全国高中数学青教师展评课:赵爽弦图中的不等式性质的再探究课件(福建福州三中林珍芳)
- 格式:ppt
- 大小:7.08 MB
- 文档页数:17
课题:对数函数的图像和性质(第一课时)一、教材内容解析1,“对数函数的图像与性质”是普通高中课程标准实验教科书必修1(北师大版)第三章“指数函数和对数函数”一章中的重点内容。
此前,学生已对函数、定义域、值域等相关概念及函数的单调性、奇偶性、对称性等函数性质有了很深刻的了解和掌握。
同时本节课又是在刚刚学习了对数函数的概念和对数函数与指数函数互为反函数的关系后,对对数函数的进一步深入学习。
也是让学生进一步体会研究函数的方法,即“概念---图像---性质--应用”的过程。
同时,为后面函数的学习做好铺垫。
2,“对数函数”是基本初等函数之一,对数函数的知识在其他章节和其他学科中有着广泛应用。
同时,对数函数作为常用的数学模型在解决社会生活问题(统计、规划)中也有着广泛的应用。
本节课的学习为学生进一步学习、参加生产和实际生活提供了必要的数学基本技能。
同时,本节课对对数函数的性质研究不仅反映出对数函数与指数函数的关系,同时也蕴含了函数、数形结合等数学思想,也是高考的重点内容之一。
二、学生学情分析1,心理生理上:高一年级的学生已入校两个月,现处于相对稳定的时期,所以在学习情绪和学习态度上也相对稳定。
加之,新入高一不久,学生渴望知识和学习的情绪也都空前高涨,主动积极,不畏艰难。
2,知识上:从初中到现在学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,加之对数函数与指数函数的关系学生已明白,可以通过类比的方法研究学习,同时对数函数的应用不管在数学上、生活中都应用广泛。
所以,自然就激发了学生学习本节课的热情与兴趣。
三、教学目标设置a) 教学目标1,知识与技能:掌握对数函数的图像与性质,并且在掌握性质的基础上能进行必要的应用。
同时培养学生数形结合的思想及观察、分析、归纳的思维过程。
2,过程与方法:通过类比的方法画出对数函数的图像,研究对数函数的性质;同时对数函数和指数函数互为反函数,利用反函数的性质(图像关于直线y=x对称)验证对数函数的性质,让学生体会类比、数形结合、转化等数学思想方法。
赵爽弦图中的不等式性质的再探究点评(福建福州三中林珍
芳)
《赵爽弦图中的不等式性质的再探究》点评
点评人:福州三中数学教研组组长特级教师林风
由福建省福州第三中学林珍芳老师执教的《赵爽弦图中的不等式性质的再探究》一课,源于教材,又高于教材,以赵爽弦图为媒介,以基本不等式链为脉络开展丰富多彩的探究学习,知识与能力并举,预设与生成相映,技术与数学融合,不仅扩大了学生的数学视野,促进对数学本质的理解,而且优化了认知结构,提高了学生的数学素养,是一节有创意,有高度,有内涵的好课。
1.取材新颖,富有创意
基本不等式是教材中的经典内容,基于赵爽弦图的基本不等式的教学活动不仅具有丰富的数学内涵,而且还具有深邃和广泛人文价值。
本节课教师自然有序地利用赵爽弦图中有关线段、面积的数学关系,挖掘其中蕴含的不等关系,进而得到基本不等式链,体现了教师独特的思考眼光和丰富的教学经验。
2.问题为媒,思想引领
本节课重视知识的发生、发展和深化的过程,没有落入常见的以“一正、二定、三等”为重点的解题套路式教学。
从整节课的展示可以看出教师有意识地在知识的困惑处、思维的突破点和认知的转折处设计有趣、适度、有挑战性的问题串,并且通过一系列的“设问”、“追问”和学生的递进“作答”、“再答”,吸引学生主动“出声地想”去尝试分析,迁移,由浅入深、层层递进,生动活泼地开展数学“微探究”学习。
3.技术搭台,精彩生成
本节课教师适时、恰当的运用TI-NspireCX-C CAS(图形计算器)辅助教学,以技术之长助力问题解决、数学建模和探究发现.学生运用类比的方法重构赵爽弦图(利用正三角形证明基本不等式)是本节课的一个高潮和亮点,既出乎意料的,又在情理之中,是不曾预约的精
彩,有道是“技术巧搭台,生成别样好”。
诚西郊市崇武区沿街学校函数())0,0(,sin >>+=ωϕωA x A y 的图象教学设计说明1、内容与内容分析三角函数是中学数学的重要内容之一,它既是解决实际问题的工具,又是学习高等数学及其他学科的根底.学习())0,0(,sin >>+=ωϕωA x A y 的图象及其性质的过程,有助于学习其他的三角函数的图象及其性质.教材先研究了正、余弦函数图象的性质,再由特殊到一般,由简单到复杂,由详细到抽象,逐步分解,分别对函数())0,0(,sin y>>+=ωϕωA x A 中的参数ϕω,,A 进展分解研究,从三个不同角度研究函数())0,0(,sin y>>+=ωϕωA x A 图象与函数x y sin =图象之间的变换关系,从而提醒函数())0,0(,sin y>>+=ωϕωA x A 图象与函数x y sin =图象之间的内在联络,最终形成由函数x y sin =图象变换得到函数())0,0(,sin y >>+=ωϕωA x A ())0,0(,sin y >>+=ωϕωA x A 图象的变换方法. 