生物固定型股骨柄假体的几何系统设计
- 格式:pdf
- 大小:599.68 KB
- 文档页数:4
Wagner—SL生物固定型股骨柄假体在复杂髋关节中的临床应用进展复杂髋包括:髋关节翻修、骨质疏松的高龄粗隆间骨折、髋关节发育不良、既往截骨术病例、现对复杂髋的假体选择目前争议较大,但生物型长柄固定假体的临床应用越来越广泛。
而wagner SL生物固定型股骨柄假体通过远端紧压配合获得初始稳定性,通过骨整合获得远期稳定性,临床报道的中远期疗效良好。
该文就wagner SL生物固定型股骨柄假体设计特点、临床应用中远期效果及近年设计研究进展作一综述。
随着髋关节置换术的增加,关节假体使用寿命及人们寿命的延长,关节翻修数量逐渐增加。
现已成为各大三甲医院主要复杂大型手术;股骨粗隆间骨折是一种常见骨折,尤以老年人多见。
随着社会发展及人类平均寿命的延长,发病率及发病年龄都有增高的趋势。
因保守治疗时间长、并发症多,术后生活质量差,手术治疗成为首要选择,高龄患者多伴有明显骨质疏松,同时合并有多种内科疾病,无法耐受长时间卧床及创伤较大手术。
故关节置换术具有出血少、创伤小、手术时间短及早期下床进行功能锻炼等优点,尤其适合老年患者。
而髋关节先天性发育不良及既往截骨术病例均有股骨近端发育不良,无法进行近端固定,故远端固定假体柄受到越来越多关注。
1 生物固定型股骨柄设计Wagner SL股骨柄是远段固定为主锥形的长柄假体,1987年由Wagner报道,早在过去的二十几年里,远端的锥形设计钛合金柄在欧洲日渐流行。
多数报道假体为Wagner SL stem这是种一体式的远端锥形固定柄,大量报道证实了这种远端锥形设计的优点[6]。
这种假体是专门为髋关节翻修所设计,经过了长期的临床实践并进行了许多改进,其锚定的设计理念和骨整合能力的理论也得到了验证。
股骨柄为锥形几何形态设计8条纵向锐利侧棱嵴及圆形的截面,整个假体柄锥度呈2°,假体的材料是钛铝铌合金,假体表面为金刚砂粗糙面支持骨整合,假体侧棱嵴间的沟槽也为髓腔内血管再生提供了空间,假体长度为190~385 mm,有效地增加了假体柄与髓腔的接触面积和界面长度.此种假体早期稳定性来源于股骨柄假体和髓腔的压配,后期稳定性是依靠骨整合长入,其早期稳定性并不依赖于股骨距的完整,而是依靠股骨柄中远段与髓腔的压配。
Wagnercone股骨柄设计原理及手术操作展开全文设计原理Wagner cone锥形假体股骨柄采用钛合金材料加工制成,用于股骨近端区域困难条件时进行生物性固定,例如近端股骨畸形。
假体柄身表面喷砂处理,粗糙微观形貌与其特殊形状设计共同促进骨的大面积附着。
5°角锥状柄横断面为圆形,外科医生可在任何前倾方向放置Wagner cone股骨柄。
柄身有8条脊,其锐利边缘可增加对皮质的固定,提供最佳旋转稳定性。
脊和锥状几何外形更加确保了牢靠的固定。
Wagner cone股骨柄最大限度减少了其它非骨水泥固定系统常见的大腿疼痛发生率。
除提供旋转稳定性外,柄身锐利脊还有利于骨的附着。
临床研究数据表明,在锐利脊处的骨形成和附着效果更佳。
为在股骨距实现对假体的进一步支持,将内侧脊向远端延长,使其透过突起表面达到支持和固定的效果。
柄部侧方脊始于肩部顶端,目的在于确保在粗隆区域拥有最大可能的接触面积。
总之,脊的形状提供了旋转稳定性并且改善了材料与骨生长的效果及结合。
手术操作暴露可采用各种手术路径植入Wagner cone锥形假体股骨柄。
所用特殊途径取决于外科医师的偏好。
本技术适用于后方入路(患者侧卧位图1)图1腿长的判断确立标记点,在分离股骨前进行测量,在完成重建后,比较腿长和股骨偏心距。
通过该项比较进行调整以便使制定的术前计划能够达到预期目的。
有多种测量腿长的方法。
根据手术技术选择最适宜的方法。
股骨颈截骨术根据图2所示手术路径分离股骨。
参照从解剖标记点到术前模板过程中确定的截骨水平间距,确保截骨线的准确性。
在贯穿股骨颈的线上用钢笔标记切除线。
用标记线作为引导,进行股骨颈截骨。
为防止损伤大转子,当锯到达大转子时防止切割。
将锯取下,在股骨颈上方部分完成截骨切割或用一骨刀完成切割。
