重写cpr5-3
- 格式:doc
- 大小:2.01 MB
- 文档页数:8
Linux终端中的进程优先级调整命令在Linux操作系统中,进程是操作系统中最基本的执行单位。
不同的进程可能会占用不同的系统资源,并且在系统运行过程中具有不同的重要性和优先级。
在某些情况下,我们需要通过调整进程的优先级来控制系统资源的分配和进程的执行顺序。
Linux终端提供了一些命令,可以用于调整进程的优先级。
本文将介绍常用的几个命令及其使用方法。
1. nice命令nice命令用于启动一个命令,并设置其进程优先级。
通过设置进程的优先级,我们可以控制进程在系统资源竞争时的执行顺序。
命令格式:nice [OPTION] [COMMAND [ARG]...]常用参数:-值:指定进程的优先级值,范围从-20到+19,值越小,优先级越高示例:nice -n 10 ./my_program上述命令将以优先级10来启动my_program程序。
2. renice命令renice命令用于修改已经运行的进程的优先级。
通过renice命令,我们可以在进程运行过程中动态地调整其优先级。
命令格式:renice [OPTIONS] <priority> <PID>...常用参数:-值:指定新的优先级值,范围从-20到+19,值越小,优先级越高-PID:要修改优先级的进程的进程ID示例:renice -n 5 -p 1234上述命令将进程ID为1234的进程的优先级修改为5。
3. top命令top命令可以用于实时监控系统的进程状态,并且可以通过交互界面调整进程的优先级。
命令格式:top常用操作:在top命令交互界面中,使用键盘上的数字键1-5可以切换不同的进程排序方式。
通过按下键盘上的r键,我们可以进入renice模式,然后选择需要调整优先级的进程,并输入新的优先级值。
示例:1) 输入top命令后,进入top交互界面。
2) 按下r键,进入renice模式。
3) 使用上下箭头选择需要调整优先级的进程。
第五章应用指令5.1 数据传送指令5-15.1.1 MOV, MOVP, DMOV, DMOVP ..................................................... 5-15.1.2 CMOV, CMOVP, DCMOV, DCMOVP .......................................... 5-35.1.3 GMOV, GMOVP .................................................................................. 5-65.1.4 FMOV, FMOVP ................................................................................... 5-85.1.5 BMOV, BMOVP ................................................................................ 5-10 5.2 转换指令5-125.1.1 BCD, BCDP, DBCD, DBCDP ......................................................... 5-125.2.2 BIN, BINP, DBIN, DBINP .............................................................. 5-15 5.3 比拟指令5-185.3.1 CMP, CMPP, DCMP, DCMPP ...................................................... 5-185.3.2 TCMP, TCMPP, DTCMP, DTCMPP .............................................. 5-225.3.3 LD ( =, >, <, >=, <=, <> ) ..................................................... 5-245.3.4 AND ( =, >, <, >=, <=, <>) ................................................... 5-255.3.5 OR ( =, >, <, >=, <=, <>) ...................................................... 5-27 5.4 增加/减少运算5-295.4.1 INC, INCP, DINC, DINCP ............................................................. 5-295.4.2 DEC, DECP, DDEC, DDECP .......................................................... 5-31 5.5 回转指令5-345.5.1 ROL, ROLP, DROL, DROLP .......................................................... 5-345.5.2 ROR, RORP, DROR, DRORP ....................................................... 5-375.5.3 RCL, RCLP, DRCL, DRCLP ............................................................ 5-395.5.4 RCR, RCRP, DRCR, DRCRP .......................................................... 5-425.6 移位指令5-445.6.1 BSFT, BSFTP ...................................................................................... 5-445.6.2 WSFT, WSFTP ................................................................................... 5-465.6.3 SR.......................................................................................................... 5-48 5.7 交换指令5-515.7.1 XCHG, XCHGP, DXCHG, DXCHGP ............................................ 5-51 5.8 BIN 算术指令5-535.8.1 ADD, ADDP, DADD, DADDP ...................................................... 5-535.8.2 SUB, SUBP, DSUB, DSUBP .......................................................... 5-555.8.3 MUL, MULP, DMUL, DMULP ..................................................... 5-575.8.4 MULS, MULSP, DMULS, DMULSP ............................................ 5-605.8.5 DIV, DIVP, DDIV, DDIVP ............................................................... 5-635.8.6 DIVS, DIVSP, DDIVS, DDIVSP .................................................... 5-65 5.9 BCD算术指令5-685.9.1 ADDB, ADDBP, DADDB, DADDBP ........................................... 5-685.9.2 SUBB, SUBBP, DSUBB, DSUBBP ................................................ 5-705.9.3 MULB, MULBP, DMULB, DMULBP ........................................... 5-745.9.4 DIVB, DIVBP, DDIVB, DDIVBP ................................................... 