运行ꎮGT13E2(12)与其竞争产品的燃烧室结构对比见表5ꎮ图3㊀AEV燃烧器[12]㊀㊀表5E级燃机燃烧室结构对比厂商型号结构形式个数NOx排放ꎬppmGEGT13E2(12)AEV环形燃烧室4815GE9E.04DLN1分管性燃烧室[9ꎬ10]1425SIEMENSSGT5-2000E(V94.2)圆筒型燃烧室[11]1625MITSUBISHIM701DA分管型燃烧室1825㊀㊀由表5可以看出ꎬGT13E2(12)采用环形燃烧室结构ꎬ与其它形式的燃烧室结构相比ꎬ没有过渡段或连焰管ꎬ结构更加简单㊁紧凑ꎬ空间利用率高ꎬ同时减少了冷却空气的用量ꎮ由于采用了先进的AEV燃烧器ꎬ使得温度分布更加合理ꎬNOx排放明显优于同级别的竞争对手ꎮ2.4㊀GT13E2透平的结构特点及技术优势GT13E2采用了传统的反动式5级轴流式透平设计及先进的三维叶型设计ꎬ能承担机组迅速地启动和负载快速地变化所引起的载荷ꎮ05版本GT13E2的第一级透平翼型是在原有翼型的基础上进行优化得到的ꎬ以适应由于压气机优化所引起的质量流量的变化ꎮ12版本GT13E2的透平入口温度相对于05版本的提高了20ħꎬ达到1131ħꎬ因此ꎬ通过采用热障涂层技术㊁多通道对流冷却技术来降低透平内部的结构温度ꎻ将透平叶片的材料全部替换为IN738ꎬ来提高结构抵抗破坏的能力ꎻ通过采用全新的三维设计ꎬ来减少冷却空气的用量ꎬ提高密封效果ꎻ第五级叶片采用三维翼型㊁整体围带设计ꎬ优化了振动特性ꎮ由表6可以看出ꎬGT13E2的透平入口温度与9E机型相当ꎬ在同级别中处于较低的水平ꎬ这样可以提高机组的可靠性ꎬ减少事故发生的概率ꎻGT13E2的排气温度与竞争产品相比是最低的ꎬ这样有利于保证机组的整体循环效率处于较高的水平ꎮ㊀㊀表6E级燃机透平结构对比厂商型号级数入口温度ꎬħ出口温度ꎬħGEGT13E2(12)51131501GE9E.0431124542SIEMENSSGT5-2000E(V94.2)41290536MITSUBISHIM701DA41250542(下转第240页)181第3期由㊀岫等:GT13E2燃气轮机技术特点㊀㊀1.2㊀真空钎焊设备真空钎焊设备采用B.M.I公司制造的B55T真空钎焊炉ꎬ设备最高温度为最高温度1370ħꎬ有效工作区尺寸:900ˑ900ˑ1200(mm)ꎮ1.3㊀工㊀艺将试样放入真空钎焊炉后ꎬ使真空度达到5ˑ10-3Pa后ꎬ以7ħ/min速度由室温加热到550ħꎬ保温20minꎬ继续以7ħ/min速度加热到900ħꎬ保温20minꎬ继续以5ħ/min速度加热到1080ħꎬ保温2min后炉冷到1000ħꎬ之后充氩冷却ꎮ2㊀试验结果出炉后填缝试样如图2所示ꎮ通过测量L值ꎬ计算H值ꎬ得到填缝高度ꎬ图3所示为填缝高度计算简图ꎮ填缝实验结果见表1ꎮH值越大ꎬ钎料流动性能越好ꎻL值越大ꎬ钎料的填隙能力越强ꎮ根据试验结果(图2㊁表1)可以看出:(1)钎料对母材GH3030的流动性最好ꎬ对母材K438的流动性最差ꎮ(2)钎料对同种母材接头(GH3030/GH3030)的填隙能力要比异种母材接头好ꎮ图2㊀出炉后填缝试样图3㊀填缝高度计算简图㊀㊀表1填缝实验结果母材接头(立板/底板)钎料形式LꎬmmHꎬmmGH3030/0Cr19Ni10片状430.67片状440.7GH3030/GH3030粉状530.8片状490.75GH3030/K438片状410.65㊀㊀(3)钎料对不同母材的流动性:GH3030>0Cr19Ni10>K438ꎮ(4)片状钎料与粉状钎料填隙缝能力大体相当ꎮ(5)钎焊工艺相同时ꎬ接头钎焊允许的合适间隙由大到小依次为:GH3030/GH3030>GH3030/0Cr19Ni10>GH3030/K438ꎮ3㊀结㊀论通过实验得知ꎬ钎料BNi73CrSiB-40Ni-S对0Cr19Ni10㊁GH3030㊁K438等3种母材的流动性和填隙能力不同ꎬ为了保证获得优质的钎焊接头强度ꎬ在采用同一钎焊工艺时ꎬ不同母材应该选用不同的钎焊间隙ꎮ(上接第181页)3㊀结㊀论经过对GT13E2结构的介绍及其与同级别竞争机型的对比不难发现:(1)GT13E2机组在E级燃气