GSM网络优化基本概念及术语
- 格式:xlsx
- 大小:562.65 KB
- 文档页数:15
网络性能KPI(上下行不平衡)优化手册目录1 上下行链路平衡定义说明 (2)1.1上下行平衡定义 (2)1.2上下行平衡公式 (2)1.3上下行不平衡定义标准 (2)1.4上下行不平衡影响因素 (2)2上下行链路不平衡处理流程 (3)3上下行链路不平衡问题处理思路 (4)3.1参数及数据配置不当 (4)3.2硬件故障 (4)3.3直放站及室分系统 (5)3.4天馈线及跳线问题 (5)3.5塔放安装 (5)3.6天线匹配方面 (5)3.7扩减容后连线问题 (6)3.8手机用户行为 (6)4上下行链路不平衡小区典型案例(具体分为11种类型): (6)4.1案例一:数据与物理连线不一致 (6)4.2案例二:TRX硬件隐行故障 (7)4.3案例三:跳线故障 (9)4.4案例四:室分系统或直放站 (10)4.5案例五:TRX硬件故障 (11)4.6案例六:驻波过高 (13)4.7案例七:DDPU硬件问题 (15)4.8案例八:减容后出现问题 (16)4.9案例九:功率设置 (17)4.10案例十:天馈接反 (19)4.11案例十一:载频异常吊死导致上下行链路不平衡 (21)1 上下行链路平衡定义说明1.1上下行平衡定义GSM系统是一个双向通信系统,上行链路和下行链路都有自己的发射功率和路径衰落,为了使系统工作在最佳状态,就要保证每个小区的链路达到基本平衡(上下行链路平衡),可以促使切换和呼叫建立期间,移动通话性能更好。
当上下行平衡时,上行、下行允许的最大传输路径损耗应该是相同的,可以促使切换和呼叫建立期间,移动通话性能更好:➢下行链路(DownLink)是指基站发,移动台接收的链路。
➢上行链路(UpLink)是指移动台发,基站接收的链路。
➢上下行平衡,简言之,在下行信号达到边界时,上行信号也同时达到边界。
1.2上下行平衡公式根据测量报告上下行平衡测量<载频>提取出1-11级指标来计算各个等级的比例:➢上下行链路等级1的比例=上下行链路等级1的测量值/上下行链路等级1-11级的测量值➢上下行链路等级11的比例=上下行链路等级11的测量值/上下行链路等级1-11级的测量值1.3上下行不平衡定义标准华为总部定义上下行不平衡标准为:➢上下行平衡等级1的比例大于等于30% 则认为不平衡(下行偏弱或上行偏强)➢上下行平衡等级11的比例大于等于 30% 则认为不平衡(下行偏强或上行偏弱)1.4上下行不平衡影响因素主要的因素有:➢天馈线及跳线问题➢塔放安装➢参数及数据配置不当➢硬件故障➢直放站➢天线匹配方面➢扩减容后连线问题➢手机用户行为2 上下行链路不平衡处理流程3 上下行链路不平衡问题处理思路3.1参数及数据配置不当这里涉及的上下电平的参数,主要是有:1)塔放衰减因子,2)MS最大发射功率,3)功率等级➢塔放衰减因子:基站安装塔放后,一般上行都会带来上行增益,因此要设置“塔放衰减因子”。
GSM通信网络优化基础知识为了确保GSM网络的高质量和可靠性,需要进行网络优化。
网络优化是一种持续的过程,旨在改善网络性能,提高通信质量和用户体验。
以下是一些基础的GSM网络优化知识:1. 频率规划(Frequency Planning):频率规划是GSM网络优化的一个重要方面,它涉及到将无线频谱合理地分配给不同的信道,以减少干扰和提高覆盖范围。
通过优化频率规划,可以提高通信质量和减少通话中断的风险。
2. 邻区管理(Neighbor Cell Management):邻区管理是通过调整信道参数和邻区关系来优化网络覆盖范围和质量的过程。
正确设置邻区参数可以减少重叠覆盖区域,降低干扰,并提高切换性能。
3. 功率控制(Power Control):功率控制是调整手机和基站之间的传输功率水平,以确保信号质量稳定的重要方法。
通过动态地调整手机和基站之间的功率水平,可以降低电池消耗和减少干扰。
4. 切换优化(Handover Optimization):切换是当手机从一个基站切换到另一个基站时发生的过程,目的是保持通话质量和业务连续性。