5-76 5.10 逻辑算术指令5-795.10.1 WAND, WANDP, DWAND, DWANDP ..................................... 5-795.10.2 WOR, WORP, DWOR, DWORP ................................................. 5-825.10.3 WXOR, WXORP, DWXOR, DWXORP ....................................... 5-845.10.4 WXNR, WXNRP, DWXNR, DWXNRP ...................................... 5-86 5.11 数据处理指令5-885.11.1 SEG, SEGP ......................................................................................... 5-895.11.2 ASC, ASCP ......................................................................................... 5-925.11.3 BSUM, BSUMP, DBSUM, DBSUMP .......................................... 5-945.11.4 ENCO, ENCOP .................................................................................. 5-975.11.5 DECO, DECOP ................................................................................ 5-1005.11.6 FILR, FILRP, DFILR, DFILRP ....................................................... 5-1025.11.7 FILW, FILWP, DFILW, DFILWP .................................................. 5-1055.11.8 DIS, DISP ......................................................................................... 5-1075.11.9 UNI, UNIP ........................................................................................ 5-1105.11.10 IORF, IORFP .................................................................................... 5-112 5.12 系统指令5-1145.12.1 FALS ................................................................................................... 5-1145.12.2 DUTY ................................................................................................. 5-1155.12.3 WDT, WDTP .................................................................................... 5-1185.12.4 OUTOFF ............................................................................................ 5-1205.12.5 STOP .................................................................................................. 5-121 5.13 跳转指令5-1225.13.1 JMP, JME .......................................................................................... 5-1225.13.2 CALL, CALLP, SBRT, RET ............................................................ 5-124 5.14 循环指令5-1265.14.1 FOR, NEXT ...................................................................................... 5-1275.14.2 BREAK ............................................................................................... 5-128 5.15 标志指令5-1295.15.1 STC, CLC ........................................................................................... 5-1295.15.2 CLE ..................................................................................................... 5-131 5.16 特殊模块指令5-1325.16.1 GET, GETP ........................................................................................ 5-1335.16.2 PUT, PUTP ....................................................................................... 5-135 5.17 数据连接指令5-1375.17.1 READ ................................................................................................. 5-1385.17.2 WRITE ................................................................................................ 5-1415.17.3 RGET .................................................................................................. 5-1435.17.4 RPUT .................................................................................................. 5-1475.17.5 STATUS .............................................................................................. 5-150 5.18 中断指令5-1525.18.1 EI, DI .................................................................................................. 5-1525.18.2 TDINT, IRET ..................................................................................... 5-1535.18.3 INT, IRET .......................................................................................... 5-1555.19 符号反转指令5-1565.19.1 NEG, NEGP, DNEG, DNEGP...................................................... 