电容式触摸传感器在智能手机的触摸按键布局设计
- 格式:doc
- 大小:18.50 KB
- 文档页数:4
电容触摸式按键设计规范及注意事项技术研发中心查达新所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。
在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。
正是手指的这种导电特性,使得电容式触摸式按键应用于电路中,替代传统的机械式按键操作。
关于电容触摸式按键设计,有下列要求:1.PCB触摸焊盘①.感应按键面积,即焊盘接触面积应不小于手指面积的2/3,可大致设计为5*6mm、6*7mm;且按键间的距离不小于5mm,如下图:②.连接触摸按键的走线,若是双面板尽可能走按键的背面,走在正面的画需保证离其他按键2mm以上间距;③.感应按键与覆铜的距离不小于2mm,减少地线的影响;2.感应按键面壳或外壳①.面壳材料只要不含有金属都可以,如:塑胶,玻璃,亚克力等。
若面壳喷漆,需保证油漆中不含金属,否则会对按键产生较大影响,可用万用表电阻档测量油漆表面导电程度,正常不含金属油漆的面壳电阻值应为兆欧级别或无穷大。
通常面壳厚度设置在0~10mm之间。
不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。
②.可以用3M胶把按键焊盘与面壳感应端黏连、固定,或者通过弹簧片方式焊接在PCB焊盘的过孔上与面壳感应端相连;如下图:③.触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm 比较合适,推荐采用3M468MP,其厚度0.13mm。
要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。
空气会对触摸按键的灵敏度影响很大。
所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。
PCB与双面板粘接,PCB带双面胶与面板装配时都要用定位夹具完成装配,装配完成后,要人工或用夹具压紧。
为了保证PCB板与面板之间没有空气,需要在双面板上开孔和排气槽,并且与PCB上开孔配合。
设计夹紧夹具时,重点压触摸按键的部位,确保感应部位没有空气。
在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。
FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。
在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。
在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。
PCB设计与布局在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。
每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。
需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。
顶层和底层的空白区域可填充网状接地铜箔。
图 2.1 两层 PCB 板的顶层图 2.2 两层 PCB 板的底层设计规则第1 层(顶层)•传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。
为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。
可以使用更小尺寸的感应电极,但会降低灵敏度。
同时,建议感应电极的尺寸不超过15 x 15 毫米。
如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。
•空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30 密耳)。
•顶层可用来布设普通信号迹线(不包括传感器信号迹线)。
应当尽可能多地把传感器信号迹线布设在底层。
•感应电极与接地铜箔的间距至少应为0.75 毫米。
