Halcon中模板匹配方法的总结归纳
- 格式:docx
- 大小:12.60 KB
- 文档页数:2
HALCON形状匹配总结Halcon有三种模板匹配方法:即Component-Based、Gray-Value-Based、Shaped_based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类本文只对形状匹配做简要说明和补充:Shape_Based匹配方法:上图介绍的是形状匹配做法的一般流程及模板制作的两种方法。
先要补充点知识:形状匹配常见的有四种情况一般形状匹配模板shape_model、线性变形匹配模板planar_deformable_model、局部可变形模板local_deformable_model、和比例缩放模板Scale_model第一种是不支持投影变形的模板匹配,但是速度是最高的,第二种和第四种是支持投影变形的匹配,第三种则是支持局部变形的匹配。
一般形状匹配模板是最常用的,模板的形状和大小一经制作完毕便不再改变,在查找模板的过程中,只会改变模板的方向和位置等来匹配目标图像中的图像。
这个方法查找速度很快,但是当目标图像中与模板对应的图像存在比例放大缩小或是投影变形如倾斜等,均会影响查找结果。
涉及到的算子通常为create_shape_model 和find_shape_model线性变形匹配模板planar_deformable_model是指模板在行列方向上可以进行适当的缩放。
行列方向上可以分别独立的进行一个适当的缩放变形来匹配。
主要参数有行列方向查找缩放比例、图像金字塔、行列方向匹配分数(指可接受的匹配分数,大于这个值就接受,小于它就舍弃)、设置超找的角度、已经超找结果后得到的位置和匹配分数线性变形匹配又分为两种:带标定的可变形模板匹配和不带标定的可变形模板匹配。
涉及到的算子有:不带标定的模板:创建和查找模板算子create_planar_uncalib_deformable_model和find_planar_uncalib_deformable_model带标定模板的匹配:先读入摄像机内参和外参read_cam_par 和read_pose 创建和查找模板算子create_planar_calib_deformable_model和find_planar_calib_deformable_model局部变形模板是指在一张图上查找模板的时候,可以改变模板的尺寸,来查找图像上具有局部变形的模板。
在HALCON中,模板匹配是一种常见的方法,用于在一幅图像中查找与给定模板最匹配的区域。
这种方法可以用于目标检测、图像分割、模式识别等应用。
在HALCON中,模板匹配主要通过使用`find_template`函数来实现。
该函数用于在一幅图像中查找与给定模板最匹配的区域,并返回匹配区域的坐标、大小和旋转角度等参数。
在使用`find_template`函数进行模板匹配时,需要提供以下参数:
1. 输入图像:要进行匹配的图像。
2. 模板图像:用于匹配的模板图像。
3. 搜索区域:在输入图像中搜索模板的区域,通常可以指定一个矩形区域或者整个图像。
4. 匹配参数:用于控制匹配算法的参数,例如相似性度量、搜索策略等。
在HALCON中,还可以使用`create_template`函数来创建模板图像,以便后续使用。
该函数可以根据给定的图像和参数来生成模板,并返回模板的句柄。
此外,为了提高匹配的准确性和效率,还可以使用一些优化技术,
例如使用多级金字塔、使用滤波器进行预处理、使用约束条件等。
总之,HALCON中的模板匹配是一种强大的工具,可以用于各种图像处理任务。
通过正确地选择和使用匹配算法和参数,可以获得准确和高效的匹配结果。
文章主题:Halcon基于边缘的模板匹配算法探析一、引言在机器视觉领域,模板匹配是一种常用的图像处理方法,用于在一幅图像中寻找特定的模式或对象。
而Halcon作为一款智能视觉软件库,其基于边缘的模板匹配算法备受关注。
本文将就Halcon基于边缘的模板匹配算法进行深入探讨,以帮助读者更全面地理解这一主题。
二、Halcon基于边缘的模板匹配算法概述Halcon基于边缘的模板匹配算法是一种高级的模式识别技术,它通过检测图像中的边缘信息,并利用这些边缘特征进行模式匹配。
该算法主要包括边缘提取、模板生成和匹配验证三个步骤。
1. 边缘提取在Halcon中,边缘提取是通过边缘检测滤波器进行的。
常用的边缘检测算子包括Sobel、Prewitt和Canny等。
通过这些算子可以将图像中的边缘特征提取出来,形成边缘模型。
2. 模板生成在模板生成阶段,Halcon会通过提取的边缘信息来生成待匹配的模板。
模板的生成需要考虑到图像的尺度、旋转、光照等因素,以保证模板的鲁棒性和准确性。
3. 匹配验证匹配验证是模板匹配算法的核心步骤,Halcon基于边缘的模板匹配算法通过对图像进行模板匹配,并对匹配结果进行验证和优化,以确保匹配的准确性和稳定性。
三、Halcon基于边缘的模板匹配算法的特点相比于传统的模板匹配算法,Halcon基于边缘的模板匹配算法具有以下几点突出特点:1. 鲁棒性强由于边缘特征包含了物体的轮廓和形状等重要信息,因此Halcon基于边缘的模板匹配算法对光照、变形等因素的鲁棒性较强,能够更准确地匹配目标对象。
2. 适用性广Halcon基于边缘的模板匹配算法不受物体颜色、纹理等因素的影响,因此适用于各种场景和对象的匹配识别,具有较强的通用性和适用性。
3. 计算速度快由于边缘特征的提取和匹配计算相对简单,Halcon基于边缘的模板匹配算法在计算速度上具有一定的优势,能够实现实时性要求较高的应用场景。
四、个人观点与总结在我看来,Halcon基于边缘的模板匹配算法在实际应用中具有广泛的前景。
