概率论与数理统计复习提纲
- 格式:doc
- 大小:833.50 KB
- 文档页数:10
提纲第一部分 基本概念和基本定理【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:AB 与AB 是否相等?答:不一定相等.由对偶律可知,AB A B A B ==;而AB A B =.问题2:事件的相容性与独立性在逻辑上是否存在因果关系? 答:如下表所示,事件的相容性与独立性在逻辑上不存在因果关系.问题3:设()()()P AB P A P B =,()()()P AC P A P C =,()()()P BC P B P C =同时成立,能否推出()()()()P ABC P A P B P C =成立?答:不能(例如第2章课件中的伯恩斯坦反例),由此可以看出“两两独立”和“相互独立”并不等价.问题4:下列式子中的等号何时成立?()()()()()()()(|)()()()()()()P A B P A P B P AB P A P B P A P B A P A P B P A P B P A P B =+-=+-=+-=+答:第一个等号总成立;当()0P A >时,第二个等号成立;当,A B 独立时,第三个等号成立;当,A B 不相容时,第四个等号成立.问题5:不可能事件与零概率事件是否相等?必然事件与概率为1的事件是否相等? 答:不可能事件是零概率事件,但反之不然; 必然事件是概率为1的事件,但反之亦不然.第二部分 随机变量及其分布【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:离散型随机变量与连续型随机变量的联系与区别? 答: 2,,1ii p∞=∑一定成立.连续型随机变量还具有一个特殊性质:0, ()0C P C ξ∀>==,即任一基本事件发生的概率为零.从而可以推出下列结论:①不可能事件是零概率的事件,但反之不然;必然事件是概率为1的事件,但反之亦不然.②()()()()()baP a b P a b P a b P a b f x dx ξξξξ≤≤=<≤=≤<=<<=⎰.问题2:连续型随机变量的密度函数是否一定是连续函数? 答:不一定,均匀分布的密度函数并不连续.问题3:分布曲线(曲面)是分布函数的图像吗? 答:不是,分布曲线(曲面)是密度函数的图像.问题4:密度函数是否由分布函数唯一确定?()()dF x f x dx=何时成立? 答:不是,因为修改密度函数在个别点处的函数值对其积分的值(概率)没有影响. 对()f x 的连续点,有()()dF x f x dx=.问题5:联合分布、边缘分布、条件分布之间的联系与区别? 答:从分布函数的定义来看,分布函数几何意义联合分布(,)(,)F x y P x y ξη=≤≤边缘分布()(,)(,)F x P x F x ξξη=≤<+∞=+∞条件分布对使得()0f y η>的点y (这个条件不能少),|(,)(|)(|)()P x y F x y P x y P y ξηξηξηη≤==≤===从分布律的定义来看,分布律几何意义联合分布(,)i j ijP x y pξη===•边缘分布律体现为同一行概率求和.•条件分布律体现为ijp在同一行概率中所占的比重.注意:条件分布中“.ip>”的条件不能少!边缘分布.1()i ij ijP x p p ξ∞====∑条件分布当.ip>时,. (|)ijj iip P y xp ηξ===从密度函数的定义来看,密度函数几何意义联合分布(,) f x y边缘分布()(,) f x f x y dy ξ+∞-∞=⎰条件分布对使得()0f yη>的点y,|(,)(|)()f xf xyyyfξηη=注意:条件分布中“()0f yη>”的条件不能少!三种概率分布之间的相互转化关系是ξη,何时可以由ξ和η的边缘分布完全确定联合分布?问题6:给定二维随机变量(,)答:当ξ和η相互独立时,可以由边缘分布完全确定联合分布.ξη的边缘分布是正态分布,能否由此确定联合分布是二维正问题7:已知二维随机变量(,)态分布?答:不能,反例请参考P.146例19.第三部分随机变量的数字特征【内容提要】复习重点:期望、方差、协方差、相关系数的性质.1.期望和方差的定义、性质1,2,Eξ(要求积分绝对收敛)Eg(2.协方差和相关系数的定义、性质【释疑解惑】问题1:是否所有随机变量都存在数学期望?答:不是,反例请参考P.74例22及P.98例7.因为方差本质上是随机变量的函数的期望,所以并非所有随机变量都存在方差.问题2:随机变量的不相关性与独立性是否等价?答:“不相关”是指两个随机变量之间不存在线性函数的关系,“独立”是指两个随机变量不存在任何关系。