根据本节教材内容的安排和课标对学生才能的要求,确定如下教学重、难点:教学重点:函数()0,0)sin(>>+=ωϕωA x A y 的图象以及参数ϕω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ωϕωA x A y 的图象之间的变换关系. 教学难点:函数()0,0)sin(>>+=ωϕωA x A y 的图象与函数x y sin =的图象与之间的变换关系.2、目的与目的分析根据课标对本节课的教学要求,以贯穿创新意识和理论才能的培养为宗旨,从教材的特点和所教的学生的实际出发点,设定教学目的如下:知识与技能结合物理中的简谐振动,理解()0,0)sin(>>+=ωϕωA x A y 的实际意义; 用“五点法〞作出()0,0)sin(>>+=ωϕωA x A y 的图象,并借助图形计算器动态演示三角函数图象,研究参数ϕω,,A 对函数图象变化的影响,让学生进一步理解三角函数图象各种变换的本质和内在规律;在经历参数A 、ϕ、ω对()0,0)sin(>>+=ωϕωA x A y 图象影响的过程中认识到函数x y sin =与()0,0)sin(>>+=ωϕωA x A y 的联络.过程与方法经历x y sin =到()0,0)sin(>>+=ωϕωA x A y 图象变换探究的过程,培养学生的数学发现才能和概括总结才能;让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联络,进步学生的推理才能、分析问题和解决问题的才能;在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归思想,浸透数形结合的思想和数学学习的一般方法.情感、态度、价值观通过三角函数图象各种变换的探求,培养学生的探究才能、钻研精神和科学态度;通过学习,探求三角函数图象各种变换,培养学生团结协作的精神.3、技术手段分析利用CASIO9750图形计算器进展“数学实验〞.本节课假设采用传统方法讲授,作图量大,耗时多.在实际教学中,大多数教师苦于教学条件的限制,只能用计算机进展演示,学生并没有时机亲自动手绘制图象.我利用CASIO9750图形计算器强大的作图功能,学生现场动手操作,自主探究,对三角函数图象的变换直接进展“数学实验〞,亲身经历并探求图象变化的一般规律.卡西欧图形计算器操作简单,学生容易掌握,通过学生主动参与,互相,营造和谐活泼的课堂气氛.结合电子白板交流展示,使理性分析更直观.在教学过程中利用卡西欧电脑模拟软件,结合电子白板,对学生的操作进展示范指导,动态演示,加强师生交流,使图象变化本质的过程明晰可见.4、教学问题诊断分析教学中,学生在以下几个方面可能出现问题:由于本节课涉及ϕω,,A 三个参数对图象变换的影响,假设仅用传统方法作图讲授,学生被动承受,教学效果并不理想.而借助CASIO 图形计算器强大的作图功能进展教学,让学生亲历图象变换过程,主动探求并发现规律,进步学生的学习数学的兴趣,调动学生学习数学的积极性.学生对ωϕ,对图象带来的影响在理解上有一定的难度.为此让学生在数学实验的根底上,引导学生发现并比较对应变化点的坐标之间的联络,从而理解变换的本质.由函数x y ωsin =变换得到函数()0,0)sin(≠>+=ϕωϕωx y 是教学中的又一难点,教学中引导学生变化形式,换元考虑,从而化复杂为简单,变陌生为熟悉,打破难点.5、教学过程及预期效果分析根据教学内容结合学生详细情况,我采用了教师启发引导和学生自主探究相结合的教学方式.在整个学习过程中,让学生充分动手操作,动脑考虑,形象直观与理性分析相结合,调动学生学习积极性,激发学生学习兴趣.课前准备[设计意图]通过作三组不同函数的图象,进一步体会“五点法〞作函数图象的根本方法,同时为本节课的图象变换做好准备.创设情境,引出问题[设计意图]结合生活中简谐振动创设问题情境,加强数学与物理学科的联络,让学生体会到数学的应用价值.x y sin =为()0,0)sin(>>+=ωϕωA x A y 的特殊情况引起学生的探究兴趣,通过设置问题,引起认知冲突,激发求知欲望,引导学生学会学习.互助探究,感受规律以问题为中心的探究式的学习方法的好处是学生主动参与知识的发生、开展的过程,在探究的过程中学习科学的研究方法,对学生的终生学习都有积极意义.课前将全班学生分成八个方阵,分组讨论图象的变换过程.问题1:寻找函数x y sin =,x y sin 2=,x y sin 21=三者图象之间的联络. 问题2:寻找函数x y sin =,⎪⎭⎫ ⎝⎛+=3sin πx y ,⎪⎭⎫ ⎝⎛-=4sin πx y 三者图象之间的联络. 