基于HALCON的模板匹配方法总结分类:halcon学习2013-06-26 16:02 47人阅读评论(0) 收藏举报halcon形状匹配算法德国MVTec公司开发的HALCON机器视觉开发软件,提供了许多的功能,在这里我主要学习和研究了其中的形状匹配的算法和流程。
HDevelop开发环境中提供的匹配的方法主要有三种,即Component-Based、Gray-Value-Based、Shape-Based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配。
这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模板的相同过程。
这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于形状匹配的视频对象跟踪这些研究,从中取得较好的效果,简化了用其他工具,比如VC++来开发的过程。
在VC下往往针对不同的图像格式,就会弄的很头疼,更不用说编写图像特征提取、模板建立和搜寻模板的代码呢,我想其中间过程会很复杂,效果也不一定会显著。
下面我就具体地谈谈基于HALCON的形状匹配算法的研究和心得总结。
1. Shape-Based matching的基本流程HALCON提供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。
基本流程是这样的,如下所示:⑴首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即可,gen_rectangle1()这个函数就会帮助你生成一个矩形,利用area_center()找到这个矩形的中心;⑵然后需要从图像中获取这个矩形区域的图像,reduce_domain()会得到这个ROI;这之后就可以对这个矩形建立模板,而在建立模板之前,可以先对这个区域进行一些处理,方便以后的建模,比如阈值分割,数学形态学的一些处理等等;⑶接下来就可以利用create_shape_model()来创建模板了,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。
halcon 模板匹配结果按列排序算子
在HALCON中,可以使用算子`affine_trans_contour_xld`对模板匹配结果进行按列排序。
该算子的函数原型为`affine_trans_contour_xld(Contours : ContoursAffineTrans : HomMat2D : )`,其中`Contours`为输入的XLD轮廓,`ContoursAffineTrans`为转换后的XLD轮廓,`HomMat2D`为输入的转换矩阵。
仿射变换由`HomMat2D`中给出的齐次变换矩阵来描述,该矩阵可以使用`hom_mat2d_identity`、`hom_mat2d_scale`、`hom_mat2d_rotate`、`hom_mat2d_translate`等运算符创建,也可以是`vector_angle_to_rigid`等运算符的结果。
齐次变换矩阵的组成部分解释如下:图像的行坐标对应于定义变换矩阵的坐标系的x,列坐标对应于定义变换矩阵的坐标系的y。
这对于获得图像的右手坐标系是必要的。
特别是,这样可以确保在正确的方向上执行旋转。
注意,矩阵的(x,y)顺序与图像中坐标的通常(行、列)顺序相对应。
通过使用`affine_trans_contour_xld`算子,可以将任意仿射2D变换(如缩放、旋转、平移和倾斜)应用于轮廓中给定的XLD轮廓,并返回变换后的轮廓。
这样,就可以根据需要对模板匹配结果进行按列排序。
halcon——缺陷检测常⽤⽅法总结(模板匹配(定位)+差分)引⾔机器视觉中缺陷检测分为⼀下⼏种:blob分析+特征模板匹配(定位)+差分光度⽴体:特征训练测量拟合频域+空间域结合:深度学习本篇主要总结⼀下缺陷检测中的定位+差分的⽅法。
即⽤形状匹配,局部变形匹配去定位然后⽤差异模型去检测缺陷。
模板匹配(定位)+差分整体思路(形状匹配):1. 先定位模板区域后,求得模板区域的坐标,创建物品的形状模板create_shape_model,注意把模板的旋转⾓度改为rad(0)和rad(360)。
2. 匹配模板find_shape_model时,由于物品的缺陷使形状有局部的改变,所以要把MinScore设置⼩⼀点,否则匹配不到模板。
并求得匹配项的坐标。
3. 关键的⼀步,将模板区域仿射变换到匹配成功的区域。
由于差集运算是在相同的区域内作⽤的,所以必须把模板区域转换到匹配项的区域。
4. 之后求差集,根据差集部分的⾯积判断该物品是否有缺陷。
模板匹配(定位)+差分的⽅法主要⽤来检测物品损坏,凸起,破洞,缺失,以及质量检测等。
halcon例程分析:1,印刷质量缺陷检测(print_check.hdev)该例程⽤到了差异模型,将⼀个或多个图像同⼀个理想图像做对⽐,去找到明显的不同。
进⽽鉴定出有缺陷的物体。
差异模型的优势是可以直接通过它们的灰度值做⽐较,并且通过差异图像,⽐较可以被空间地加权。