优化切换参数和策略可以提高切换性能,减少通话丢失的可能性。
5. 射频优化(RF Optimization):射频优化是调整和优化基站之间的射频参数,以确保信号覆盖均匀和一致。
通过调整天线方向、高度和倾斜角度等参数,可以提高信号覆盖范围和质量。
6. 信号捕获优化(Signal Handover Optimization):信号捕获是手机从弱信号区域到强信号区域的速度和精确度。
通过优化信号捕获参数和算法,可以提高手机在不同信号强度下的切换性能。
7. 容量规划(Capacity Planning):容量规划是通过调整信道资源和基站配置,以满足不同业务需求和用户密度的过程。
通过合理规划和管理网络容量,可以提高网络效率和用户满意度。
总的来说,GSM网络优化是一个复杂和多方面的过程,需要综合考虑网络拓扑结构、用户行为、信道环境和运营商需求等因素。
xx 一、我国GSM网络的工作频段我国陆地蜂窝数字移动通信网GSM通信系统采用900MHz与1800MHz频段:GSM900MHz频段为:890~915(移动台发,基站收),935~960(基站发,移动台收);DCS1800MHz频段为:1710~1785(移动台发,基站收),1805~1880(基站发,移动台收);二、频道间隔相邻两频点间隔为为200kHz,每个频点采用时分多址(TDMA)方式,分为8个时隙,既8个信道(全速率),如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低。
三、频道配置绝对频点号和频道标称中心频率的关系为:GSM900MHz频段为:fl(n)=890.2MHz + (n-1)×0.2MHz (移动台发,基站收);fh(n)=fl(n)+45MHz (基站发,移动台收); n∈[1,124]GSM1800MHz频段为:fl(n)=1710.2MHz + (n-512)×0.2MHz (移动台发,基站收);fh(n)=fl(n)+95MHz (基站发,移动台收);n∈[512,885]其中:fl(n)为上行信道频率、fh(n)为下行信道频率,n为绝对频点号(ARFCN)。
第一节时分多址技术(TDMA)多址技术就是要使众多的客户公用公共信道所采用的一种技术,实现多址的方法基本有三种,频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)。
我国模拟移动通信网TACS就是采取的FDMA技术。
CDMA是以不同的代码序列实现通信的,它可重复使用所有小区的频谱,它是目前是最有效的频率复用技术。
GSM的多址方式为时分多址TDMA和频分多址FDMA相结合并采用跳频的方式,载波间隔为200K,每个载波有8个基本的物理信道。
一个物理信道可以由TDMA的帧号、时隙号和跳频序列号来定义。
它的一个时隙的长度为0.577ms,每个时隙的间隔包含156.25比特GSM的调制方式为GMSK,调制速率为270.833kbit/s。
目录第一章前言--------------------------------------------2 1.1 网络优化的范畴-----------------------------------3 1.2 网络优化是基础维护工作的升华-----------------------3 1.3 网络优化是持续性的工作------------------------------4 1.3.1常规的网络评估和分析-------------------------5 1.3.2、优化手段---------------------------------------------------8 第二章室内覆盖的优化------------------------------------------8 2.1 室内覆盖的优化的意义----------------------------------------8 2.2 改善室内覆盖的方法及手段----------------------------------10 2.3 