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,n A A A 中至少有一事件发生”这一事件称为1,2,,n A A A 的和,记作12n A A A ⋃⋃⋃(简记为1ni i A=).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,n A A A 同时发生”这一事件称为1,2,,n A A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P kn k k n ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ 几何分布)(p G,2,1 ,)(1===-k p qk X P kp12p q均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ121λ 正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ; ()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F = 5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计复习提纲一、 随机事件基本概念 1. 样本空间 2. 随机事件3. 样本空间S 是必然事件;Φ是不可能事件。
4. 随机事件的运算性质 二、 概率的定义及其运算 1. 概率的定义 2. 概率的性质3. 古典概率:1()({})lki l k A P A P e n S ====∑所包含的基本事件数中基本事件的总数4. 条件概率:()(),()0()P AB P A P A P A =>其中。
5. 事件的独立性:(1) 称A,B 两个事件相互独立,如果满足:()()()P AB P A P B = (2)称A,B,C 三个事件相互独立,如果满足()()()P A BP A P B = ()()()P AC P A P C = ()()()P BC P B P C = ()()()()P ABC P A P B P C =若满足前三个条件,则称A 、B 、C 两两独立。
6. 三个重要公式: (1) 乘法公式:(a) 设()0P A >,则有 ()(|)()P AB P B A P A =(b) 设()0P AB >,则有()(|)(|)()P ABC P C AB P B A P A = (c) 设121()0n P A A A ->,则有12121()(|)(nn nnP A AAP AA ---=(2)全概率公式 :设12,,,n B B B 为S 的一个划分,1122()(|)()(|)()(|)()n n P A P A B P B P A B P B P A B P B =+++,其中()0(1,2,,)i P B i n >= 。
(3)设随机试验E 的样本空间为S ,A 为E 的事件,12,,,n B B B 为S 的一个划分,()0P A >,()0(1,2,,)i P B i n >=,则有1(|)()(|)(|)()i i i nkkk P A B P B P B A P A B P B ==∑第二章 随机变量及其分布 一、基本概念1.随机变量 ():,()X X e e S X e R =∀∈∃∈实数 。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计期末复习大纲第一章:掌握事件间的关系与运算、概率的公理化定义;掌握概率的性质及其计算;掌握条件概率的公式、乘法定理、全概率公式与贝叶斯公式、事件的独立性的概念、会用事件的独立性计算概率练习1-2:4,5练习1-3:6,14练习1-4:4,9,10练习1-5:8,9第二章:2.1节:掌握本节的定理例题结论;练习2-1:5,6,8,122.2节:掌握本节的定理例题结论;练习2-2:12.3节:掌握常用的离散型分布的密度函数,数学期望、方差及相关性质(重点:两点分布二项分布与泊松分布练习2-3:62.4节:掌握常用的连续型分布的密度函数,数学期望、方差及相关性质(尤其是正态分布);练习2-4:1,练习2-5:2,3,4,5第三章:3.1节:掌握本节的定理例题结论;练习3-15,6,73.2节:条件概率密度的计算不考,但要掌握公式,此外本节的定理例题结论要掌握;练习3-2:1,5,6,13,153.3节:掌握离散型随机向量函数的分布,随机向量函数的数学期望,及数学期望的性质;练习3-3:8,3.4节:掌握协方差相关系数的概念及性质;练习3-4:1,4,5第四章:练习4-1:4,5,64.3节:掌握2χ分布F分布t分布的构成及性质;练习4-3:5,84.4节:掌握定理4.1和4.2的结论第五章:5.1节:掌握关于无偏性、有效性的定义和例题;练习5-1:15.2节:会求最大似然估计、矩估计;练习5-2:25.3节:掌握置信区间公式;练习5-3:2,3,μ的假设检验;练习5-5:65.5节:单正态分布的关于)),σ(=2≤,(=≥,。