问题3寻找函数三者x y sin =,y=sin2x ,y=sin 21x 图象之间的联络.在研究函数图象之间关系时安排了以下步骤:(1) 作图观察:使用卡西欧图形计算器作出函数图象,观察比较,大胆猜想;(2) 理性考虑:为什么函数的图象之间有这样的关系?(3) 得到详细的结论:(4) 一般化:其中前两个步骤由组内同学互助探究,后两个步骤请组内推选代表汇报本组“研究成果〞,组与组之间可以互相质疑或者者补充,从而明确参数ϕω,,A 分别对函数()0,0)sin(>>+=ωϕωA x A y 的图象.典例分析,形成才能[设计意图]互动探究部分将ϕω,,A 三元素对图象变换的影响进展分解,本环节通过例题让学生体会三者结合对图象变化的作用,并着重分析先周期后相位与先相位后周期在图象变换过程中的注意点. 回忆反思,拓展深化[设计意图]引导学生从知识和方法两个方面进展小结.培养学生及时总结,概括提升的才能,为在课后能继续独立探究考虑埋下伏笔.课后研究,突出重点[设计意图]通过阅读让学生理解数学学科与人类社会开展间的互相关系,体会数学的科学价值和应用价值;通过考虑题使知识更加完好,落实知识的掌握与思想方法的理解.在课堂上注重学生的主体参与,努力创设教师指导下的学生自主探究、交流的学习方式,通过课堂练习及课后作业,课前制定的教学目的根本得以实现.以上就是我对本节课的一些考虑,由于经历缺乏肯定会有缺乏之处,恳请各位专家批评指导!谢谢!。
拓展“活”教材演绎“好”数学--以“赵爽弦图中的不等式性
质再探究”为例
林珍芳
【期刊名称】《中学数学》
【年(卷),期】2015(000)011
【摘要】2014年12月,笔者有幸参加了中国教育学会中学数学教学专业委员会组织的全国高中青年数学教师优秀课展示和培训活动,进行了课题为"赵爽弦图中的不等式性质的再探究"的教学展示.赛后,笔者对这节课进行了回顾与反思.教材是连接课程方案与教学实践的枢纽,是教学的载体.新课程倡导教师"用教材"而不是简单的"教教材",古人云"书不尽言,言不尽意",所以教师需要通过对教材"再加工"。
【总页数】4页(P8-11)
【作者】林珍芳
【作者单位】福建省福州第三中学
【正文语种】中文
【相关文献】
1.拓展教材放飞学生探究的心灵--让数学回归生活 [J], 徐为善
2.初中数学教科书中数学探究活动的分析r——以人教版数学教材为例 [J], 徐玉庆
3.关注教材习题归纳数学结论——以教材\"椭圆中点弦问题\"为例 [J], 方诚
4.活用教材习题,推动思维进阶——以苏教版数学三下教材习题拓展教学为例 [J],
陈云菊; 顾晓东
5.活用教材习题,推动思维进阶——以苏教版数学三下教材习题拓展教学为例 [J], 陈云菊; 顾晓东
因版权原因,仅展示原文概要,查看原文内容请购买。
再探“赵爽弦图”原题展示:正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH,已知AM为Rt△ABM较长直角边,EF,则正方形ABCD的面积为()A. 12s B. 10s C.9s D.8sB尊敬的各位评委,老师,大家好:我说题的题目是《再探“赵爽弦图”》,“赵爽弦图”在验证勾股定理时学生已有接触,因此主题定为《再探“赵爽弦图”》,我打算从“命题立意、命题解析、命题主线”三个方面来对本题进行阐述。
一、命题立意知识立意:本题着重考查勾股定理,正方形的性质,图形面积的计算等知识。
能力立意:(1)赵爽弦图嵌套美的赏识。
(2)设元、数形结合等数学思想方法的建构。
(3)读图,识图,解构图形能力的培养。
(4)探究赵爽弦图类型题的解题基本步骤的考查是本题的重点。
二、命题解析本题是2017年温州卷选择题第9题,考查学生的设元、消元、设而不求、方程、数形结合等思想方法,属于较难题,难度值比较大,解决此题是通过设元,设EF=x,用x表示其他线段,表示图形的面积,利用图形寻找到解决问题的等量关系,解决问题的关键是发现直角三角形短直角边等于小正方形的边长即EF 的长,是本题的难点,突破难点可以通过两种方法:①代数法,用x表示线段,发现直角三角形短直角边也等于x即直角三角形短直角边等于小正方形的边长②几何法,利用图形,结合线段的中点,运用线段的和差也能发现直角三角形短直角边等于小正方形的边长。
然后用勾股定理求出大正方形的边长即直角三角形的斜边长,接着消元消去x用S的关系式表示大正方形的面积,从而解决问题。
在这个过程中,解题思路是:在我们认真研读图形,认真识图后,发现此图实质上可以分解成三个基本的“赵爽弦图”嵌套而成的,具体分解如下:去四条红色的对角线也就是左下图:+通过如此的认图、识图、构图,把此一题一课的主线设计成:一个基本的“赵爽弦图”两个基本的“赵爽弦图”三个基本的“赵爽弦图”。
三、命题主线1、学生在操作中体验“赵爽弦图”(1)、用四个全等的直角三角形围成一个正方形。