室内覆盖系统的优化----------------------------------------11 第三章掉话的分析和解决方法------------------------------------18 3.1 掉话产生的原因--------------------------------------------18 3.2 掉话的解决--------------------------------------------------22 第四章室外无线网络的分层--------------------------------------24 4.1 无线网络单层结构的弊端-------------------------------------24 4.2 无线网络的结构分层----------------------------------------25 4.3 无线网络的虚拟分层----------------------------------------26 结束语-----------------------------------------------------------27第一章前言随着移动通信网络的迅猛发展,网络规模不断扩大、用户数量急速上升,国内移动电信业务的两大运营商-中国移动和中国联通的网络已经具有了相当的规模。
GSM网络维护与优化一、GSM网络概述GSM(Global System for Mobile Communications)是全球最广泛应用的移动通信技术之一,由欧洲电信标准化协会(ETSI)制定,首次推出于1982年。
GSM网络技术在全球190多个国家和地区得到应用,拥有超过10亿用户。
GSM网络采用TDMA(Time Division Multiple Access)多址技术,将每个时隙分配给一个用户,每个时隙持续时间为577微秒,其中包含了156.25位时间格(bit),用于传输数据或语音。
GSM网络可提供多种服务,除了基本的语音通话之外,还包括短信、彩信、数据业务等。
二、GSM网络维护GSM网络维护包括预防性维护和故障维护两种。
预防性维护是指定期检查网络设备运行状态,以保证设备的正常运行,提高网络的可靠性和稳定性;故障维护是指在设备出现故障时,及时处理故障,保证网络正常运行。
1. 预防性维护预防性维护通常包括以下内容:•检查设备的硬件状态,包括电源及电源线路、接地电阻、设备外壳、端口连接器、电缆等;•检查设备的软件状态,包括操作系统、配置文件、参数设置等;•接口性能指标测试,包括发射功率、接收灵敏度、握手时间等;•网络拓扑结构检查,包括硬件连接关系、邻区关系等;•连通性测试,包括语音通话测试、短信测试、数据业务测试等。
2. 故障维护故障维护通常包括以下内容:•确认故障类型,包括软件故障、硬件故障、传输故障等;•采取相应的排故措施,包括修复软件故障、更换硬件设备、检修传输线路等;•故障恢复后,进行测试,确保设备已正常运行。
三、GSM网络优化GSM网络优化是指对现有网络进行改造或优化,以提高网络的覆盖范围、信号质量、容量等,为用户提供更好的通信服务。
GSM网络优化通常包括以下内容:1. 覆盖优化覆盖优化是指确保网络在足够范围内提供稳定的通信服务。
覆盖优化通常包括以下步骤:•按用户需求调整基站的天线高度及方向,以改善覆盖范围;•优化邻区关系,减少邻区干扰;•利用宏站、中继站等扩大覆盖范围。
GSM无线网络优化首先,信号覆盖是GSM网络优化的首要任务之一、强有力和稳定的信号是实现高质量通信的关键。
为了提高信号覆盖,可以采取以下措施:1.增加基站密度:合理布局基站,增加基站的密度,特别是在人口密集地区和容易发生信号遮挡的地方,以确保信号能够有效地传输。
2.改善天线设计:优化天线方向和倾斜角度,以使信号能够更好地传输到用户设备。
合理安装和调整天线高度和方向,以提高信号质量。
3.优化调制解调器参数:合理调整调制解调器参数,如接收灵敏度和发射功率,以提高信号接收和传输的可靠性。
其次,容量提升是GSM网络优化的另一个关键方面。
随着用户数量和通信需求的增加,提高网络容量是至关重要的。