5-156 5.20 位接触指令5-1595.20.1 BLD, BLDN ....................................................................................... 5-1595.20.2 BAND, BANDN .............................................................................. 5-1605.20.3 BOR, BORN ..................................................................................... 5-1615.20.4 BOUT ................................................................................................. 5-1635.20.5 BSET, BRST ...................................................................................... 5-164 5.21 计算机连接模块指令5-1655.21.1 SND .................................................................................................... 5-1655.21.2 RCV .................................................................................................... 5-166 5.22 高速计数器指令5-1675.22.1 HST ..................................................................................................... 5-1675.22.2 HSC .................................................................................................... 5-170 5.23 RS-485 通讯指令5-1715.23.1 RECV .................................................................................................. 5-1725.23.2 SEND ................................................................................................. 5-1735应用指令5.1.1MOV, MOVP, DMOV, DMOVP1)功能-MOV(P) : 传送在[ S ]中的16位数据至指定的设备[ D ].16 位- DMOV(P) : 传送在指定设备[ S+1, S ]中的32位数据到指定的设备[ D+1, D ].-2) 编程举例在P020检测到一个上升沿,‘h70F3’被传送到P04。
Linux命令高级技巧使用nice和renice命令调整进程优先级在Linux操作系统中,进程的优先级决定了系统对进程的调度顺序。
默认情况下,所有进程都有一个相同的优先级,但是有时候我们需要根据实际情况来调整进程的优先级,以确保系统的性能和稳定性。
在Linux中,可以使用nice和renice命令来实现这个目的。
1. 使用nice命令调整进程优先级nice命令是一种用于设置进程优先级的工具。
它可以在命令行中用于启动一个新进程,也可以用于修改一个正在运行的进程的优先级。
使用nice命令可以将进程的优先级从其默认的0值调整为一个更高或更低的值。
要降低一个进程的优先级,可以使用以下命令:$ nice -n <值> <命令>其中,-n选项用于指定一个新的优先级值。
数值范围为-20至19,数值越小,优先级越高。
例如,要将一个进程的优先级降低为10,可以使用以下命令:$ nice -n 10 <命令>要提高一个进程的优先级,可以使用以下命令:$ nice -n -<值> <命令>例如,要将一个进程的优先级提高为-5,可以使用以下命令:2. 使用renice命令调整正在运行进程的优先级renice命令是一种用于修改正在运行的进程的优先级的工具。
它可以通过进程ID(PID)或进程名来确定要调整的进程,并将其优先级从当前值调整为一个新值。
要使用renice命令调整进程的优先级,可以使用以下命令:$ renice <优先级> -p <进程ID>其中,<优先级>是一个新的优先级值,可以为-20至19的任意整数。
-p选项用于指定要调整优先级的进程的进程ID。
要使用进程名调整进程的优先级,可以使用以下命令:$ renice <优先级> -g <进程名>其中,<优先级>是一个新的优先级值,可以为-20至19的任意整数。
本文档中的信息如有变更,恕不另行通知。
© 2013 Dell Inc. 保留所有权利。
未经Dell Inc.书面同意,严禁以任何方式复制这些资料。
本文档中使用的商标:Dell™和DELL徽标是Dell Inc.的商标;Microsoft®和Windows开始按钮徽标是Microsoft Corporation在美国和/或其他国家(地区)的商标或注册商标。
本文档中使用的其他商标和商业名称是指拥有这些标记和名称的实体或它们的产品。
Dell Inc.对其自身之外的商标和商业名称不拥有任何所有权权益。
2013-05 Rev. A00限制和免责声明本文档中包含的信息,包括所有指导说明、注意事项以及管制认可和认证,由供应商提供,Dell 未独立进行核实或测试。
Dell 对于因遵循或未遵循这些指导说明而导致的损坏不承担责任。
与本文档中所提及部件的属性、能力、速度或限制条件有关的所有陈述或声明,由供应商(而不是Dell)提供。
Dell 特别放弃对此类任何陈述的精确性、完整性或具体性等知识承担责任。
与此类陈述或声明有关的所有疑问或意见,应由供应商负责。
出口规定客户承认这些产品(可能包含技术和软件)受美国海关和出口管理法律和法规的管制,也可能受产品在制造和/或接收时所在国家或地区的海关和出口法律和法规的管制。
客户同意遵守这些法律和法规。
而且,根据美国的法律,产品不得销售、租赁或以其它方式转让给受限制的最终用户或受限制的国家或地区。
此外,产品不得销售、租赁或以其它方式转让给从事大规模杀伤性武器活动的最终用户供他们使用,这些活动包括但不限于与核武器、核原料、核工厂或核导弹的设计、研制、生产或使用有关的活动以及支持导弹工程和化学或生物武器的活动。
目录简介制造商型号和编号光驱说明光驱的特殊功能系统要求包装箱物品产品特性和设置产品特性设置您的Dell DW514外置DVD±RW吸入式光驱清洁光盘清洁光驱故障排除故障现象和解决办法规格制造商和型号支持的功能扩展规格管制声明简介制造商型号和编号Dell DW514外置DVD±RW吸入式光驱光驱说明Dell DW514外置DVD±RW吸入式光驱可以读写CD和DVD介质。
毕业设计说明书基于ARM的嵌入式数字图像处理系统设计学生姓名:张占龙学号: 0905034314学院:信息与通信工程学院专业:测控技术与仪器指导教师:张志杰2013年 6月摘要简述了数字图像处理的应用以及一些基本原理。
使用S3C2440处理器芯片,linux内核来构建一个简易的嵌入式图像处理系统。
该系统使用u-boot作为启动引导程序来引导linux内核以及加载跟文件系统,其中linux内核与跟文件系统均采用菜单配置方式来进行相应配置。
应用界面使用QT制作,系统主要实现了一些简单的图像处理功能,比如灰度话、增强、边缘检测等。
整个程序是基于C++编写的,因此有些图像变换的算法可能并不是最优化的,但基本可以满足要求。
在此基础上还会对系统进行不断地完善。