图2股骨腔的准备随着切口到达近端股骨,从大转子内侧部分和股骨颈侧方部分分离软组织。
必须清楚暴露该区域,才可以正确定位插入股骨扩髓钻的部位(图3)。
股骨柄设计原则在过去50年里,人们一直在努力恢复患病的髋关节的正常功能并缓解疼痛。
这样就出现了各种各样的髋关节假体。
在评价全髋关节的功能时必须考虑柄的设计特点。
这些特点包括股骨头、股骨颈、颈领以及柄体。
骨水泥型柄的设计理念和注意事项与非骨水泥型的股骨柄不同。
因此,本文分别就骨水泥型和非骨水泥型股骨柄的上中下段设计原则作一综述。
骨水泥固定的股骨柄颈领在所有股骨柄的设计参数中,有无颈领的设计是最有争议的一个。
在骨水泥固定的股骨假体中,设计颈领的初衷是在柄的插入过程中可以对骨水泥进行加压。
结果发现颈领并没有达到预期的目的。
骨水泥型柄的原理是将负荷更合理地传递给近端的股骨和骨水泥,实事上,许多实验和计算机模型研究都表明,带领的股骨柄会将更大的压应力(比较接近正常水平的压应力)传递给内侧股骨距(如图1、图2所示)。
这一效果有利于降低由于应力遮挡造成的股骨近端骨吸收,降低假体上的弯曲应力,降低假体远端骨水泥套层上的应力(如图3所示)。
锥度设计的股骨柄对负荷传递的特点之一是在近端股骨和骨水泥上产生很高的环形应力。
这种环形应力接近于骨水泥套层的极限拉伸强度,但如果柄带有颈领的话,理论上将降低骨水泥套层上的环形应力,关节系统使用起来将会安全的多。
但是,令人担忧的是:1、要想使颈领与股骨紧密配合,在技术上很难达到;2、在手术中做到的颈领与骨的任何接触,都无法在术后保持下去。
即使发生很轻微的骨吸收,也会丧失掉假体柄对应力的合理传导,从而丧失了颈领的作用。
数学模型表明,颈领可以将应力通过骨水泥套层传递到股骨距。
相反,实验室研究却表明,加上轴向负载后,颈领下的骨水泥套层很快碎裂。
但是在临床上,不管是有领或无领骨水泥柄,临床效果都比较好。
股骨柄柄体的设计股骨柄的设计包括柄的几何特点(长度、形态、横截面),材料特性、表面处理。
形态:早期的假体柄一般为弯曲形设计,除了横截面为钻石形的以外,这种弯曲形设计的假体柄已经被淘汰了。
因为将这种弯柄插入到一个相对直的髓腔内(尤其是在冠状面上),就很难形成完整的骨水泥套层。
全髋关节置换术生物固定型股骨柄假体临床应用进展张恒辉;冯建民【摘要】全髋关节置换术(THA)已成为治疗终末期非感染性髋关节疾患最为成功的手术,其中生物固定型股骨柄假体的临床应用越来越广泛.生物固定型股骨柄假体通过紧压配合获得初始稳定性,通过骨整合获得远期稳定性,临床报道的中远期疗效良好.影响临床疗效的多种因素中假体设计十分重要,假体设计各异使得临床疗效略有差别,术后出现相似的假体松动、应力遮挡效应等并发症.该文就生物固定型股骨柄假体设计特点、临床应用中远期效果及近年设计研究进展作一综述.【期刊名称】《国际骨科学杂志》【年(卷),期】2013(034)005【总页数】5页(P348-352)【关键词】全髋关节置换;股骨柄假体;生物学固定【作者】张恒辉;冯建民【作者单位】200025,上海交通大学医学院附属瑞金医院骨科;200025,上海交通大学医学院附属瑞金医院骨科【正文语种】中文全髋关节置换术(T H A)已成为治疗终末期非感染性髋关节疾患最为成功的手术,其中生物固定型T H A临床应用越来越普遍。
生物固定型T H A始于20世纪70年代,其股骨柄假体设计于80~90年代,发展迅速,涌现出许多类型;进入21世纪,临床上多关注假体界面选择,生物固定型股骨柄设计发展趋缓;近年随着生物固定型T H A临床应用增加,短柄假体受到越来越多关注。
生物固定型股骨柄假体材料,以钴-铬-钼合金和钛-铝-矾合金设计最为普遍;假体表面可配合有不同种类的广泛或部分涂层,以利于骨长入和骨长上;通常被设计成近端多孔涂层(锥形)或全涂层(柱状)。
生物固定型股骨柄假体依据不同标准可有不同分型,几何设计不仅影响假体初始压配,而且直接涉及远期骨长入或骨长上。
根据几何设计不同,生物固定型股骨柄假体总体设计上可分为传统概念上的生物固定型股骨柄假体和骨保留型假体。
传统概念上生物固定型股骨柄假体分为锥形柄(直柄)、柱形柄、解剖柄和组配柄等4种类型[1,2](见表1)。