第一章:大气遥感
- 格式:ppt
- 大小:4.29 MB
- 文档页数:66
第一章遥感物理基础1 遥感:即遥远感知,在不接触的情况下,对目标或自然现象远距离探测和感知的一门技术。
具体讲,是在高空和外层各种平台上,运用各种传感器获取反映地表特征的各种数据,通过传输,变换,和处理,提取有用的信息,实现研究第五空间形状.位置.性质.变化及其与环境互相关系的一门现代运用技术科学。
2电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱。
3绝对黑体:能够完全吸收任何波长入射能量的物体4灰体:在各种波长处的发射率相等。
5色温:用嘴接近回头辐射曲线的黑体辐射曲线作为参照,这是的黑体辐射温度。
6大气窗口:电磁波有些波段通过大气层时减弱较少,透过率较高,这些电磁波段被称为大气窗口。
7发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
8光谱反射率:物体的反射辐射通量与入射辐射通量之比。
9波粒二象性:电磁波具有波动性和粒子性。
10光谱反射特性曲线:发射波普是某物体的反射率随波长的变化规律,以波长为横轴,反射率为纵轴的曲线。
11.地物波普特性:是指各种地物各自所具有的电磁波特性,包括发射辐射和反射辐射。
二.简答1黑体辐射遵循哪些规律?(1)凡是吸收热辐射能力强的物体,它的热发射能力也强。
凡是吸收热辐射能力弱的物体他们的热发射能力也弱(1)普朗克定律:(2)斯忒藩-波耳兹曼定律:(3)基尔霍夫定律:(4)瑞利-琴斯定律:5)维恩位移定律:2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?电磁波包含了从波长最短的r射线到最长的无线电波段,包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等。
遥感中所用的为从紫外线到微波波段,包括紫外线、可见光、红外波段、微波波段。
3、物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?a.温度和波长利用波长乘温度=2897.84叙述沙土、植物、和水的光谱反射率随波长变化的一般规律。
自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土壤的光谱特性曲线与一下因素有关,即土壤类别、含水量、有几只含量、砂等含量有关。
《遥感概论》笔记第一章第一节遥感基本概念1.1.1 遥感概念遥感(Remote Sensing) 泛指对地表事物的遥远感知。
狭义的遥感特指通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,进行处理、分析与应用的一门科学和技术。
遥感通常是指通过某种遥感器从空中或太空获取地表各类地物信息,并对这些信息进行提取、分析,以此来测量与判定地表目标地物的性质或特性。
1.1.2 观测对象及其特征遥感的观测对象主要是地球表层的各类地物,也包括大气、海洋和地下矿藏中不同成分。
地球表层各类地物都具有两种特征,一是空间几何特征,一是物理、化学、生物的属性特征。
1.1.3 特点与优势遥感技术是20 世纪70 年代起迅速发展起来的一门综合性探测技术。
遥感技术发展速度之快与应用广度之宽是始料不及的。
仅经过短短30 多年的发展,遥感技术已广泛应用于资源与环境调查与监测、军事应用、城市规划等多个领域。
究其原因,在于遥感具有客观性、时效性、宏观性与综合性、经济性的特点。
第二节遥感技术系统1.2.1 空间信息获取系统地球表面地物目标空间信息获取主要由遥感平台、遥感器等协同完成。
遥感平台(Platform for Remote Sensing ) 是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。
遥感器( Remote Sensor) 是接收与记录地表物体辐射、反射与散射信息的仪器。
目前常用的遥感器包括遥感摄影机、光机扫描仪、推帚式扫描仪、成像光谱仪和成像雷达。
按其特点,遥感器分为摄影、扫描、雷达等几种类型。
1.2.2 遥感数据传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。
遥感器接收到地物目标的电磁波信息,被记录在胶片或数字磁带上。
从遥感卫星向地面接收站传输的空间数据中,除了卫星获取的图像数据以外,还包括卫星轨道参数、遥感器等辅助数据。
第一章绪论遥感的概念1 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