第2 层(底层)•S -Touch TM控制器和其它无源部件应该设计布局在底层。
•传感器信号迹线将被布设在底层。
不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。
•空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。
•传感器信号迹线与接地铜箔的间距应当至少是传感器信号迹线宽度的两倍。
触摸按键方案触摸按键的出现,使得人机交互更加智能便捷。
作为一种新型的控制方式,触摸按键方案被广泛应用于各种电子设备中,如智能手机、平板电脑、智能家居等。
本文将介绍触摸按键方案的原理、分类及应用,并探讨其未来趋势。
一、触摸按键方案的原理触摸按键方案基于电容技术或电阻技术,通过感应用户手指触摸来实现控制操作。
电容触摸按键利用电容传感器感应电容变化,而电阻触摸按键则利用电阻屏幕感应用户触摸位置。
二、触摸按键方案的分类根据触摸按键的应用环境和形式,触摸按键方案可分为以下几类:1. 嵌入式触摸按键方案:嵌入式触摸按键常见于家电控制面板、汽车中控系统等场景。
它具有防水、耐磨、易清洁等特点,能够适应恶劣环境下的使用。
2. 表面触摸按键方案:表面触摸按键常见于手机、平板电脑等便携式设备上。
它采用电容触摸屏技术,具有高灵敏度、多点触控等特点,可以实现更多的操作功能。
3. 增强型触摸按键方案:增强型触摸按键结合了传统物理按键和触摸技术的优势,既可以通过触摸来操作,也可以通过物理按键来实现一些特殊功能。
这种方案常用于游戏机、远程控制器等设备上。
4. 三维触摸按键方案:三维触摸按键可以感应用户手指在水平和垂直方向上的运动,实现更多维度的操作。
这种方案常用于虚拟现实设备、交互式投影仪等场景。
三、触摸按键方案的应用触摸按键方案在各个领域都有广泛的应用,以下是几个典型的应用案例:1. 智能手机:智能手机采用触摸按键方案,使用户可以通过屏幕进行各种操作,如拨打电话、发送短信、浏览网页等。
2. 平板电脑:平板电脑也采用触摸按键方案,用户可以通过手指在屏幕上滑动、点击来进行应用程序的切换、文件的编辑等操作。
3. 智能家居:智能家居控制面板上常常使用触摸按键方案,用户可以通过触摸面板来控制家里的灯光、温度、安防等功能。
4. 汽车中控系统:越来越多的汽车配备了触摸按键方案的中控屏,用户可以通过触摸屏来调节音乐、导航、空调等功能。
四、触摸按键方案的未来趋势随着科技的不断发展,触摸按键方案也在不断演进。
触摸按键方案触摸按键方案可以说是现代电子产品中不可或缺的一部分。
从智能手机到智能家居设备,触摸按键都广泛应用于各个领域。
本文将介绍触摸按键方案的基本原理、应用领域以及未来发展趋势。
一、基本原理触摸按键方案基于电容式触摸技术实现,主要通过感应人体的电荷变化来实现按键功能。
电容式触摸技术分为静电感应技术和电容感应技术两种。
静电感应技术是利用人体与触摸板之间的电荷交互产生静电场变化,进而检测出用户的点击操作。
这种技术成本低、灵敏度高,但易受环境干扰和外部电压影响。
电容感应技术则是通过人体与触摸面板之间的电容变化来实现按键功能。
触摸面板上有一层导电膜,当用户触摸时,人体的电容会改变导电膜间的电场分布,从而被探测到。
这种技术抗干扰性强、反应速度快,适用于各种复杂环境。
二、应用领域1. 智能手机领域触摸按键方案在智能手机领域应用广泛。
通过触摸屏幕,用户可以轻松操作手机的各种功能。
触摸按键方案的发展使得手机屏幕越来越大,触摸灵敏度也得到了显著提升,为用户提供了更好的操作体验。
2. 手持设备领域触摸按键方案在手持设备领域如平板电脑、游戏机等得到广泛应用。
触摸按键的响应速度以及触摸面板的精确度对于游戏体验至关重要。
现代手持设备通过不断优化触摸按键方案,使得用户在游戏中能够更加准确地操作,享受更流畅的游戏体验。
3. 智能家居领域随着智能家居概念的兴起,触摸按键方案成为控制家居设备的主要方式之一。
通过家居中布置的触摸面板,用户可以方便地控制灯光、温度和音乐等设备。
触摸按键方案的应用使得智能家居实现了更加智能、舒适、便捷的生活方式。
三、未来发展趋势触摸按键方案在未来的发展中会呈现以下几个趋势:1. 多功能集成化:触摸按键方案将越来越多的功能集成到一个触摸面板中,实现更多的操作方式。
2. 柔性触摸技术:随着柔性电子技术的发展,柔性触摸按键将逐渐成为趋势。