轮机机组处于领先地位ꎮ(2)GT13E2采用了锻造焊接转子ꎬ减少了拉杆转子的轮盘磨损㊁应力集中和裂纹等问题ꎬ整个寿命期不需要拆装转子ꎬ易于维护ꎮ(3)GT13E2的压气机采用了GT26的前16级ꎬ具有轴向长度短㊁压比高㊁质量流量大等特点ꎮ(4)GT13E2采用了具有AEV燃烧器的环形燃烧室ꎬ具有结构简单紧凑㊁NOx排放低㊁温度场分布合理等特点ꎮ(5)GT13E2采用了传统的反动式5级轴流式透平设计ꎬ出口温度低ꎬ机组的整体循环效率高ꎮ参考文献[1]㊀GE中国发电事业部.9E.03/04[EB/OL].http://pgchina.ge.com.cn/content/9e0304.[2]㊀SIEMENS.SGT5-2000E重型燃气轮机(50Hz)[EB/OL].https://new.siemens.com/cn/zh/products/energy/power-generation/gas-turbines/sgt5-2000e.html.[3]㊀MHPS.GasTurbinesM701DSeries[EB/OL].http://www.mhps.com/products/gasturbines/lineup/m701d/index.html.[4]㊀GE中国发电事业部.GT13E2[EB/OL].http://pgchina.ge.com.cn/content/gt13e2.[5]㊀学㊀牛.GT13E2型燃气轮机[J].热能动力工程ꎬ1994ꎬ(6):378.[6]㊀吉桂明.AlstomPower202MWGT13E2燃气轮机[J].热能动力工程ꎬ2014ꎬ(4):454.[7]㊀阿尔斯通推出升级版本GT13E2燃气轮机技术[J].电气应用ꎬ2012ꎬ(7):85.[8]㊀侯传群.GT13E2燃烧系统结构与分析[J].燃气轮机技术ꎬ2004ꎬ(3):28-32.[9]㊀殷华明.9E燃气轮机DLN1.0与LEC-Ⅲ低氮燃烧系统改造[J].技术与市场ꎬ2017ꎬ24(10):13-16.[10]㊀李永扬ꎬ刘鹏飞ꎬ王毅刚ꎬ等.9E燃气轮机干式低NOx燃烧系统改造[J].燃气轮机技术ꎬ2015ꎬ(2):64-67.[11]㊀张守辉ꎬ王㊀爽ꎬ俞立凡ꎬ等.V94.2燃烧室结构特点[J].发电设备ꎬ2008ꎬ22(6):473-477.[12]㊀BernardTripodꎬKlausDoebbelingꎬMarkStevensꎬetal.为中国提供更高发电效率的阿尔斯通GT13E2和GT26燃气轮机[C].中国电机工程学会燃气轮机发电专业委员会年会ꎬ2012.042汽㊀轮㊀机㊀技㊀术㊀㊀第62卷。
油气储运工程专业课程油气储运工程专业油气储运工程专业是研究油气和城市燃气储存、运输及管理的一门穿插性高新技术学科。
业务培养目标:本专业培养具备工程流体力学、物理化学、油气储运工程等方面知识,能在国家与省、市的开展方案部门、交通运输规划与设计部门、油气储运管理部门等从事油气储运工程的规划、勘查设计、施工工程管理和研究、开发等工作的高级工程技术人才。
业务培养要求:本专业学生主要学习油气储运工艺、设备设施方面的根本理论和根本知识,受到识图制图、上机操作、工程测量、工程概预算的根本训练,具有进行油气储运系统的规划、设计与运行管理的根本能力。
主干学科:工程流体力学、油气储运工程学主要课程:工程力学、工程流体力学、工程热力学、传热学、物理化学、泵与压缩机、电工与电子技术、油气管道设计与管理、油气集输、油库设计与管理、油气储运工程最优化、技术经济学等主要实践性教学环节:包括工程制图、测量实习、金工实习、施工实习等一般安排18周。