物探(物理探测):狭义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理、分析,判别出目标地物的属性及其变化特征的综合性探测技术。
空间遥感过程需综合遥测和遥控技术。
2 遥感数据(遥感数据获取示图)太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。
传感器将这部分能量记录下来,传回地面,即为遥感数据(遥感数据示例)。
3 传感器是收集、量测和记录遥远目标的信息的仪器,是遥感技术系统的核心。
传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。
遥感技术系统1遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。
信息的获取:传感器、遥感平台信息的接收:地面卫星接收站遥感类型1 按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。
2按照探测电磁波的工作波段分类:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感等。
3按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等4按照资料的记录方式:成像方式、非成像方式5按照传感器工作方式分类:主动遥感、被动遥感遥感平台是装载传感器的运载工具,按高度分为:地面平台:为航空和航天遥感作校准和辅助工作。
航空平台:80 km以下的平台,包括飞机和气球。
航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。
人造地球卫星的类型:低高度、短寿命卫星:150-350 km,用于军事。
中高度、长寿命卫星:350-1800 km,地球资源。
高高度、长寿命卫星:约3600 km,通信和气象。
遥感的特点1多波段性:波段的延长使对地球的观测走向了全天候。
2 多时相性:重复探测,有利于进行动态分析。
大气遥感与大气探测方法遥感探测是一种在远处不用直接接触物体或发生的某种现象既可得到所需要的信息,并对信息进行辨认、加工和分析。
遥感集市将遥感探测分为以下类型:紫外、可见光、反射红外遥感技术、热红外遥感技术和微波遥感技术。
遥感技术工作方式的划分可分为多种,其中应用最多的是主动式与被动式的遥感探测。
主动式遥感探测是由遥感探测仪器自身向外所发出的波束或次波束,与被探测的物质吸收、反射等相互作用后产生回波,再通过卫星对这种回波进行检测;被动式遥感大气探测主要是靠太阳光照到物体上,物体吸收、反射和折射的太阳光不同,外加物体自身所发射的红外光等的接收,从而完成对大气成分的测量。
对大气气溶胶的探测气溶胶指在大气中的各种固、液态的可见与不可见得微粒或其他物质,通常人们说的烟、雾等均在气溶胶的范围之内。
在以往的大气监测中,很难发现大气中的气溶胶,并对其进行检测,而当遥感探测用于大气探测中后,可以使用超高分辨率的卫星对气溶胶空间具体的分布与其运动变化的趋势进行探测,恰恰弥补了地面监测中的不足。
对沙尘暴的探测沙尘暴在我国是长发生的自然灾害之一,其严重影响人们生活和生态环境,同时也严重污染大气,沙尘暴的特点是:突发性强,具有较大的危害,也是属于大气气溶胶的一种。
我国科学家于1993年4月在北京、天津对沙尘暴的特性进行遥感监测,得出在发生沙尘暴天气时,可见光通道1和2的反射率明显上升,强度越大,反射率也越大。
目前遥感集市的研究表明,红外通道数据对确定沙尘暴的位置极其准确,而对于监测大尺度的沙尘暴他的运动轨迹也相当准确。
对臭氧层的探测臭氧层对地球上的人类以及其他动植物均起到保护作用,在大气遥感监测中同样可以通过遥感监测了解臭氧层的变化情况与空洞形成的位置。
目前,在南极上空出现臭氧空洞,据大气遥感监测得出,其空洞每年还在不断扩大当中,这对地球上的生物非常不利。
我国科学家也利用激光雷达对对流层一定高度范围内的臭氧分布进行了测量,结果表明,用激光的不同波段,也可以得到地球上空比较精确的臭氧层分布情况。
大气污染物的遥感监测与数据处理大气污染是当前全球面临的重要环境问题之一,对人类健康和社会经济发展造成了严重影响。
为了有效地监测和控制大气污染物,遥感技术成为了一种重要的手段。
本文将介绍大气污染物的遥感监测与数据处理的相关内容。
一、遥感技术在大气污染物监测中的应用大气污染物的监测需要获取大范围、高时空分辨率的数据,而传统的地面观测方式往往受限于设备和人力的限制,无法实现全面监测。
遥感技术具有无接触、全方位、高时空分辨率等特点,可以有效地获取大气污染物的信息。