柔性触摸按键可以在曲面、弯曲的设备上应用,为用户提供更加舒适和便捷的操作体验。
触摸按键方案1. 引言触摸按键是一种通过触摸感应表面来实现操作的输入方式。
相较于传统的机械按键,触摸按键具有更加简洁、美观、易于维护的优势,因此在许多电子设备中被广泛应用。
本文将介绍触摸按键的工作原理、设计要点以及常见的应用案例。
2. 工作原理触摸按键通过检测人体对电容的影响来实现触摸操作。
一般而言,使用电容感应触摸技术来实现触摸按键。
电容感应触摸技术主要依赖于电容传感器,在触摸按键的表面布置一层导电玻璃或金属薄膜,并通过电容传感器来检测人体接近时的电容变化。
触摸按键的电容传感器通常采用两种不同的技术来实现:2.1 电阻感应技术电阻感应技术通过在触摸按键的表面覆盖一层导电材料,并在其周围布置一组感应电极,将触摸按键形成的电容作为电路的一部分来测量。
当人体接近触摸按键时,电容的值会发生变化,从而触发相应的操作。
2.2 电容感应技术电容感应技术利用触摸按键上表面电角模型来感应人体靠近时的电容变化。
通过在触摸按键表面布置一组感应电极,当人体接近时,感应电极的电容值会发生变化,从而触发相应的操作。
3. 设计要点在设计触摸按键方案时,需要考虑以下几个关键要点:3.1 材料选择触摸按键的材料选择是一个重要的设计决策。
常用的材料包括导电玻璃、金属薄膜等。
材料的导电性能、机械强度以及透明性等特性需要综合考虑。
3.2 电路设计触摸按键的电路设计需要合理布局感应电极,并选择合适的电容传感器和信号处理芯片。
电路设计的关键是确保稳定的电容测量和低功耗。
3.3 接地设计触摸按键的接地设计是确保触摸按键稳定性和可靠性的关键。
合适的接地方案可以降低触摸按键受到干扰的可能性,并提供稳定的工作环境。
3.4 防护设计触摸按键的防护设计需要考虑防水、防尘等特性。
合适的防护设计可以提高触摸按键的寿命和可靠性。
4. 应用案例触摸按键广泛应用于各种电子设备中,下面是一些常见的应用案例:4.1 智能手机智能手机是最常见的触摸按键应用之一。
触摸屏幕作为手机主要的输入方式,具有良好的用户体验和操作便捷性。
触摸按键方案1. 引言触摸按键是一种常见的用户输入方式,它通过触摸感应技术来模拟物理按键的功能。
相较于传统的机械按键,触摸按键具有无机械结构、耐磨损、易于维护以及美观等优点。
本文将介绍触摸按键的工作原理及常见的触摸按键方案。
2. 触摸按键工作原理触摸按键的工作原理基于电容感应技术,它利用人体电容特性和感应电路的原理来检测人体接近或触摸的动作。
一般来说,触摸按键包括电容感应芯片、传感电极、静电保护电路等组成。
触摸按键的感应电极通常是由导电材料制成,例如金属或导电性的触摸板。
感应电极周围的电流环会形成一个电场,当人体接近或触摸感应电极时,人体和电极之间会形成一个电容。
利用电容感应芯片检测电容的变化,就可以判断用户触摸按键的动作。
3. 单触摸按键方案单触摸按键方案是最简单和常见的触摸按键方案之一。
它只包含一个感应电极,用户通过触摸这个电极来实现输入操作。
在单触摸按键方案中,一般会使用一个电容感应芯片来检测电容变化,并将信号传输到主控芯片进行处理。
这种方案的优点是结构简单,成本低廉。
但它的缺点是无法实现多点触控,用户只能进行简单的单点触摸操作。
4. 多触摸按键方案与单触摸按键相比,多触摸按键方案可以实现更多丰富的交互操作。
多触摸按键方案中,通过增加感应电极的数量,可以检测更多手指的触摸,并实现多点触控功能。
多触摸按键方案一般采用更为复杂的电容感应芯片和传感电极布局。
这些感应电极之间需要满足一定的间隔,以免干扰彼此的触摸信号。
多触摸按键方案的优点是能够实现更复杂的操作,如手势识别、旋转缩放等。
然而,它也比单触摸按键方案更为复杂,成本也会相应增加。
5. 触摸按键的应用触摸按键已经广泛应用于各种电子设备中,包括智能手机、平板电脑、智能家居设备等。
它们的用户界面通常采用触摸屏来实现触摸按键功能。
触摸按键的应用不仅仅局限于消费电子产品,它还常用于工业控制设备、医疗设备等领域。
触摸按键方案的灵活性和可定制性使得它能够适应不同应用场景的需求。
电容式触摸按键布线分享1):电容式触摸按键特点及应用与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。