变化模型检测缺陷的整体思路:1. create_variation_model —— 创建⼀个差异模型2. get_variation_model —— 获得差异模型3. train_variation_model —— 训练差异模型4. prepare_variation_model —— 准备差异模型5. compare_variation_model —— ⽐较模型与实例6. clear_variation_model —— 清除差异模型dev_update_off ()* 选择第1张图像创建形状模板read_image (Image, 'pen/pen-01')get_image_size (Image, Width, Height)dev_close_window ()dev_open_window (0, 0, Width, Height, 'black', WindowHandle)set_display_font (WindowHandle, 16, 'mono', 'true', 'false')dev_set_color ('red')dev_display (Image)* 把我感兴趣的区域抠出来,原则上范围越⼩越好,因为这样创建模板时⼲扰会少很多threshold (Image, Region, 100, 255)fill_up (Region, RegionFillUp)difference (RegionFillUp, Region, RegionDifference)shape_trans (RegionDifference, RegionTrans, 'convex')dilation_circle (RegionTrans, RegionDilation, 8.5)reduce_domain (Image, RegionDilation, ImageReduced)inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 1, 20)gen_contours_skeleton_xld (ModelRegions, Model, 1, 'filter')* 获得抠图区域的中⼼,这是参考点area_center (RegionDilation, Area, RowRef, ColumnRef)* 创建形状模板create_shape_model (ImageReduced, 5, rad(-10), rad(20), 'auto', 'none', 'use_polarity', 20, 10, ShapeModelID)* 创建变化模型(⽤于和缺陷⽐较)create_variation_model (Width, Height, 'byte', 'standard', VariationModelID)* ⽂件夹中前15张图⽚是质量良好的,可以⽤来训练模板for I := 1 to 15 by 1read_image (Image, 'pen/pen-' + I$'02d')* 先寻找模板的实例find_shape_model (Image, ShapeModelID, rad(-10), rad(20), 0.5, 1, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score)if (|Score| == 1)if (|Score| == 1)* 使⽤仿射变换,将当前图像平移旋转到与模板图像重合,注意是当前图像转向模板图像vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0, HomMat2D)affine_trans_image (Image, ImageTrans, HomMat2D, 'constant', 'false')* 训练差异模型train_variation_model (ImageTrans, VariationModelID)dev_display (ImageTrans)dev_display (Model)endifendfor* 获得差异模型get_variation_model (MeanImage, VarImage, VariationModelID)* 做检测之前可以先⽤下⾯这个算⼦对可变模型进⾏设参,这是⼀个经验值,需要调试者调整prepare_variation_model (VariationModelID, 20, 3)dev_set_draw ('margin')NumImages := 30* 可变模板训练完成后,我们终于可以进⼊主题,马上对所有图像进⾏缺陷检测,思想就是差分for I := 1 to 30 by 1read_image (Image, 'pen/pen-' + I$'02d')* 要注意做差分的两幅图像分辨率相同,当然也需要通过仿射变换把待检测的图像转到与模板图像重合* 先寻找模板的实例find_shape_model (Image, ShapeModelID, rad(-10), rad(20), 0.5, 1, 0.5, 'least_squares', 0, 0.9, Row, Column, Angle, Score) if (|Score| == 1)* 使⽤仿射变换,将当前图像平移旋转到与模板图像重合,注意是当前图像转向模板图像vector_angle_to_rigid (Row, Column, Angle, RowRef, ColumnRef, 0, HomMat2D)affine_trans_image (Image, ImageTrans, HomMat2D, 'constant', 'false')* 抠图reduce_domain (ImageTrans, RegionDilation, ImageReduced)* 差分(就是检查两幅图像相减,剩下的区域就是不同的地⽅了,与模板图像不同的地⽅就是缺陷)*这⾥可不能⽤difference做差分啊,halcon为变形模板提供了专门的差分算⼦:compare_variation_modelcompare_variation_model (ImageReduced, RegionDiff, VariationModelID)connection (RegionDiff, ConnectedRegions)* 特征选择:⽤⼀些特征来判断这幅图像印刷是否有缺陷,这⾥使⽤⾯积* 其实可以考虑利⽤区域⾯积的⼤⼩来判断缺陷的严重程度,这⾥就不过多讨论了select_shape (ConnectedRegions, RegionsError, 'area', 'and', 20, 1000000)count_obj (RegionsError, NumError)dev_clear_window ()dev_display (ImageTrans)dev_set_color ('red')dev_display (RegionsError)set_tposition (WindowHandle, 20, 20)if (NumError == 0)dev_set_color ('green')write_string (WindowHandle, 'Clip OK')elsedev_set_color ('red')write_string (WindowHandle, 'Clip not OK')endifendifif (I < NumImages)disp_continue_message (WindowHandle, 'black', 'true')stop ()endifendfor* 结语:如果发现前⾯作为训练变形模板的良好图像也被判定为NG,* 可以调整prepare_variation_model参数* 或者调整select_shape特征筛选的标准相关算⼦分析:create_variation_model(创建⼀个差异模型)create_variation_model(Width, Height, Type, Mode ,ModelID)//创建⼀个ID为ModelID,宽为Width,⾼为Height,类型为Type的差异模型参数参数Mode决定了创建标准图像和相应的变化图像的⽅法。
HALCON形状匹配总结Halcon有三种模板匹配方法:即Component-Based、Gray-Value-Based、Shaped_based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类本文只对形状匹配做简要说明和补充:Shape_Based匹配方法:上图介绍的是形状匹配做法的一般流程及模板制作的两种方法。
先要补充点知识:形状匹配常见的有四种情况一般形状匹配模板shape_model、线性变形匹配模板planar_deformable_model、局部可变形模板local_deformable_model、和比例缩放模板Scale_model第一种是不支持投影变形的模板匹配,但是速度是最高的,第二种和第四种是支持投影变形的匹配,第三种则是支持局部变形的匹配。
一般形状匹配模板是最常用的,模板的形状和大小一经制作完毕便不再改变,在查找模板的过程中,只会改变模板的方向和位置等来匹配目标图像中的图像。
这个方法查找速度很快,但是当目标图像中与模板对应的图像存在比例放大缩小或是投影变形如倾斜等,均会影响查找结果。
涉及到的算子通常为create_shape_model 和find_shape_model线性变形匹配模板planar_deformable_model是指模板在行列方向上可以进行适当的缩放。
行列方向上可以分别独立的进行一个适当的缩放变形来匹配。
主要参数有行列方向查找缩放比例、图像金字塔、行列方向匹配分数(指可接受的匹配分数,大于这个值就接受,小于它就舍弃)、设置超找的角度、已经超找结果后得到的位置和匹配分数线性变形匹配又分为两种:带标定的可变形模板匹配和不带标定的可变形模板匹配。
涉及到的算子有:不带标定的模板:创建和查找模板算子create_planar_uncalib_deformable_model和find_planar_uncalib_deformable_model带标定模板的匹配:先读入摄像机参和外参 read_cam_par 和read_pose 创建和查找模板算子create_planar_calib_deformable_model和find_planar_calib_deformable_model局部变形模板是指在一图上查找模板的时候,可以改变模板的尺寸,来查找图像上具有局部变形的模板。
基于HALCON的模板匹配方法总结分类:halcon学习2013-06-26 16:02 47人阅读评论(0) 收藏举报halcon形状匹配算法德国MVTec公司开发的HALCON机器视觉开发软件,提供了许多的功能,在这里我主要学习和研究了其中的形状匹配的算法和流程。
HDevelop开发环境中提供的匹配的方法主要有三种,即Component-Based、Gray-Value-Based、Shape-Based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配。
这三种匹配的方法各具特点,分别适用于不同的图像特征,但都有创建模板和寻找模板的相同过程。
这三种方法里面,我主要就第三种-基于形状的匹配,做了许多的实验,因此也做了基于形状匹配的物体识别,基于形状匹配的视频对象分割和基于形状匹配的视频对象跟踪这些研究,从中取得较好的效果,简化了用其他工具,比如VC++来开发的过程。
在VC下往往针对不同的图像格式,就会弄的很头疼,更不用说编写图像特征提取、模板建立和搜寻模板的代码呢,我想其中间过程会很复杂,效果也不一定会显著。
下面我就具体地谈谈基于HALCON的形状匹配算法的研究和心得总结。