第一章 随机事件及其概率一、随机事件及其运算1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生;②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生; ③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④对立关系(互逆):A ,事件A 发生事件A 必不发生,反之也成立; 互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+; ②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃ 对于n 个事件,有1111,n nii i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质:(1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki ik i iA P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如若),()(B P A P ≤则B A ⊂。
(×) 若0)(=A P ,则φ=A 。
(×)三、 古典概型的概率计算古典概型:若随机试验满足两个条件:① 只有有限个样本点, ② 每个样本点发生的概率相同,则称该概率模型为古典概型,()kP A n=。
典型例题:设一批产品共N 件,其中有M 件次品,从这批产品中随机抽取n 件样品,则 (1)在放回抽样的方式下, 取出的n 件样品中恰好有m 件次品(不妨设事件A 1)的概率为 .)()(1nmn m m n N M N M C A P --=(2)在不放回抽样的方式下, 取出的n 件样品中恰好有m 件次品(不妨设事件A 2)的概率为nNm n MN m M m n A A A C A P --=)(2.nNm n MN m M C C C --⋅=四、条件概率及其三大公式 1.条件概率:()()(|),(|)()()P AB P AB P B A P A B P A P B == 2.乘法公式: 1212131211()()(|)()(|)()()(|)(|)(|)n n n P AB P A P B A P B P A B P A A A P A P A A P A A A P A A A -===L L L3.全概率公式:若12,,,,,nn ii j i B B B BB B i j ==Ω=∅≠L U 满足,则1()()(|)ni i i P A P B P A B ==∑。
4.贝叶斯公式:若事件12,,,n B B B A L 和如全概率公式所述,且(A)0P >, 1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑则 .五、事件的独立 1. 定义:()()(),P AB P A P B =若则称A,B 独立. 推广:若12,,,n A A A L 相互独立,11()()()n n P A A P A P A =L L2. 在{}{}{}{},,,,,,,A B A B A B A B 四对事件中,只要有一对独立,则其余三对也独立。
3. 三个事件A, B, C 两两独立:()()()()()()()()()P AB P A P B P BC P B P C P AC P A P C ===注:n 个事件的两两独立与相互独立的区别。
(相互独立⇒两两独立,反之不成立。
)4.伯努利概型:(),0,1,2,,,1.k k n kn n P k C p q k n q p -===-L1.事件的对立与互不相容是等价的。
(X )2.若()0,P A = 则A =∅。
(X )3.()0.1,()0.5,()0.05P A P B P AB ===若则。
(X)4.A,B,C 三个事件恰有一个发生可表示为ABC ABC ABC ++。
(∨)5. n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(X)6. 当A B ⊂时,有P(B-A)=P(B)-P(A)。
(∨)第二章 随机变量及其分布一、随机变量的定义:设样本空间为Ω,变量)(ωX X =为定义在Ω上的单值实值函数,则称X 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。
二、分布函数及其性质1. 定义:设随机变量X ,对于任意实数x R ∈,函数(){}F x P X x =≤称为随机变量X 的概率分布函数,简称分布函数。
注:当21x x <时,)(21x X x P ≤<)()(12x F x F -=(1)X 是离散随机变量,并有概率函数,,2,1),(Λ=i x p i 则有.)()(∑≤=xx ii x p x F(2) X 连续随机变量,并有概率密度f (x),则dt t f x X P x F x⎰∞-=≤=)()()(.2. 分布函数性质:(1 F (x )是单调非减函数,即对于任意x 1 <x 2,有);()(21x F x F ≤; (2 1)(0≤≤x F ;且1)(lim )(0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x ,;(3离散随机变量X ,F (x )是右连续函数, 即)0()(+=x F x F ;连续随机变量X ,F (x )在(-∞,+∞)上处处连续。