关键词:linnux 嵌入式图像处理边缘检测AbstractThis paper expounds the application of digital image processing and some basic principles. The use of S3C2440 processor chip, the Linux kernel to construct a simple embedded image processing system. The system uses u-boot as the bootloader to boot the Linux kernel and loaded with file system, Linux kernel and file system are used to menu configuration to make corresponding configuration. The application interface is made using QT, system is mainly to achieve some simple image processing functions, such as gray, enhancement, edge detection. The whole procedure is prepared based on the C++, so some image transform algorithm may not be optimal, but it can meet the basic requirements. On this basis, but also on the system constantly improve.Keywords:linux embedded system image processing edge detection目录第一章绪论 (1)1.1 数字图像处理概述 (1)1.2 数字图像处理现状分析 (5)1.3 本文章节简介 (8)第二章图像处理理论 (8)2.1 图像信息的基本知识 (8)2.1.1 视觉研究与图像处理的关系 (8)2.1.2 图像数字化 (10)2.1.3 图像的噪声分析 (10)2.1.4 图像质量评价 (11)2.1.5 彩色图像基本知识 (11)2.2 图像变换 (13)2.2.1 离散傅里叶变换 (13)2.2.2 离散沃尔什-哈达玛变换(DWT-DHT) (20)2.2.3 离散余弦变换(DCT) (21)2.2.4 离散图像变换的一般表达式 (23)2.3 图像压缩编码 (24)2.3.1 图像编码的基本概念 (24)2.4 图像增强和复原 (24)2.4.1 灰度变换 (24)2.4.2 图像的同态增晰 (26)2.4.3 图像的锐化 (27)2.5 图像分割 (27)2.5.1 简单边缘检测算子 (27)2.6 图像描述和图像识别 (28)第三章需求分析 (28)3.1 系统需求分析 (28)3.2 可行性分析 (28)3.3 系统功能分析 (29)第四章概要设计 (29)4.1 图像采集 (30)4.2 图像存储 (31)4.3 图像处理(image processing) (31)4.4 图像显示 (32)4.5 网络通讯 (32)第五章详细设计 (32)5.1 Linux嵌入式系统的构建 (33)5.1.1 启动引导程序的移植 (33)5.1.2 Linux内核移植 (33)5.1.3 根文件系统的移植 (34)5.2 图像处理功能的实现 (34)5.2.1 彩色图像的灰度化 (34)5.2.2 灰度图的直方图均衡化增强 (35)5.2.3 图像二值化 (35)5.2.4 边缘检测 (36)第六章调试与维护 (36)附录 A (37)参考文献 (43)致谢 (44)第一章绪论1.1 数字图像处理概述数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
linux c语言 setpriority方法在Linux系统中,进程的优先级是一个重要的资源调度策略,它决定了系统在面对多个同时运行的进程时,优先处理哪个进程。
通过调整进程的优先级,可以影响系统资源的分配,从而实现不同的系统行为。
在C语言中,可以使用setpriority()函数来设置进程的优先级。
一、setpriority()函数简介setpriority()函数是Linux系统中用于设置进程优先级的函数,它接受三个参数:pid、policy和prio。
pid表示要设置优先级的进程ID,policy指定了优先级的策略,prio是进程的优先级值。
setpriority()函数的作用是将指定进程的优先级设置为指定的值。
二、setpriority()函数的参数说明1.pid:要设置优先级的进程ID。
可以是进程的PID(进程号)或进程组ID (表示一组相似进程的标识符)。
2.policy:指定了优先级的策略,有PRIO_PROCESS(单个进程优先级)、PRIO_IO_HIGHEST(I/O高优先级)、PRIO_IO_RISKY(I/O风险高的优先级)、PRIO_CLASSIC(经典优先级)、PRIO_PROCESS_ANNOTATION(任务注解中的任务等级)和PRIO_PROCESS_RR(轮询式负载均衡的进程优先级)。
其中,常用的策略是PRIO_PROCESS。
3.prio:进程的优先级值,范围从-20到20,数值越大表示优先级越高。
三、setpriority()函数的调用方式setpriority()函数的调用方式很简单,只需要将pid、policy和prio作为参数传递给该函数即可。
例如:```cpid_tpid=getpid();//获取当前进程IDintpolicy=PRIO_PROCESS;//设置策略为单个进程优先级intprio=5;//设置进程优先级为5setpriority(PRIO_PROCESS,pid,policy);//设置当前进程的优先级```四、setpriority()函数的应用场景setpriority()函数在以下场景中非常有用:1.高优先级任务调度:当需要紧急处理某个任务时,可以通过设置该任务的优先级来确保它能够得到及时处理。
linux cp copy失败的后返回的值-回复Linux cp copy命令是用来复制文件或目录的常用命令。
然而,有时候我们会遇到copy失败的情况,此时命令会返回一个特定的值,以表示复制过程中发生了什么错误。
本篇文章将分步回答有关copy失败后返回的值的问题,并深入探讨每个返回值代表的含义。
第一部分:理解cp命令返回值在Linux中,大部分命令都会返回一个称为"退出状态码"的值,它代表了命令的执行结果。
对于cp命令而言,以下是它可能返回的一些常见退出状态码:1. 0(成功):代表复制过程顺利完成。
2. 1(失败):代表发生了未知错误,导致复制失败。
3. 2(参数错误):代表输入的参数格式不正确,例如路径错误或不存在的源文件。
4. 3(文件权限错误):代表您没有足够的权限复制文件。
5. 4(文件打开错误):代表系统无法打开源文件。
6. 5(目录错误):代表目标目录不存在或无法访问。
第二部分:解读每个返回值的含义现在,我们将对每个返回值进行详细解释,并讨论可能导致这些错误的原因。
1. 0(成功):这是最理想的结果,代表复制成功完成。
如果您收到这个返回值,那么复制过程就顺利完成了。
2. 1(失败):这个返回值代表着某些未知的错误发生了,导致复制失败。
这可能是由于磁盘空间不足、文件系统错误或其他不可预知的问题导致的。
在这种情况下,您可能需要检查文件系统状态、查看系统日志或尝试使用不同的复制方法来解决问题。
3. 2(参数错误):如果您输入的源文件路径或目标路径有误,或者要复制的文件不存在,那么cp命令会返回2。
请确保正确指定了源文件和目标路径,并且它们都是存在的,以避免这种错误。
4. 3(文件权限错误):如果当前用户没有足够的权限复制文件,那么cp 命令会返回3。
在这种情况下,您可以尝试使用sudo命令以超级用户权限执行复制操作,或者联系系统管理员以获取所需的权限。
5. 4(文件打开错误):这个返回值表示cp命令无法打开源文件,可能是因为文件被其他进程锁住或者被损坏。
Resistance of Arabidopsis cpr5 mutants to photooxidationinduced by H2O2HUANG Hong-Ying1,2, SHU Zhan1, PENG Chang-Lian1*1) Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou 510631,China; 2) Department of Chemistry and Life science, Xiangnan College,Chenzhou,Hunan, 423000,ChinaAbstract: Chlorophyll fluorescence imaging and antioxidative capability in detached leaf discs of Arabidopsis cpr5 mutant and its wild type (Col) were investigated under photooxidation induced by exogenous H2O2. In comparison with wild type (WT) plant, photooxidation resulted in smaller decreases in fluorescence parameters (Fv/Fm,фPSⅡ,qP and NPQ) and the activities of SOD and APX, and an increase in cell membrane leakage rate in leaves of cpr5 mutant. After treatment for 240 min, фPSⅡin leaves of cpr5 mutant remained 0.13, but nearly zero in WT. The sequence of