主要专业实验:油气质量检测、物理化学等修业年限:四年授予学位:学士学位相近专业:采矿工程石油工程矿物加工工程勘察技术与工程资源勘察工程地质工程矿物资源工程油气储运工程煤及煤层气工程资源勘查工程开设学校:中国石油大学重庆科技学院石油大学长江大学武汉理工大学浙江海洋学院中国地质大学榆林学院(省A专业) 四川大学华南农业大学西南石油大学西安石油大学大庆石油学院课程编号:05040120工程热力学Engineering Thermodynamics总学时:48学时总学分:3学分课程性质:技术根底课开设学期及周学时分配:第5学期,周时数3适用专业及层次:过程装备及控制专业、油气储运专业相关课程:大学物理,物理化学、化工原理教材:(《工程热力学》,沈维道等编,高等教育出版社推荐参考书:(1、《工程热力学》,严家禄编,高等教育出版社,1989第二版2、《工程热力学》,曾丹苓、敖越、朱克雄等编,高等教育出版社,1986第二版 3、《热力学》,王竹溪编,高等教育出版社,1955)一、课程目的及要求工程热力学是一门专业技术根底课,其任务是培养学生运用热力学的定律、定理及有关的理论知识,对热力过程进行热力学分析的能力;初步掌握工程设计与研究中获取物性数据,对热力过程进行有关计算的方法。
燃气轮机发电机组由燃气轮机和发电机组成的发电动力装置。
与汽轮机发电机组相比,这种机组结构比较简单,辅助设备较少,因而投资、占地、发电成本都较前者低。
加上燃气轮机体积小,重量轻,起动快,不需要大量用水,所以,70年代以来这种机组在电力工业中的应用发展较快,每年的增长率达14~21%。
燃气轮机发电机组的局限性是原则上燃用油和气。
80年代中期以来正在研究开发燃用煤等固体燃料的技术。
燃气轮机发电机组的技术特点是:①燃气初参数高,初温可达850~1100℃,压比为8~11。
②机组起动快,机动性好。
小型机组通常可在15秒到2分钟内冷态起动到满负荷运行;5万千瓦机组也只需要5~8分钟。
③运行可靠并且经济性好。
机组可靠系数达95.5%以上,热效率为24~30%(简单循环)。
基于以上这些特点,燃气轮机发电机组在电力系统中承担调峰和紧急备用。
如其容量占系统总容量的15~20%,则基本上能满足系统中尖峰负荷的调峰需要,从而可使系统中承担基荷的机组长期处于经济工况运行。
同时,也降低电站的投资、安装、维护和管理等费用。
近来还开发了压缩空气蓄能机组。
分类与组成燃气轮机发电机组常用类型有两种:单轴机组和分轴机组。
单轴机组由压气机、透平、燃烧室和发电机4部分组成;分轴机组由压气机、燃烧室、高压透平、低压透平和发电机组成。
分轴机组的压气机、燃烧室及高压透平的安排与单轴机组相同,即高压透平与压气机联在同一根轴上。
压气机、燃烧室及高压透平叫做燃气发生器。
低压透平称为动力透平,它发出的功率拖动发电机组工作。
分轴机组与单轴机组最大的差别是压气机轴与负载轴分开,高、低压透平之间只有气路连接,没有机械联系。
工作原理大气中的空气被吸入到压气机中压缩到某一压力(一般不低于0.3MPa),压缩后的空气被送入燃烧室,与喷入的燃料(油或天然气)在一定压力下混合燃烧,产生高温燃气(温度通常高于600℃),高温燃气被送入燃气轮机的透平膨胀做功,直接带动发电机组发电,最后废气被排入大气。
燃气轮机发电厂的工作原理、类型、及其发电厂设备构成(一)燃气轮机燃气轮机是将气体压缩、加热后在透平中膨胀,把热能转换为机械能的旋转式动力机械。
简单循环的燃气轮机由压气机、燃烧室、燃气透平三大部分,以及控制与保护系统、润滑油和液压油系统、空气过滤器和消声器、燃料系统、起动装置等附属设备组成。
1.工作原理单轴简单循环燃气轮机的工作原理如图1所示。
压气机从大气吸入空气,经绝热压缩,压力和温度升高;压缩后的空气进入燃烧室,与由燃料喷嘴喷射出来的燃料进行混合和燃烧,所产生的高温燃气,进入透平,经过绝热膨胀做功,推动透平转子转动将燃料的化等压加热座席冷却学能转变为机械能;膨胀做功后的燃气直接排入大气。
透平发出的功率约有2/3消耗于压气机对空气进行压缩,其余的1/3成为燃气轮机输出的机械功。
图1单轴简单循环燃气轮机的工作原理2.类型燃气轮机按结构轻重程度可分为重型和轻型两类,按循环方式可分为简单循环和复杂循环两类。
(二)燃气轮机发电厂燃气轮机发电厂采用燃气轮机或燃气-蒸汽联合循环中的燃气轮机和汽轮机驱动发电机。
目前,燃气轮机及其联合循环主要燃用液体燃料(柴油、重油、渣油和原油)或气体燃料(天然气、焦炉煤气、高炉煤气、液化石油气、炼油厂气和煤层气等),直接燃用超净水煤浆和煤粉的燃气轮机正在试验中。