1. Shape-Based matching的基本流程HALCON提供的基于形状匹配的算法主要是针对感兴趣的小区域来建立模板,对整个图像建立模板也可以,但这样除非是对象在整个图像中所占比例很大,比如像视频会议中人体上半身这样的图像,我在后面的视频对象跟踪实验中就是针对整个图像的,这往往也是要牺牲匹配速度的,这个后面再讲。
基本流程是这样的,如下所示:⑴首先确定出ROI的矩形区域,这里只需要确定矩形的左上点和右下点的坐标即可,gen_rectangle1()这个函数就会帮助你生成一个矩形,利用area_center()找到这个矩形的中心;⑵然后需要从图像中获取这个矩形区域的图像,reduce_domain()会得到这个ROI;这之后就可以对这个矩形建立模板,而在建立模板之前,可以先对这个区域进行一些处理,方便以后的建模,比如阈值分割,数学形态学的一些处理等等;⑶接下来就可以利用create_shape_model()来创建模板了,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。
Halcon中模板匹配⽅法的总结归纳基于组件的模板匹配:应⽤场合:组件匹配是形状匹配的扩展,但不⽀持⼤⼩缩放匹配,⼀般⽤于多个对象(⼯件)定位的场合。
算法步骤:1.获取组件模型⾥的初始控件 gen_initial_components()参数:ModelImage [Input] 初始组件的图⽚InitialComponents [Output] 初始组件的轮廓区域ContrastLow [Input] 对⽐度下限ContrastHigh [Input] 对⽐度上限MinSize [Input] 初始组件的最⼩尺⼨Mode[Input] ⾃动分段的类型GenericName [Input] 可选控制参数的名称GenericValue [Input] 可选控制参数的值2.根据图像模型,初始组件,训练图⽚来训练组件和组件相互关系 train_model_components()3.创建组件模型 create_trained_component_model()4.寻找组件模型 find_component_model()5.释放组件模型 clear_component_model()基于形状的模板匹配:应⽤场合:定位对象内部的灰度值可以有变化,但对象轮廓⼀定要清晰平滑。
1.创建形状模型:create_shape_model()2.寻找形状模型:find_shpae_model()3.释放形状模型:clear_shape_model()基于灰度的模板匹配:应⽤场合:定位对象内部的灰度值没有⼤的变化,没有缺失部分,没有⼲扰图像和噪声的场合。
1.创建模板:create_template()2.寻找模板:best_match()3.释放模板:clear_template()基于互相关匹配:应⽤场合:搜索对象有轻微的变形,⼤量的纹理,图像模糊等场合,速度快,精度低。
1.创建模板:create_ncc_model()2.寻找模板:find_ncc_model()3.释放模板:clear_ncc_model()基于变形匹配:应⽤场合:搜索对象有轻微的变形。
halcon常用的匹配算法摘要:1.halcon 简介2.匹配算法的定义与作用3.halcon 常用的匹配算法及其特点4.匹配算法的应用场景5.结语正文:【1.halcon 简介】Halcon 是德国MVTec 公司开发的一款图像处理软件库,它具有强大的处理性能和灵活的编程接口,被广泛应用于工业自动化、机器视觉等领域。
在Halcon 中,匹配算法是一种图像处理技术,用于在图像中查找与模板图像相似的区域。
匹配算法在物体识别、定位、检测等方面具有重要意义。
【2.匹配算法的定义与作用】匹配算法是一种图像处理技术,用于在图像中查找与模板图像相似的区域。
其主要作用是在物体识别、定位、检测等方面。
匹配算法的目的是在图像中找到与模板图像相似的区域,从而实现对物体的定位和识别。
【3.halcon 常用的匹配算法及其特点】Halcon 中常用的匹配算法包括以下几种:1.异或运算(XOR):异或运算是一种简单的匹配算法,它将模板图像与搜索图像进行逐位异或运算,得到匹配结果。
该算法简单易实现,但对噪声敏感。
2.算术运算(AND、OR):算术运算是将模板图像与搜索图像进行逐像素的加、减、与、或等运算,得到匹配结果。
该算法对噪声具有一定抗干扰能力,但计算量较大。
3.汉明距离(Hamming Distance):汉明距离是一种常用的匹配算法,它计算模板图像与搜索图像中对应像素之间的差的绝对值之和。
该算法计算简单,但对噪声敏感。
4.归一化相关系数(Normalized Cross Correlation):归一化相关系数是一种常用的匹配算法,它通过计算模板图像与搜索图像的归一化相关系数来评价二者之间的相似度。
该算法具有较好的抗噪声性能,但计算量较大。
5.最小二乘法(Least Squares):最小二乘法是一种常用的匹配算法,它通过计算模板图像与搜索图像之间的最小二乘距离来评价二者之间的相似度。
该算法具有较好的抗噪声性能,但计算量较大。
NumLevels越大,找到匹配使用的时间就越小。
另外必须保证最高层的图像具有足够的信息(至少四个点)。
可以通过inspect_shape_model函数查看设置的结果。
如果最高层金字塔的消息太少,算法内部会自动减少金字塔层数,如果最底层金字塔的信息太少,函数就会报错。
如果设为auto,算法会自动计算金字塔的层数,我们可以通过get_shape_model_params 函数查看金字塔的层数。
如果金字塔的层数太大,模板不容易识别出来,这是需要将find_shape_model函数中MinScore和Greediness参数设置的低一些。
如果金字塔层数太少找到模板的时间会增加。