sensitivity to photooxidation in leaves of two phenotypes were cpr5>WT. The results indicated that cpr5 mutant exhibited higher antioxidative capability and more stable PSII than that in WT under photooxidative stress induced by exogenous H2O2.Key words:Arabidopsis; cpr5mutant; photooxidation; chlorophyll fluorescence imaging; antioxidative capacity.CPR5 gene is involved in several processes including signal transduction, cell proliferation , cell death and pathogendefence responses. CPR5 gene plays a repressive role in early processes for the induction of general pathogendefence responses (Yoshida et al., 2002).CPR5gene encodes a novel putative transmembrane protein containing five (pathogenesis-related genes) putative transmembrane helices at the C terminus. CPR5is predicted to be a Type IIIa membrane protein, with the N-terminus being cytoplasmatic (PSORT). In addition, a nuclear localization signal (NLS) is found at the N-terminus at position 40-56 (PSORT) (Kirik et al., 2001). Mutations in cpr5 have pleiotropic effects on the regulations of cell death, cell elongation, and trichome development (Kirik et al., 2001; Yoshida et al., 2002).The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). SAR is a plant defense response that occurs after infection by an avirulent or other necrotizing pathogen and results in a long-lasting, nonspecific, systemic resistance to subsequent pathogen infection(Ross, 1961; Kuc, 1982). The cpr5 rnutation is significantly smaller than the wild type. The cpr5rnutation plants leaves were also found to the formation of spontaneous chlorotic lesions and a reduction in both trichome number and development, whereas wild-type leaves show no significant change(Bowling ,et al.1997). It is also found that a cpr5 mutant has spontaneous pathogendefence responses and constitutively expressesSAR,such as accumulation of reactive oxygen species, expression of PR-1 genes (pathogenesis-related gene 1) and elevated levels of SA, which might be the potential inducers of senescence. (Boch et al., 1998; Bowling et al., 1997). Although leaf senescence and pathogen-defence responses are functionally mutually unrelated, both processes include common physiological events, such as increased levels of ethylene and salicylic acid (SA) (John et al., 1995; Morris et al., 2000; Ryals et al., 1996); accumulation of H2O2 (Levine et al., 1994; Pastori and RõÂo, 1997); and accumulation of transcripts from pathogenesis-related (PR) genes (Butt et al., 1998; Hanfrey et al., 1996; Pontier et al., 1999; Quirino et al., 1999; Quirino et al., 2000; Yoshida et al., 2001). Therefore, a cross-talk might exist between signaling pathways of leaf senescence and pathogen-defence responses.The influence of salicylic acid (SA) on plant growth, short-term acclimation to high light (HL), and on the redox homeostasis of Arabidopsis thaliana leaves have been reported recently (Mateo,et al.2006). However, little is known about the response of cpr5 mutant and it’s wild type to photooxidation induced by exogenous H2O2.In this study, effects of photooxidation induced by exogenous H2O2on leaves of cpr5 mutant and its wild type (WT) were investigated. The measurement of corresponding fluorescence parameters was carried out with an IMAGING-PAM chlorophyll fluorometer (M- series, Walz, Germany). Seeds of Arabidopsis thaliana, ecotype Columbia (Col) and cpr5 mutant were obtained from the Arabidopsis Biological Resource Center in America. The detached leaf discs (diameter: 5mm) were soaked in a solution of 100 mmol ·L-1H2O2(with 0.01%TritonX-100). The treatment was conducted in the growth chamber with the temperature of 25 ℃, a light intensity of 90 μmol·m-2·s-1,and a relative humidity of 80 %.Chlorophyll fluorescence parameters (Fv/Fm,фPSⅡ,qP and NPQ) were measured and their images were obtained simultaneously. Fv/Fm in leaves of Arabidopsis declined persistently during photooxidative treatment (Fig 1A). Within 