整体煤气化燃气-蒸汽联合循环电厂和燃煤的增压流化床燃气-蒸汽联合循环电厂尚处于商业示范阶段。
1.燃气轮机发电厂的类型燃气轮机发电厂主要有以下几种:(1)单纯用燃气轮机驱动发电机的发电厂。
燃气轮机的循环方式可以是多种多样的,如简单循环、再热循环等。
目前大型燃气轮机的单机功率已达260MW,供电效率为35%~41.57%。
一个发电厂可以安装1台或多台燃气轮发电机组,一般用作调峰或紧急备用。
(2)用燃气轮机与汽轮机组合成的联合循环发电厂。
它可以是余热锅炉型的、有补燃的余热锅炉型的和双流体循环型的。
目前单轴式联合循环机组的单机功率已达390MW,供电效率为55%~58%。
高效燃气轮机研发与应用从历史发展和现实需求出发,高效燃气轮机技术的研发和应用已经成为当今国际动力领域的热点之一。
本文从燃气轮机的工作原理、技术难点、研发现状、应用领域等角度进行探讨。
一、燃气轮机的工作原理燃气轮机是一种将燃料燃烧产生的高温高压气体通过涡轮机转化为机械能的发电机组。
其主要组成部分包括压气机、燃烧室、涡轮机等。
首先,压气机将大气中的气体压缩,然后将其输送至燃烧室内与燃料混合燃烧,产生高温高压气体。
最后,气体通过涡轮机驱动发电机或其他设备,同时排出废气。
广义而言,燃气轮机可分为航空发动机和工业用途燃气轮机。
针对不同的应用场景,燃气轮机在设计上的特点也有所不同。
二、技术难点在提高燃气轮机效率方面,涡轮机转子设计、材料选择、热力过程优化等是技术难点。
1. 涡轮机转子设计传统的涡轮机转子由多个叶片拼接而成,齿距固定。
但该设计存在一定的缺点,如风阻大、流道阻力大等。
随着工业用途燃气轮机要求功率密度越来越高,传统叶轮的设计难以应对效率提升的需求。
因此,研究人员开始研制航空发动机中常用的下放型涡轮,即将扇叶叶片全部下放为一整个叶轮片,这种新型叶轮可以显著提高流量系数和效率。
此外,涡轮机转子的轴向长度、尺寸等都需要细致推敲,多种设计方法和流场仿真技术得以应用。
2. 材料选择涡轮叶片要能承受高温高压气体的冲刷和侵蚀,同时具备高强度和高硬度等特性。
非常规合金、涂层技术等新材料的应用可有效提高燃气轮机叶片的耐久性和寿命。
截至目前,已经研发的燃气轮机材料种类繁多,以镍基高温合金最为常见。
3. 热力过程优化燃气轮机的热力过程中涉及到压缩、燃烧、膨胀等多个环节,优化这些过程有助于提高轮机热效率。
例如,通过采用高效的液氮冷却技术来减小高温部件受热带来的损失,可有效提高燃气轮机效率。
三、研发现状国内外的燃气轮机技术研发已形成一定规模和水平。
国内高效燃气轮机研究也已经在科学基础上构筑起了一定的工程技术平台。
龙腾燃气轮机、上海机电机械研究总院、国机重型机械集团等国内企业都在该领域进行了大量的研究和实践。
双燃料燃气轮机在大型海上发电系统中的应用研究导语:在大型海上发电系统中,燃气轮机作为主要发电设备之一,其性能和效率对整个系统的可靠性和经济性至关重要。
而双燃料燃气轮机作为一种创新的技术方案,可以利用两种不同的燃料,并实现更高效率的能量转化。
本文将围绕双燃料燃气轮机在大型海上发电系统中的应用进行研究,分析其工作原理、优势和挑战,并展望其未来发展前景。
1. 引言随着全球对清洁能源的需求不断增长,燃气轮机作为一种高效、低排放的发电设备,受到了广泛关注和应用。
然而,传统的燃气轮机一般只能够使用一种燃料,限制了其灵活性和可靠性。
为了提高能源的可持续利用性和降低环境污染,双燃料燃气轮机应运而生。
双燃料燃气轮机是指能够同时或分别燃烧两种不同燃料的燃气轮机,其应用在大型海上发电系统中具有重要意义。
2. 双燃料燃气轮机的工作原理双燃料燃气轮机采用了先进的燃烧技术,可以在短时间内切换燃料和燃烧模式,实现对不同燃料的灵活利用。
其工作原理主要包括燃料供给系统、燃气发电系统和燃气排放系统三个部分。
当进行燃料切换时,系统会通过调整供气压力、燃烧室温度和氧化剂的配比等参数来适应新的燃料类型和特性。
3. 双燃料燃气轮机的优势双燃料燃气轮机在大型海上发电系统中具有以下优势:- 灵活可靠:双燃料燃气轮机可以根据需要在不同燃料之间切换,以应对不同的工况和燃料供应情况。