在大气污染物监测中,遥感技术主要利用光学、红外、雷达等传感器获取大气污染物的分布和浓度信息。
通过对大气污染物吸收、散射和发射特性的研究,可以建立起大气污染物的反演模型,进而利用遥感数据进行监测。
二、大气污染物遥感数据处理方法为了从遥感数据中获取大气污染物的信息,需要进行一系列的数据处理。
其中,大气校正、信噪比增强、数据重投影等是常用的数据处理方法。
大气校正是遥感数据处理的重要步骤之一。
由于大气散射和吸收的影响,遥感图像中存在着大气噪声,使得大气污染物的反演结果产生偏差。
通过大气校正可以减小大气的影响,提高数据的准确性。
信噪比增强是为了提高遥感数据的质量。
由于遥感图像的获取和传输过程中存在各种干扰,例如云、雾、气溶胶等,这些干扰会导致数据的信噪比较低。
通过信噪比增强技术,可以有效地提高图像的质量,使得大气污染物的反演结果更加准确。
数据重投影是为了实现不同遥感数据之间的空间统一。
不同的遥感传感器在获取数据时存在着不同的投影方式和坐标系统,为了将不同的数据融合起来进行分析,需要将其进行空间重投影,以实现数据的空间统一。
三、大气污染物遥感监测案例为了更好地展示大气污染物遥感监测的应用和效果,以下将介绍一些典型的案例。
1. 利用卫星遥感数据监测大气污染物的时空变化。
通过利用卫星传感器获取的地表反射率数据,结合大气校正和数据融合技术,可以实现对大气污染物的全面监测。
大气探测与遥感课程设计一、课程目标知识目标:1. 让学生掌握大气探测与遥感的基本概念、原理和方法。
2. 使学生了解不同大气探测与遥感技术在实际应用中的优缺点。
3. 帮助学生理解大气探测与遥感数据在气象、环境等领域的应用。
技能目标:1. 培养学生运用大气探测与遥感技术收集、处理和分析数据的能力。
2. 提高学生运用遥感软件进行图像解译和数据分析的技能。
3. 培养学生将大气探测与遥感知识应用于实际问题的解决能力。
情感态度价值观目标:1. 激发学生对大气科学和遥感技术的兴趣,培养主动学习的态度。
2. 培养学生的团队协作精神,提高沟通与交流能力。
3. 增强学生的环保意识,使其认识到大气探测与遥感在环境保护中的重要作用。
本课程针对高中年级学生,结合大气探测与遥感学科特点,注重理论与实践相结合。
在教学过程中,充分考虑学生的认知水平和兴趣,采用生动、直观的教学手段,使学生能够更好地理解和掌握课程内容。
通过本课程的学习,期望学生能够达到以上设定的知识、技能和情感态度价值观目标,为后续相关领域的学习打下坚实基础。
二、教学内容1. 大气探测与遥感基本概念- 大气探测的定义与分类- 遥感技术的原理与分类2. 大气探测技术- 地面气象观测- 卫星遥感探测- 飞机遥感探测3. 遥感图像处理与分析- 遥感图像的预处理- 遥感图像的解译与分析- 遥感图像的分类与应用4. 大气探测与遥感应用实例- 气象预报与气候变化研究- 环境保护与灾害监测- 资源调查与城市规划5. 教学实践与案例分析- 实际大气探测与遥感数据解读- 遥感软件操作与实践- 案例分析与讨论教学内容依据课程目标,结合教材相关章节,进行科学、系统的组织。
在教学过程中,按照以下进度安排教学内容:第一周:大气探测与遥感基本概念第二周:大气探测技术第三周:遥感图像处理与分析第四周:大气探测与遥感应用实例第五周:教学实践与案例分析三、教学方法本课程采用多样化的教学方法,以激发学生学习兴趣,提高教学效果:1. 讲授法:教师通过生动的语言和丰富的案例,讲解大气探测与遥感的基本概念、原理和技术,使学生系统掌握课程知识。
大气污染的遥感监测与评估方法大气污染是当今全球环境面临的重要挑战之一。
为了更好地管理和控制污染物的排放并保护环境,科学家们一直致力于研究大气污染的遥感监测与评估方法。
这些方法可以通过卫星、飞机和地面观测来获取有关大气污染的信息。
本文将对大气污染遥感监测与评估的方法进行探讨。
首先,卫星遥感是大气污染监测中最常用的手段之一。
通过卫星,可以获取全球范围内的大气污染数据,如颗粒物浓度、臭氧浓度和二氧化硫浓度等。
这些数据可以用来分析大气污染的时空变化,确定污染源和污染物的扩散路径。
然而,由于卫星遥感分辨率的限制,无法获得具体到城市或更小尺度的污染信息。
其次,飞机遥感是一种更高分辨率的大气污染监测方法。
通过搭载传感器的飞机,可以对特定地区的大气污染进行实时监测。
飞机遥感可以提供更精确的数据,帮助科学家们更好地理解大气污染的产生和传播规律。
同时,飞机遥感还可以用于监测移动污染源,如汽车尾气和工厂排放。
然而,飞机遥感的成本较高,并且需要相对较长的时间来收集数据。
另外,地面观测也是一种常用的大气污染监测方法。
通过在特定地点设置监测站,可以实时监测大气中的污染物浓度。
地面观测可以提供更精确的数据,对于城市和工业区等局部污染较为有效。