可以先使用inspect_shape_model函数的输出结果来选择一个较好的金字塔层数。
参数AngleStart、AngleExtent定义了模板可能发生旋转的范围。
注意模板在find_shape_model函数中只能找到这个范围内的匹配。
参数AngleStep定义了旋转角度范围内的步长。
如果在find_shape_model函数中没有指定亚像素精度,这个参数指定的精度是可以实现find_shape_mode函数中的角度的。
参数AngleStep的选择是基于目标的大小的,如果模板图像太小不能产生许多不同离散角度的图像,因此对于较小的模板图像AngleStep应该设置的比较大。
如果AngleExtent不是AngleStep的整数倍, 将会相应的修改AngleStep。
如果选择complete pregeneration ,不同角度的模板图像将会产生并保存在内存中。
用来存储模板的内存与旋转角度的数目和模板图像的的点数是成正比的。
因此,如果AngleStep 太小或是AngleExtent太大, 将会出现该模型不再适合(虚拟)内存的情况。
在任何情况下,模型是完全适合主存储器的,因为这避免了操作系统的内存分页,使得寻找匹配模板的时间变短。
HALCON形状匹配总结Halcon有三种模板匹配方法:即Component-Based、Gray-Value-Based、Shaped_based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类本文只对形状匹配做简要说明和补充:Shape_Based匹配方法:上图介绍的是形状匹配做法的一般流程及模板制作的两种方法。
先要补充点知识:形状匹配常见的有四种情况一般形状匹配模板shape_model、线性变形匹配模板planar_deformable_model、局部可变形模板local_deformable_model、和比例缩放模板Scale_model第一种是不支持投影变形的模板匹配,但是速度是最高的,第二种和第四种是支持投影变形的匹配,第三种则是支持局部变形的匹配。
一般形状匹配模板是最常用的,模板的形状和大小一经制作完毕便不再改变,在查找模板的过程中,只会改变模板的方向和位置等来匹配目标图像中的图像。
这个方法查找速度很快,但是当目标图像中与模板对应的图像存在比例放大缩小或是投影变形如倾斜等,均会影响查找结果。
涉及到的算子通常为create_shape_model 和find_shape_model线性变形匹配模板planar_deformable_model是指模板在行列方向上可以进行适当的缩放。
行列方向上可以分别独立的进行一个适当的缩放变形来匹配。
主要参数有行列方向查找缩放比例、图像金字塔、行列方向匹配分数(指可接受的匹配分数,大于这个值就接受,小于它就舍弃)、设置超找的角度、已经超找结果后得到的位置和匹配分数线性变形匹配又分为两种:带标定的可变形模板匹配和不带标定的可变形模板匹配。
涉及到的算子有:不带标定的模板:创建和查找模板算子create_planar_uncalib_deformable_model和find_planar_uncalib_deformable_model带标定模板的匹配:先读入摄像机内参和外参read_cam_par 和read_pose 创建和查找模板算子create_planar_calib_deformable_model和find_planar_calib_deformable_model局部变形模板是指在一张图上查找模板的时候,可以改变模板的尺寸,来查找图像上具有局部变形的模板。
halcon模板匹配算法原理
Halcon模板匹配算法是一种用于在图像中寻找特定模式的技术。
其原理基于以下步骤:
1. 模板提取,首先,从给定的模板图像中提取特征,这些特征
可以是边缘、角点、颜色分布等。
这些特征将用于后续的匹配过程。
2. 图像预处理,对待匹配的图像进行预处理,例如去噪、灰度化、边缘检测等,以便提取图像中的特征以进行匹配。
3. 特征匹配,将模板图像中提取的特征与待匹配图像中的特征
进行比对,寻找相似的特征点或特征组合。
4. 匹配评分,根据匹配的特征点或特征组合,计算匹配的得分
或相似度,以确定模板在图像中的位置和旋转角度。
5. 匹配结果,根据匹配得分,确定模板在图像中的位置,并可
以进行后续的处理,例如目标定位、跟踪等。
总的来说,Halcon模板匹配算法通过提取模板和图像的特征,
进行特征匹配和评分,最终确定模板在图像中的位置和相似度,从而实现对特定模式的检测和定位。
halcon多模板匹配方法【原创实用版3篇】目录(篇1)1.引言2.Halcon 模板匹配方法概述3.Halcon 多模板匹配方法4.模板匹配过程中的参数优化5.总结与展望正文(篇1)一、引言在计算机视觉领域,模板匹配是一种常用的图像处理方法,其主要目的是通过比较图像间的相似性,找到匹配的图像区域。
在众多模板匹配软件中,Halcon 是一款由德国 MVTec 公司开发的机器视觉开发软件,它提供了许多实用的功能,特别是在形状匹配方面有着显著的优势。
本文将重点介绍 Halcon 中的多模板匹配方法。
二、Halcon 模板匹配方法概述Halcon 中的模板匹配方法主要包括基于组件(或成分、元素)的匹配(component-based)、基于灰度值的匹配(gray-value-based)和基于形状的匹配(shape-based)三种。
这三种匹配方法各具特点,分别适用于不同的图像特征。
在实际应用中,可以根据需要选择合适的匹配方法。
三、Halcon 多模板匹配方法在实际应用中,往往需要同时处理多个模板,以提高匹配的准确性和速度。