以下是增加GSM网络容量的方法:1.增加频率资源:增加可用的频率资源,通过频率重用与更好的频率规划来提高容量。
采用数据压缩算法和更高效的调制技术,以提高频谱效率。
2.实施容量扩展技术:采用容量扩展技术,如分布式天线系统(DAS)和微小基站,以增加网络容量和覆盖范围。
3.优化网络配置:通过调整小区参数,如小区划分和邻区关系,以充分利用网络容量。
频谱利用率也是GSM网络优化的一个重要方面。
如何更好地利用有限的频谱资源,提高网络的频谱效率是挑战之一、以下是一些频谱利用优化的方法:1.频谱分配和规划:合理分配频谱资源,避免频谱浪费和冲突。
采用智能频率规划算法,以最大程度地提高频谱利用率。
2.动态频谱分配:采用动态频谱分配技术,根据网络负载和需求分配频谱资源。
通过动态频谱分配算法,实现频谱的灵活使用。
数据速率是现代通信的重要指标之一、随着用户对数据传输的需求不断增加,提高GSM网络的数据速率成为优化工作的重点。
1.采用更高级的调制技术:通过采用更高级的调制技术,如8PSK(8相移键控)和16QAM(16进制调幅),可以提高传输速率。
2. 部署增强型数据业务支持:部署增强型数据业务支持技术,如EDGE(Enhanced Data rates for GSM Evolution)和HSPA(High-Speed Packet Access),可以大大提高数据速率。
通信制式MSC (移动交换中心)
VLR (拜访位置寄存器)
HLR(归属位置寄存器)
AUC(鉴权中心)
系统的
概念
NSS(网
络子系
统)
移动用户号码(MSISDN)GSM
GSM网络架构
BSS(基站子系统)
拓扑图
频分多址(FDMA )
时分多址(TDMA )
位置区识别码(LAI)
全球小区识别码(CGI)
GSM 系统的
编号计划
多址技术
临时移动用户识别码(TMSl)
国际移动用户识别码(IMSI)蜂窝技术
频率复用技术
切换技术
功控技术
GSM 关键技
术无线接口
语音在MS 中的处理过程
语音编码
信道编码
无线接口
程
标及常见问
题
解释
1991年,GSM系统正式在欧洲问世,网路开通运行。
移动通信跨入第二代。
通过无线接口与移动台一侧相连的基站收、发信机(BTS)和与交换机一侧相连的基站控制器(BSC)。
从功能上看,BTS主要负责无线传输,BSC主要负责控制和管理。
一个基站子系统是指一个BSC以及由它所管辖的所有BTS,而不是一个交换机所带的无线系统。
一个BTS通常又分为三个小区(cell),每个小区在空间上有一定的覆盖范围,多个小区共同形成一个连续的覆盖空间,手机就可以这个连续的覆盖空间内通过小区间的切换实现通话及相关业务
从HLR、VLR、AUC这三种数据库中取得处理用户呼叫请求所需的全部数据,同时这三个数据库也会根据MSC最新信息进行自我更新。
MSC为用户提供承载业务、基本业务与补充业务等一系列服务。
作为网络的核心,MSC还支持位置登记、越区切换和自动漫游等移动性能及其它网络功能
存储进入其覆盖区的所有用户的全部有关信息,为已经登记的移动用户提供建立呼叫接续的必要条件。
VLR是一个动态数据库,需要随时与有关的HLR进行大量的数据交换以保证数据的有效性。
当用户离开其覆盖区时,用户的有关信息将被删除。
VLR在物理实体上总是与MSC一体,这样可以尽量避免由于MSC与VLR之间频繁联系所带来的接续时延。
系统的中央数据库,存放与用户有关的所有信息,包括用户的漫游权限、基本业务、补充业务及当前位置信息等,从而为MSC提供建立呼叫所需的路由信息等相关数据。
一个HLR可以覆盖几个移动交换区域甚至整个移动网。
存储用户的加密信息,用以保护用户在系统中的合法地位不受侵犯。
由于空中接口的开放性,经由空中接口传送的信息极易受到侵犯,因此GSM采用了严格的保密措施如用户鉴权、信息的加密等。
这些鉴权信息和加密密钥等均存放在AUC中,因此,AUC是一个受到严格保护的数据库。
在物理实体上,AUC与HLR共存
CC:国家码。
即移动台登记注册的国家码,中国为86;
NDC:国内网络接入号码。