注:一个函数若满足上述3个条件,则它必是某个随机变量的分布函数。
三、离散随机变量及其分布1. 定义. 设随机变量X 只能取得有限个数值n x x x ,,,21Λ,或可列无穷多个数值,,,,,21ΛΛn x x x 且),2,1()(Λ===i p x X P i i ,则称X 为离散随机变量, p i (i =1,2,…)为X 的概率分布,或概率函数 (分布律). 注:概率函数p i 的性质:;,2,1,0)1(Λ=≥i p i 1)2(=∑iip2. 几种常见的离散随机变量的分布:(1)超几何分布,X~H(N,M,n),{} 0,1,2,,k n kM N MnN C C P X k k n C --⋅===L (2)二项分布,X~B(n.,p),()(1)0,1,,k k n kn P X k C p p k n -==-=L 当n=1时称X 服从参数为p 的两点分布(或0-1分布)。
若X i(i=1,2,…,n)服从同一两点分布且独立,则1nii X X==∑服从二项分布。
(3)泊松(Poisson)分布,~()X P λ,{}(0),0, 1, 2, ...!k e P X k k k λλλ-==>=四、连续随机变量及其分布1.定义.若随机变量X 的取值范围是某个实数区间I ,且存在非负函数f(x),使得对于任意区间I b a ⊂],(,有,)()(⎰=≤<badx x f b X a P 则称X 为连续随机变量; 函数f (x)称为连续随机变量X 的概率密度函数,简称概率密度。
注1:连续随机变量X 任取某一确定值的0x 概率等于0, 即;0)(0==x X P 注2:)()()(212121x X x P x X x P x X x P <≤=≤≤=<<⎰=≤<=21)()(21x x dx x f x X x P2. 概率密度f (x)的性质:性质1:;0)(≥x f 性质2:.1)(=⎰+∞∞-dx x f注1:一个函数若满足上述2个条件,则它必是某个随机变量的概率密度函数。
注2:当21x x <时,)(21x X x P ≤<)()(12x F x F -=⎰=21)(x x dx x f且在f(x)的连续点x 处,有).()(x f x F =' 3.几种常见的连续随机变量的分布:(1) 均匀分布 ~(,)X U a b , ⎪⎪⎩⎪⎪⎨⎧≥<≤--<=⎪⎩⎪⎨⎧≤≤-=.,1;,;,0)(01)(b x b x a a b a x a x x F bx a ab x f 其它,,(2) 指数分布~()X e λ,0λ> ⎪⎩⎪⎨⎧≤>-=⎪⎩⎪⎨⎧<≥=--.0,0,0,1)(000)(x x e x F x x e x f x x λλλ,,(3) 正态分布 ),(~2σμN X ,0>σ +∞<<∞-==⎰∞-----x dt ex F ex f xt x ,21)(21)(22222)(2)(σμσμσπσπ,1. 概率函数与密度函数是同一个概念。
( X )2.当N 充分大时,超几何分布H (n , M , N )可近似成泊松分布。
( X )3.设X 是随机变量,有()()P a X b P a X b <<=≤≤。
( X )4.若X 的密度函数为()f x =cos ,[0,]2x x π∈,则0(0)cos .P X tdt ππ<<=⎰ ( X )第三章 随机变量的数字特征一、期望(或均值)1.定义:,EX 1,(),k k k x p EX xf x dx ∞=+∞-∞⎧⎪=⎨⎪⎩∑⎰离散型连续型2.期望的性质:(1)(),(E C C C =±±为常数)(2)E(CX)=CE(X)(3)E(X Y)=E(X)E(Y)(4)若X 与Y 相互独立,则E(XY)=E(X)E(Y),反之结论不成立.3. 随机变量函数的数学期望1(),[()]k k k g x p X E g x X ∞=∞∞⎧⎪=⎨⎪⎩∑⎰+-离散型g(x)f(x)dx ,连续型4. 计算数学期望的方法(1) 利用数学期望的定义; (2) 利用数学期望的性质; 常见的基本方法:将一个比较复杂的随机变量X 拆成有限多个比较简单的随机变量X i 之和,再利用期望性质求得X 的期望. (3)利用常见分布的期望; 1.方差 ⎪⎪⎩⎪⎪⎨⎧--=-=⎰∑∞+∞-连续型离散型,)()]([,)]([)]([)(222dx x f X E x p X E x X E X E X D i i注:D (X )=E [X -E (X )]2≥0;它反映了随机变量X 取值分散的程度,如果D (X )值越大(小),表示X 取值越分散(集中)。