此外,地面观测还可以与卫星和飞机遥感数据进行对比和验证,提高大气污染监测的准确性。
然而,地面观测受限于监测站点选择的局限性,无法全面覆盖所有地区。
为了更好地评估大气污染情况,科学家们通过建立模型和算法来分析遥感数据。
利用这些模型和算法,可以将遥感数据转化为可视化的大气污染图像,以提供精确而直观的数据。
借助这些图像,政府和环保组织可以更好地制定相关政策,并采取相应的措施来减少大气污染。
总结起来,大气污染的遥感监测与评估方法提供了科学家们观测和理解大气污染问题的重要工具。
卫星、飞机和地面观测相结合,可以提供全球范围内以及局部地区的大气污染数据,为环境保护工作提供支持。
不仅如此,模型和算法的运用也使得大气污染数据分析更为准确和直观。
大气遥感复习资料一、 名词解释:(30分)1、立体角:(P3)以下三种定义方式记其中一种。
(1) 立体角定义为椎体所拦截的球面积σ与半径r 的平方之比。
(2) 椎体所拦截的球面积所对应的圆心角。
(3) 2rσΩ=(其中Ω为立体角,单位sr ;σ为椎体所拦截的球面积,r 为球半径) 2、 辐照度:辐照度是物体接收的辐射通量密度。
E 辐照度=∂Φ / ∂A ,其中Φ是物体接收到的辐射通量,A 是物体收到的辐射面积,单位为:瓦/米²(W/m²)。
3、 太阳天顶角:(1) 天顶角即入射光线与当地天顶方向的夹角。
(2) 天顶角等于太阳高度角的余角。
(3) 如下图所示:4、 阳伞效应:由气溶胶的辐射特性引起的地面冷却效应。
类似于遮阳伞,故称为“阳伞效应”。
悬浮在大气中的气溶胶颗粒一方面将部分太阳入射辐射反射回宇宙空间,削弱了到达地面的太阳辐射能,增加行星反照率,使地面接收的太阳能减少;另一方面某些吸湿性的粒子有作为凝结核,促使周围水汽在它上面凝结,导致低云、雾的增多,改变云的光学特征和寿命,使云的反照率增加,同样具有减少入射辐射,使地面和底层大气的温度降低的作用。
“阳伞效应”在北半球表现的最为明显,其原因在于本地区较高的工业化程度和由此产生的空气污染。
5、大气质量:大气质量是倾斜路径的光学厚度与垂直路径光学厚度之比。
6、 日射:日射定义为:某一给定地点单位水平面上的太阳辐射通量。
它主要取决于太阳天顶角,同时也依赖于日地距离的变化。
7、 消光系数消光截面(单位为2cm )乘以离子数密度(单位为3cm -)或当质量消光截面(单位是2/cm g )乘以密度(单位是3/g cm )时,我们称该量为“消光系数”,单位为1cm -。
8、 单次散射反射率:实际上辐射被介质散射的同时,也被介质吸收,即消光过程既包括散射,也包括吸收。
单次散射反射率 ω 定义为辐射发生每一次消光(或简称散射)过程中,遭受散射的百分比。
大气层遥感的应用原理1. 介绍大气层遥感是利用遥感技术观测和研究地球大气层的一种方法。
它通过测量和分析大气成分和结构的属性,以获取大气层中各种参数的有关信息。
这些参数包括温度、湿度、气体浓度、气溶胶浓度等。
大气层遥感的应用范围广泛,包括天气预报、大气环境监测、气候变化研究等。
2. 大气层遥感的原理大气层遥感的原理是利用电磁波在大气层中的传播特性,通过测量和分析电磁波的散射、吸收和发射来获取大气层中的信息。
主要的遥感方法包括可见光遥感、红外遥感和微波遥感。
2.1 可见光遥感可见光遥感是利用可见光波段的电磁辐射进行观测和测量的方法。
可见光遥感可以通过测量可见光的透过、散射和反射来获取大气层中的信息。
具体的应用包括气溶胶浓度的测量、云的观测等。
2.2 红外遥感红外遥感是利用红外波段的电磁辐射进行观测和测量的方法。
红外遥感可以通过测量红外辐射的吸收和发射来获取大气层中的信息。
红外遥感主要用于测量大气温度、湿度等参数。
2.3 微波遥感微波遥感是利用微波波段的电磁辐射进行观测和测量的方法。
微波遥感可以通过测量微波辐射的散射、吸收和发射来获取大气层中的信息。
微波遥感主要用于测量大气中的水汽含量、云和降水等。
3. 大气层遥感的应用大气层遥感的应用范围广泛,下面列举几个主要的应用领域。
3.1 天气预报大气层遥感在天气预报中起着重要作用。
通过观测和分析大气层中的温度、湿度等参数,可以提供有关天气的信息,从而提高天气预报的准确性。
3.2 大气环境监测大气层遥感可以用于大气环境监测。
通过测量和分析大气层中的气体浓度、气溶胶浓度等参数,可以了解大气环境的污染情况,为环境保护提供参考。
3.3 气候变化研究大气层遥感在气候变化研究中也有重要应用。
通过观测和分析大气层中的温度、湿度等参数,可以研究气候变化的趋势和影响因素,为制定气候变化应对策略提供科学依据。
4. 总结大气层遥感是一种利用电磁波在大气层中传播的特性,通过测量和分析电磁波的散射、吸收和发射来获取大气层中信息的方法。