这极大地提高了系统的可靠性和灵活性。
- 高效节能:通过合理选择和切换燃料,双燃料燃气轮机能够在不同负荷运行条件下实现更高的效率和能源利用率,降低能源消耗和运营成本。
- 环保低排放:使用可再生的燃料,如天然气和生物质,可以减少燃料燃烧过程中产生的大气污染物和温室气体排放,达到环保减排的目标。
4. 双燃料燃气轮机应用中的挑战尽管双燃料燃气轮机在大型海上发电系统中具有诸多优势,但其应用仍然面临一些挑战:- 燃料供应问题:双燃料燃气轮机需要同时或分别使用两种不同燃料,因此需要保证燃料供应的可靠性和稳定性。
ICSQ/CNPC Ⅰ大庆油田燃机电厂企业标准Q/CNPC-DQ-RJ 0002-2013代替Q/CNPC-DQ-RJ 0002-2007组运行规程2013-05-01发布2013-05-30实施大庆油田燃机电厂发布目次目次 (I)前言 (IV)联合循环 (1)1 主题内容 (1)2 适用范围 (1)3 设备规范 (1)3.1 燃气轮机及附属设备规范 (1)3.1.1 燃气轮机主要参数 (1)3.1.2 压气机主要参数 (1)3.1.4 透平主要参数 (2)3.1.5 减速齿轮箱主要参数 (2)3.1.6 轴承主要参数 (2)3.1.7 润滑油系统主要参数 (2)3.1.8 液压油系统 (3)3.1.9 进口可转导系统设备代号、名称及设定值(见表3) (4)3.1.10 跳闸油系统设备代号、名称及设定值(见表4) (4)3.1.11 冷却水系统 (5)3.1.12 冷却与密封空气系统 (5)3.1.13 气体燃料系统设备代号、名称及设定值(见表6) (5)3.1.14 启动系统设备代号及名称(见表7) (5)3.1.15 通风与加热系统设备代号、名称及设定值(见表8) (5)3.1.16 高压CO2灭火系统 (6)3.1.17 进气与排气系统 (6)3.1.18 燃气轮机附属电机代号、名称及设定值(见表10) (6)3.1.19 燃气轮机转速继电器代号、名称及设定值(见表11) (7)3.1.20 燃气轮机振动传感器代号、名称及设定值(见表12) (7)3.2 蒸汽轮机及附属设备规范 (7)3.2.1 蒸汽轮机主要参数(见表13) (8)3.2.2 凝汽系统设备规范 (8)3.3 余热锅炉及附属设备规范 (9)3.3.1 余热锅炉 (9)3.3.2 循环水系统 (10)3.3.3 给水系统 (11)3.3.4 附件 (11)4 联合循环机组的启动 (12)4.1 机组启动规定 (12)4.1.1 机组启动状态划分 (12)4.1.2 机组的启动时间(见表26): (13)4.1.3 严禁蒸汽轮机启动的条件 (13)4.1.4 严禁燃气轮机启动的条件 (14)4.1.5 严禁发电机启动的条件 (14)4.2 机组启动前的检查及准备 (14)4.2.1 公共系统启动前的检查和准备 (14)4.2.2 燃气轮机启动前的检查和准备 (15)4.2.3 余热锅炉启动前检查和准备 (16)4.2.4 蒸汽轮机启动前检查和准备 (16)4.2.5 电气系统启动前的检查和准备 (17)4.3 机组启动 (18)4.3.1 第一台燃气轮机启动 (18)4.3.2 余热锅炉冷态启动 (21)4.3.3 余热锅炉热态启动 (22)4.3.4 一台燃机运行时蒸汽轮机冷态启动 (22)4.3.5 一台燃机运行时蒸汽轮机热态启动 (25)4.3.6 第二台燃气轮机及余热锅炉启动 (28)4.3.7 两台余热锅炉并汽 (28)4.4 联合循环启动注意事项 (28)4.5.1 两台燃气轮机同时启动 (29)4.5.2 #1、2余热锅炉冷态启动 (32)4.5.3 余热锅炉温、热态启动 (33)4.5.4 蒸汽轮机冷态启动 (34)4.5.5 蒸汽轮机热态启动 (36)5 联合循环机组的正常运行检查 (38)5.1 联合循环机组正常运行监视 (38)5.2 联合循环机组定期巡视检查项目 (39)5.3 联合循环机组手动紧急停机的条件 (39)6 联合循环机组的停运 (39)6.1 机组二拖一运行方式下滑参数停运 (39)6.1.1 根据机组二拖一运行方式下停运一台燃气轮机 (39)6.1.2一拖一运行方式下滑参数停运操作 (41)6.2 机组停机过程中的主意事项 (43)6.2.1 燃气轮机停运过程中的注意事项 (43)6.2.2 蒸汽轮机停运过程中的注意事项 (43)6.2.3 滑参数停运过程中的注意事项 (44)6.2.4 机组停运后的注意事项 (44)7 联合循环机组的试验 (44)7.1 启炉前的各种试验 (44)7.1.1 热工、电气控制设备的各项试验的准备工作 (44)7.1.3 转机联动试验 (45)7.1.4 事故按钮试验(转机在手动位置) (45)7.1.5 水位保护试验 (45)7.1.6 水压试验 (46)7.1.7 安全阀的校验 (46)7.2 汽轮机设备试验 (47)7.2.1 泵的启停试验 (47)7.2.2 泵的事故按钮及联动试验 (47)7.2.3 主汽门活动试验 (47)7.2.4 主汽门、调速汽门严密性试验 (47)7.2.6 超速试验 (48)7.2.7 喷油试验 (49)7.2.8 真空严密性试验 (49)7.2.9 低油压保护试验 (49)7.2.10 串轴保护试验 (49)7.3 燃气轮机试验 (50)7.3.1 燃气轮机超速跳闸试验 (50)7.3.2 燃气轮机电子超速试验 (50)8 事故处理 (50)8.1 事故处理的原则 (50)8.2 汽机紧急停机条件 (50)8.3 汽机故障停机条件 (51)8.4 汽机紧急停机操作步骤 (51)8.5 真空下降 (51)8.6 发电机甩负荷 (52)8.7 汽轮机水冲击 (53)8.7.1 汽轮机水冲击的现象 (53)8.7.2 汽轮机水冲击的处理措施 (53)8.8 汽轮发电机组不正常的振动和异音 (53)8.9 油系统工作失常 (53)8.10 厂用电全停的处理 (54)8.11 蒸汽参数偏离额定值的处理 (54)8.12 运行给水泵跳闸而备用泵未联动的处理 (54)8.13 空冷岛事故 (54)8.14 水泵的事故处理 (54)8.15 燃机的异常运行及事故处理(见表30) (55)前言本规程按照GB/T1.1—2000给出的规则起草。
燃气轮机简介1、燃气轮机发展史1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。
在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。
燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。
例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。
由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。
近二十年来,燃气轮机在电站中的应用得到了迅猛发展。
这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。
进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。
到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。
而燃气—蒸汽联合循环电站的热效率更高达60%。
先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。
此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。
注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。
2、我国燃气轮机工业概况我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。
1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。