0~360 min of treatment, Fv/Fm in leaves of WT decreased at a rate of 0.1006/min, but only 0.046/min in cpr5 mutant. Clearly, the relatively rapid decrease of photochemical efficiency of PSII in WT revealed that cpr5 mutant had higher tolerance to oxidative stress than the WT plant. In addition, images of Fv/Fm in leaves of WT and cpr5 mutant exhibited heterogeneity when they were exposed to photooxidation(Fig 1C). During 360-min treatment of photooxidation, images of Fv/Fm in WT faded gradually from blue (0.8) to red with partial orange (0.1~0.2), which indicated that the quantum efficiency of light energy transfer in PSII was close to 0.1. However, images of Fv/Fm in leaves of cpr5 mutant still retained blue color with partial green, revealing PSII in leaves of cpr5 mutant was more stable;фPSⅡcan reflect the actual efficiency of light energy capture under the close of partial reaction centers in PSII (Krall and Edward,1992). The changing tendency of фPSⅡunder photooxidation induced by H2O2 in leaves of two phenotypes of arabidopsis was different. фPSⅡin leaves of WT declined persistently during 360 min of treatment. However, фPSⅡin leaves of cpr5 mutant increased slowly in the early 30 min of treatment, then decreased sharply. Correspondingly imaging color of фPSⅡalso faded from green (0.35) to red (0.1) at 180 min in WT and at 360 min in cpr5 (Fig. 1B). The rapid decease in фPSⅡindcated that PSII was damaged severely byoxidative stress. Changes in these two chlorophyll fluorescence parameters (Fv/Fm andфPSⅡ) and their images(Fig. 1C,D) revealed that WT was damaged more severely than cpr5 mutant. The latter still retained higher inversion efficiency of light energy and PSII activity at the end of photoxidation treatment.qP (coefficient of photochemical quenching) is indicative of the proportion of open reaction centers in PSII (Genty et al., 1989.). The changing tendency of qP was compatible with that of ф(Fig 1B). As shown in Fig 2A, qP in leaves of WT decreased continuously under PSⅡphotooxidation, indicating that the proportions of open reaction centers in PSII and electrons involved in CO2fixation were decreased. However, qP in leaves of cpr5 mutant was increased slightly in the frist 30-min treatment, then decreased persistently. During 360 min of photooxidative treatment, the capacities of photochemical quenching of PSII in leaves of Arabidopsis exhibited the sequence cpr5>WT (P<0.01). Change of imaging color was consistant with the numerical change of qP (Fig 2A).NPQ (non-photochemical quenching) is an effective index to reflect the dissipation capability of heat energy in plants (Hartel and Lokstein, 1995). A interested phenomenon was observed during 360 min of photooxidative treatment. The fluorescence imaging of NPQ appeared with three phases : rapid fall (0~60 min) →slight fluctuation (60~90 min) →slow fall (90~360 min) (Fig 2B). The drastic decrease in NPQ indicated the lose of capability to dissipate heat energy and the photo-protective potentials of both phenotypes induced by H2O2 in the light. As outline in qP and NPQ, a conclusion was obtained that the sensitivity of PSII to photooxidation was present by wt >cpr5 (qP: P<0.01;NPQ: P<0.05 Membrane permeability is a relevant index that reflects the degree of impaired membrane function. The higher the membrane permeability rate is, the more severe the cell membrane is damaged. Fig 3A showed changes in cell membrane permeability rates in leaves of Arabidopsis under phtotooxidation. After exogenous H2O2-induced photooxidative treatment for 6h, membrane permeability rates were increased noticeably, which suggested that their plasma membranes had been damaged. Increasing magnitude in cpr5 mutant was significantly different from that of WT(P<0.01. By 360-min treatment, plasma membrane permeability rates of leaf cells in two phenotypes of arabidopsis were increased to 2.85 times (WT)and 2.03 times (cpr5) of that before