Halcon 提供了多模板匹配的方法,可以同时对多个模板进行处理。
这种方法主要通过以下几个步骤实现:1.读入图片并选取 ROI(感兴趣区域)。
2.对 ROI 进行预处理,如阈值处理、连接处理和选择形状等操作。
3.提取模板区域,创建模板并保存。
4.载入已保存的模板,进行模板匹配。
5.根据匹配结果,对图像进行处理,如标注、分割等。
四、模板匹配过程中的参数优化在模板匹配过程中,有许多参数会影响到匹配的精度和速度,如阈值、连接方式、形状选择等。
为了提高匹配效果,需要对这些参数进行优化。
在 Halcon 中,可以通过实验和观察来选择合适的参数,也可以借助一些优化算法来自动调整参数,以达到最佳的匹配效果。
五、总结与展望Halcon 中的多模板匹配方法具有较强的实用性和灵活性,可以满足不同场景下的图像处理需求。
1. 概述说到机器视觉领域,模板匹配算法是一种常用且有效的方法。
而Halcon作为一种强大的机器视觉开发工具,其模板匹配行列坐标按列排序算子是其重要的功能之一。
本文将从模板匹配的基本原理入手,详细介绍Halcon中模板匹配行列坐标按列排序算子的原理、应用和优势。
2. 模板匹配的基本原理模板匹配是一种在机器视觉领域中常用的算法,其基本原理是在一幅图像中寻找与给定模板最相似的区域。
在Halcon中,模板匹配主要使用灰度图像和边缘图像作为输入,通过计算图像之间的相关性来实现模板匹配的过程。
3. Halcon中模板匹配行列坐标按列排序算子的原理在Halcon中,模板匹配行列坐标按列排序算子是用于在给定的区域内寻找与输入模板最匹配的位置。
该算子主要通过计算输入模板与图像区域之间的相似性来实现匹配过程。
具体而言,该算子会对输入模板和图像区域进行像素级的比较,并根据比较结果排序,最终找出相似度最高的位置。
4. 算子的应用模板匹配行列坐标按列排序算子在工业视觉、医学影像和安防监控等领域有着广泛的应用。
在工业视觉领域,该算子可以用于检测产品表面的缺陷或定位产品的位置。
在医学影像方面,该算子可以帮助医生快速准确地定位病灶部位。
在安防监控领域,该算子可以用于实现人脸识别、车牌识别等功能。
5. 算子的优势相较于传统的模板匹配算法,模板匹配行列坐标按列排序算子在匹配速度和匹配精度上有着明显的优势。
该算子在匹配过程中能够充分利用计算机的并行计算能力,从而大大提高匹配的效率。
该算子还可以对模板和图像区域进行自适应的缩放和旋转,使其具有更好的适应性和鲁棒性。
6. 结语Halcon中模板匹配行列坐标按列排序算子是一种强大的模板匹配算法,具有广泛的应用前景和显著的优势。
相信随着机器视觉技术的不断进步,该算子在实际应用中将发挥越来越重要的作用,为各行各业带来更多的便利和效益。
7. 实际应用案例模板匹配行列坐标按列排序算子在实际应用中有着丰富的案例。
Halcon模板匹配算法1. 算法概述模板匹配是一种常用的计算机视觉算法,它能够在图像中寻找与给定模板最相似的区域并进行定位。
Halcon是一款强大的机器视觉开发工具,提供了丰富的模板匹配功能,可以用于各种应用领域,如工业自动化、品质检测等。
2. 原理介绍Halcon模板匹配算法主要基于灰度图像进行处理。
其基本原理是通过将待匹配图像与模板图像进行相似度计算,找到最相似的区域,并输出其位置信息。
具体步骤如下: - 加载图像和模板:首先需要加载待匹配的图像和用于匹配的模板图像。
- 预处理:对加载的图像和模板进行预处理,如灰度化、滤波等。
这一步旨在提取出关键特征以便进行后续计算。
- 创建模板:根据预处理后的模板图像,使用Halcon提供的函数创建一个模板对象。
- 匹配:使用创建好的模板对象对待匹配的图像进行匹配操作。
Halcon提供了多种匹配函数,如find_shape_model、find_scaled_shape_model等,可以根据实际需求选择合适的函数。
- 结果输出:匹配完成后,可以获取到匹配的结果,如匹配区域的位置、相似度等信息。
根据这些信息可以进行后续的处理和判断。
3. 算法优势Halcon模板匹配算法具有以下几个优势: - 高效性:Halcon采用了高度优化和并行化的算法实现,能够在短时间内完成大量图像的匹配任务。
- 鲁棒性:Halcon提供了多种参数调整选项,能够适应不同场景下的光照变化、尺度变化等因素对匹配结果的影响。
- 易用性:Halcon提供了丰富的图形界面和编程接口,使得用户可以方便地进行算法调试和参数设置。
- 可扩展性:Halcon支持多种图像处理操作和其他机器视觉算法,可以与其他功能模块进行组合使用,满足复杂应用需求。
4. 应用场景Halcon模板匹配算法广泛应用于各种工业自动化和品质检测场景中。
以下是一些常见应用场景: - 产品质检:利用模板匹配算法可以对产品外观进行检测,如检测产品是否存在缺陷、是否符合规定的尺寸等。
HALCON形状匹配总结Halcon有三种模板匹配方法:即Component-Based、Gray-Value-Based、Shaped_based,分别是基于组件(或成分、元素)的匹配,基于灰度值的匹配和基于形状的匹配,此外还有变形匹配和三维模型匹配也是分属于前面的大类本文只对形状匹配做简要说明和补充:Shape_Based匹配方法:上图介绍的是形状匹配做法的一般流程及模板制作的两种方法。
先要补充点知识:形状匹配常见的有四种情况一般形状匹配模板shape_model、线性变形匹配模板planar_deformable_model、局部可变形模板local_deformable_model、和比例缩放模板Scale_model第一种是不支持投影变形的模板匹配,但是速度是最高的,第二种和第四种是支持投影变形的匹配,第三种则是支持局部变形的匹配。