中国移动网为135~139、联通网为130~131等等;
SN:用户号码。
采用等长8位编号计划,具体号码分配由运营公司决定;
MCC--移动国家码。
唯一的识别移动用户所属的国家。
中国的MCC为460;
MNC--移动网号,识别移动用户所归属的移动通信网(PLMN)。
中国移动的MNC为00,中国联通为01;
MSIN--移动用户识别码,唯一地识别某一移动通信网中的移动用户;
考虑到系统的安全性,GSM系统提供了在空中接口传递TMSI代替1MSI的保密措施。
TMSI由VLR为来访的移动用户在鉴权成功后分配,它是一个由VLR自行分配的4字节的BCD编码,仅限在VLR管辖区内代替IMSI临时使用,且与IMSI相互对应
MCC--移动国家码。
唯一的识别移动用户所属的国家。
中国的MCC为460;
MNC--移动网号,识别移动用户所归属的移动通信网(PLMN)。
中国移动的MNC为00,中国联通为01;
LAC是位置区号码,用于识别GSM网络中的一个位置区,它可以由运营部门自定;
MCC--移动国家码。
唯一的识别移动用户所属的国家。
中国的MCC为460;
MNC--移动网号,识别移动用户所归属的移动通信网(PLMN)。
中国移动的MNC为00,中国联通为01;
CI是可由运营部门自定义的小区识别号码,是一个2ByteBCD编码;
频分,有时也称之为信道化,就是把整个可分配的频谱划分成许多单个无线电信道(发射和接收载频对),每个信道可以传输一路话音或控制信息。
在系统的控制下,任何一个用户都可以接入这些信道中的任何一个
时分多址是在一个宽带的无线载波上,按时间(或称为时隙)划分为若干时分信道,每一用户占用一个时隙,只在这一指定的时隙内收(或发)信号,故称为时分多址。
TDMA的一个变形是在一个单频信道上进行发射和接收,称之为时分双工(TDD)。
其最简单的结构就是利用两个时隙,一个发一个收。
当手机发射时基站接收,基站发射时手机接收,交替进行。
TDD具有TDMA结构的许多优点:猝发式传输、不需要天线的收发共用装置等等。
它的主要优点是可以在单一载频上实现发射和接收,而不需要上行和下行两个载频,不需要频率切换,因而可以降低成本
GSM移动通信系统采用基站设备来提供无线服务。
基站的覆盖范围有大有小,我们把基站的覆盖范围称之为蜂窝,整个网络便是由多个蜂窝连续覆盖而成的。
采用大功率的基站主要是为了提供比较大的服务范围,但它的频率利用率较低,也就是说基站提供给用户的通信通道比较少,系统的容量也就大不起来,对于话务量不大的地方可以采用这种方式,我们也称之为大区制。
采用小功率的基站主要是为了提供大容量的服务范围,同时它采用频率复用技术来提高频率利用率,在相同的服务区域内增加了基站的数目,有限的频率得到多次使用,所以系统的容量比较大,这种方式称之为小区制或微小区制
频率复用是蜂窝移动无线电系统的核心概念。
在频率复用系统中,处在不同地理位置(不同的小区)上的用户可以同时使用相同频率的信道,频率复用系统可以极大地提高频谱效率
GSM网络是一个蜂窝网络,整个网络是由多个小区连续覆盖而成的,那么用户在移动通话过程中便会穿越多个小区,当移动用户在通话过程中,从A小区移动到B小区时,为用户提供服务的小区也将由A小区变为B小区,这种在通话过程中服务小区的变更过程就叫切换。
切换的目的是保证用户占用服务质量最好的小区,避免用户在移动通话中掉话
当手机在小区内移动时,它的发射功率需要进行变化。
当它离基站较近时,需要降低发射功率,减少对其它用户的干扰,当它离基站较远时,就应该增加功率,克服增加了的路径衰耗;基站也可以根据上行的质量和电平来改变自己的发射功率。
GSM采用规则脉冲激励──长期预测编码(RPE-LTP),其处理过程是先进行8KHZ抽样,调整每20ms为一帧,每帧长为4个子帧,每个子帧长5ms,纯比特率为13kbit/s
为了检测和纠正传输期间引入的差错,在数据流中引入冗余通过加入从信源数据计算得到的信息来提高其速率,信道编码的结果一个码字流
(移动台发,基站收)
(移动台收,基站发)
(移动台发,基站收)
(移动台收,基站发)
=γ
R。