treatment, respectively. Then activities of two antioxidative enzymes, SOD(Giannopolitis andRies , 1977)and APX(Shen et al., 1996)were determined in leaves of two phenotypes. Before photooxidation treatment, the activity of SOD exhibited little difference between cpr5 and WT, whereas activity of APX is higher in cpr5 than in WT. However, the activities of SOD and APX decreased more significantly in WT than that in crp after 360 min photooxidation treatment5 (Fig 3B and 3C). It is thus evident that cpr5 mutant possessed higher antioxidative ability and more stable cell membrane system than the WT under oxidative states condition. This is in accordance with the observation of fluorescence parameters.Production of excessive reactive oxygen species (ROS) causes severe oxidative stress in chloroplasts and leaf cells, finally induces photooxidative injury. In the present study,photooxidation induced by exogenous H2O2resulted in the increase of electrolytes leakage rate and the decrease of chlorophyll fluorescence parameter (Fv/Fm, фPSⅡ, qP, and NPQ) in leaves of cpr5 mutant and WT, which suggested that photosynthetic apparatus had been obviously damaged. Salicylic acid (SA) was accumulated in cpr5 mutant (John et al., 1995; Morris et al., 2000; Ryals et al., 1996). The activities of antioxdative enzymes could be enhanced by SA treatment. Rao et al (1997) reported that SA treatments increased activity of Cu, Zn-SOD but inactivated catalase (CAT) and APX. The activities of both SOD and APX increased whereas CAT activity decreased under SA treatment in grape seedling (Wang et al 2003). Our results showed that the activity of APX significantly increased in cpr5 and there is no difference in activity of SOD between WT and cpr5 (Fig 3). We proposed that the accumulation of SA possibly induced the increment of APX activity in cpr5. APX is the main enzyme located at chloroplast to degrade H2O2. This is a possible reason that cpr5 exhibited higher tolerance to photooxidation induced by H2O2 than WT. On the other hand, SA treatment could induce the resistance of plants to environmental stresses by increment the content of antioxidative substance such as GSH (Mateo et al 2006), AsA (Shi et al 2004), and polyphenolic compound(Cevahir et al 2005). So we presumed that the content of antioxidative substance possibly increased in cpr5 mutant due to its accumulation of SA. These antioxidative substance can eliminate ROS to protect PSII against photooxidation induced by H2O2. This may be another reason for cpr5 mutant in possession of higher tolerance to photooxidation.In a word, it was very clear that in comparison with WT, PSII in leaves of cpr5 mutant was more stable under photooxidative stress induced by exogenous H2O2, and cpr5 mutant exhibited higher antioxidative capability. However, further deep investigations are still required to understand its specific mechanisms of action and principles.ReferrncesBoch, J., Verbsky, M.L., Robertson, T.L., Larkin, J.C., Kunkel, B.N.: Analysis of resistance gene-mediated defence responses in Arabidopsis thaliana plants carrying a mutation in cpr5.–Mol. Plant-Microbe Interact. 11: 1196-1206, 1998.Bowling, S.A., Clarke, J.D., Liu, Y., Klessig, D.F., Dong, X.:The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistanc.–Plant Cell 9:1573-1584, 1997.Butt, A., Mousley, C., Morris, K., Beynon, J., Can, C., Holub, E.,Greenberg, J.T., Buchanan-Wollaston, V.: Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae.–Plant J. 16:209-221, 1998.Cevahir G. Yentur S. Aytamka E. Eryilmaz F. Yilmazer N. The effect of nitric oxide, salicylic acid and hydrogen peroxide on the pigment content in excised cotyledons of red cabbage(Brassica oleraceae L.). Fresenius Environmental Bulletin, 2005 14(7):591-598.Genty, B., Briantais, J.M., Baker, N. R.: The relationship between the quantum yield of photosynthetic electron transport and photochemical quenching of chlorophyll fluorescence –Biochim. Biophys. Acta. 900 :87~92,1989.Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase I. Occurrence in higher plants.–Plant Physiol.59: 309-314, 1977.Hanfrey, C., Fife, M., Buchanan-Wollaston, V.: Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins.–Plant Mol. Biol. 30: 597-609, 1996.Hartel, H., Lokstein, H.: Relationship between quenching of maximum and dark-level chlorophyll fluorescence in vivo: dependence on photosystem II antenna size.–Biochim Biophys Acta.1228:91-94, 1995.John, I., Drake, R., Farrell, A., Cooper, W., Lee, P., Horton, P., Grierson, D.: Delayed leafsenescence in ethylenedeficient ACC-oxidase antisense tomato plants: molecular and physiological analysis.–Plant J. 7: 483-490, 1995.Kirik, V., Bouyer, D., Schöbinger, U., Bechtold, N., Herzog, M.,Bonneville, J.M., Hülskamp, M.: CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein.–Current Biol. 11:1891-1895, 2001.Krall, J.P., Edward, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.– Physiol Plant, 86:180-187, 1992.Kuc, J.: lnduced immunity to plant disease.– BioScience, 32:854-860, 1982.Levine, A., Tenhaken, R., Dixon, R.,Lamb, C.: H2O2from the oxidative burst orchestrates the plant hypersensitive disease resistance response.–Cell, 79: 583-593, 1994.Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux,P. M., Karpinski, S.:Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. –Experimental Botany J., 57: 1795-1807, 2006.Morris, K., A-H-Mackerness, S., Page, T., John, C.F., Murphy, A.M., Carr, J.P.,Buchanan-Wollaston, V. Salicylic acid has a role in regulating gene expression during leaf senescence. –Plant J. 23: 677-685, 2000.Pastori, G.M.., RõÂo, L.A.: Natural senescence of pea leaves.–Plant Physiol. 113: 411-418, 1997.Pontier, D., Gan, S., Amasino, R.M., Roby, D., Lam, E.: Markers for hypersensitive response andsenescence show distinct patterns of expression.–Plant Mol. Biol. 39:1243-1255, 1999.Quirino, B.F., Normanly, J., Amasino, R.M.: Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. –Plant Mol.Biol. 40:267-278, 1999.Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M.: Molecular aspects of leaf senescence. –Trends Plant Sci. 5:278-282, 2000.Rao M V., Paliyath G, Ormrod D P, Murr D P, Watkins C B. lnfluence of salicylic acid on H202 production, oxidative stress, and H2O2-metabolizing enzymes: Salicylic acid-mediatedoxidative damage requires H202. Plant Physiology, 1997, 115: 137-1 49Ross, A.F.: Systemic acquired resistance induced by localized virus infections in plants. –Virology 14: 340-358, 1961.Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., Hunt, M.D.: Systemic acquired resistance . –Plant Cell 8:1809-1819, 1996.Shen, W.B., Xu, L.L., Ye, M.B.:Study on determination of ASP Activity.–Plant Physiol Commun .32:203-205, 1996(in Chinese).Shi Q H, Zhu Z J, Xu M, Qian Q Q. Effects of exogenous salicylic acid on activities of some enzymes and antioxidants in cucumber leaves. Acta Horticulturae Sinica, 2004 , 31 (5) : 666~667Wang L J , Huang W D Zhan J C. Thermotolerance related to antioxidation induced by SA and heat acclimation in Grape Seedlings. Acta Horticulturae Sinica, 2003 , 30 (4) : 452~454Yoshida, S., Ito, M., Nishida, I., Watanabe, A.: Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana.–Plant J. 29:427-437, 2002.Yoshida, S., Ito, M., Nishida, I., Watanabe, A.: Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana.–Plant Cell Physiol. 42: 170-178, 2001.Fig. 1 Effects of photooxidation on Fv/Fm (A) and ΦPSⅡ(B); fluorescence images on Fv/Fm (C) and ΦPSⅡ(D) in leaves of two Arabidopsis phenotypes.Fluorescence images was indicated by color code ranging from black via red, orange, yellow, green, blue and violet to purple, and these colors code for Numbers between 0 and 1; the belowimages are the sameon qP (C) and NPQ (D) in leaves of two Arabidopsis phenotypesFig.3 Changes of cell membrane leakage rate, SOD and APX activity in leaves of two Arabidopsis phenotypes。