一般形状匹配模板是最常用的,模板的形状和大小一经制作完毕便不再改变,在查找模板的过程中,只会改变模板的方向和位置等来匹配目标图像中的图像。
这个方法查找速度很快,但是当目标图像中与模板对应的图像存在比例放大缩小或是投影变形如倾斜等,均会影响查找结果。
涉及到的算子通常为create_shape_model 和find_shape_model线性变形匹配模板planar_deformable_model是指模板在行列方向上可以进行适当的缩放。
行列方向上可以分别独立的进行一个适当的缩放变形来匹配。
主要参数有行列方向查找缩放比例、图像金字塔、行列方向匹配分数(指可接受的匹配分数,大于这个值就接受,小于它就舍弃)、设置超找的角度、已经超找结果后得到的位置和匹配分数线性变形匹配又分为两种:带标定的可变形模板匹配和不带标定的可变形模板匹配。
涉及到的算子有:不带标定的模板:创建和查找模板算子create_planar_uncalib_deformable_model和find_planar_uncalib_deformable_model带标定模板的匹配:先读入摄像机内参和外参read_cam_par 和read_pose 创建和查找模板算子create_planar_calib_deformable_model和find_planar_calib_deformable_model局部变形模板是指在一张图上查找模板的时候,可以改变模板的尺寸,来查找图像上具有局部变形的模板。
halcon模板匹配原理
Halcon是一种图像处理软件,它具有强大的功能和灵活的操作性,被广泛应用于人工智能、机器视觉等领域。
模板匹配是Halcon中的一个重要功能,它可以用来在一张图像中寻找与另一张图像相似的区域。
以下是halcon模板匹配原理的分步骤阐述。
1.准备模板图像和待匹配图像
首先,需要准备要进行模板匹配的两张图像:模板图像和待匹配图像。
模板图像是被匹配的模板,待匹配图像是需要在其中寻找模板的图像。
2.把模板图像加载到内存中
利用Halcon中的load_image函数,可以将模板图像加载到内存中。
3.计算模板图像的特征值
Halcon中有多种特征值可供选择,例如灰度平均值、二阶矩或Harris角等。
根据需要选择一种或多种特征值来描述模板图像。
4.把待匹配图像加载到内存中
同样,利用load_image函数,可以将待匹配图像加载到内存中。
5.计算待匹配图像的特征值
同样根据需要选择一种或多种特征值来描述待匹配图像。
6.在待匹配图像中搜索与模板图像相似的区域
利用Halcon中的find_shape_model函数,可以在待匹配图像中搜索与模板图像相似的区域。
该函数可以设置匹配的精度、匹配的区域等参数。
7.显示匹配结果
根据匹配结果,可以在待匹配图像上显示匹配区域,并且可以用Halcon中的disp_image函数将匹配结果可视化。
总之,Halcon模板匹配原理可以通过以上步骤的操作实现。
这在机器视觉、人工智能等领域有着广泛的应用。
Halcon中模板匹配方法的总结归纳
基于组件的模板匹配:
应用场合:组件匹配是形状匹配的扩展,但不支持大小缩放匹配,一般用于多个对象(工件)定位的场合。
算法步骤:
1.获取组件模型里的初始控件gen_initial_components()
参数:
ModelImage [Input] 初始组件的图片
InitialComponents [Output] 初始组件的轮廓区域
ContrastLow [Input] 对比度下限
ContrastHigh [Input] 对比度上限
MinSize [Input] 初始组件的最小尺寸
Mode[Input] 自动分段的类型
GenericName [Input] 可选控制参数的名称
GenericValue [Input] 可选控制参数的值
2.根据图像模型,初始组件,训练图片来训练组件和组件相互关系train_model_components()
3.创建组件模型create_trained_component_model()
4.寻找组件模型find_component_model()
5.释放组件模型clear_component_model()
基于形状的模板匹配:
应用场合:定位对象内部的灰度值可以有变化,但对象轮廓一定要清晰平滑。
1.创建形状模型:create_shape_model()
2.寻找形状模型:find_shpae_model()
3.释放形状模型:clear_shape_model()
基于灰度的模板匹配:
应用场合:定位对象内部的灰度值没有大的变化,没有缺失部分,没有干扰图像和噪声的场合。
1.创建模板:create_template()
2.寻找模板:best_match()
3.释放模板:clear_template()
基于互相关匹配:
应用场合:搜索对象有轻微的变形,大量的纹理,图像模糊等场合,速度快,精度低。
1.创建模板:create_ncc_model()
2.寻找模板:find_ncc_model()
3.释放模板:clear_ncc_model()
基于变形匹配:
应用场合:搜索对象有轻微的变形。
1.创建模板:create_local_deformable_model()
2.寻找模板:find_local_deformable_model()
3.释放模板:clear_deformable_model()
基于描述匹配:
应用场合:搜索对象有轻微的变形,透视的场合,根据一些描述点的位置和灰度值来进行匹配。
1.创建模板:create_calib_descriptor_model()
2.寻找模板:find_calib_descriptor_model()
3.释放模板:clear_descriptor_model()。