它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中!2):电容式触摸按工作基本原理所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。
具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理!3): 电容式触摸按电容构成及判断PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。
电容式触摸按键布板要求1): PCB板的电容构成因素:PCB板中电容构成因素如右图:其中代表PCB板最终生成电容代表空气中的介质常数代表两板电介质常数代表两极板面面积代表两板距离2): PCB板的布局电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:虽然触摸按键最终的效果可能与其他一些因素还有很多直接或间接的关系,但做为PCB的绘制人员,我们因该尽量保证我们所绘制的PCB效果达到最佳(及控制好触摸按键的中的基准电容值)PCB布板至关重要,因为PCB构成的电容容量极小,而且必须要尽量控制等效电容,不能过大,因为人体电容也是极小的(数pF),不同的人之间差异也比较大,而触摸按键的灵敏度就在于手指接触按键前后PAD电容量的差异,而且这么小的电容充放电极易受到干扰,所以布线的关键两点就是:1、控制电容量2、避免干扰影响电容容量的因素是极板的面积和极板间的介质材料,在实际应用中人体是不太可能直接接触PCB的,所以PCB与按键接触面必须有覆盖层,在触摸按键应中影响容量的因素有:1、 PAD的面积与铺地间的距离以及铺地的面积2、 PAD上的覆盖层的厚度和材质(介质)3、 PCB的厚度和材质对应的策略如下:1、 PAD的面积应尽量接近手指接触按键的有效面积。
电容式触摸板布线及设计说明1、Sensor Pad形状可根据结构选择圆形、方形或三角形,实心(无须绿油)。
避免使用狭长型焊盘。
2、Sensor Pad大小根据结构选择合适大小,一般需满足成人手指接触面积相当,直径8~15mm为适。
通用型:0.5 inch*0.5 inch 方形3、Sensor Pad间距减小相邻Sensor Pad之间的干扰,其之间的距离不能太小,≧2.5mm4、覆盖层材料选择及注意点(硬件调试时需知)①由于不同材料的介电常数不同,对应的触摸灵敏度及精度都会有所不同,玻璃>亚克力>空气,确保Sensor Pad与覆盖层之间没有残留空气②覆盖层中不能含有电感性材料(如金属),其会吸收Sensor Pad产生的电力线,影响到感应灵敏度或直接失效。
【若更改电路参数增强灵敏度,同样会导致抗干扰性降低】5、布局布线①Pad走线:尽可能窄,7~10mil为适,且尽量避开地线及其余走线(特别是通信信号线I2C、SPI等,如若不能,则应垂直布线),减小寄生电容及串扰。
走线长度尽量短,≦35cm,以保证信号稳定。
相邻PAD走线也应尽量避开(满足3W原则)。
如若不能,可再两者之间添加地线隔离(或用最小线宽进行覆铜)。
②振荡RC、PAD附属RC都应靠近触摸IC,且其下方勿走高频走线。
③使用双面板时,尽量使PAD处于top层,其余布线走bottom层,且PAD下方勿走高频走线及其余PAD感应线。
④Top层可覆铜,其PAD与地线之间的距离要大,≧1.59mm。
6、元件材质选择(设计时应注意)振荡RC、PAD附属RC尽量选用温度系数较好的材质,如X7R、NPO等。
触摸按键方案在现代科技的发展中,触摸屏技术已经广泛应用于各种设备中,如智能手机、平板电脑、车载导航系统等。
触摸按键方案成为了人机交互领域的重要研究方向之一。
本文将介绍几种常见的触摸按键方案,包括电容触摸按键、电阻触摸按键以及声表面波触摸按键,并对其原理和应用进行详细说明。
一、电容触摸按键方案电容触摸按键方案基于电容原理,通过感应触摸对象与电容探测电极之间的电容变化来实现按键的触发。
电容触摸按键方案具有以下优点:1. 高灵敏度:电容触摸按键可以检测极小的电容变化,触摸时只需轻轻触摸即可触发。
2. 多点触控:电容触摸按键可以实现多点触控,提供更多的交互方式。
3. 高速响应:电容触摸按键的响应速度非常快,可以迅速响应用户的操作。
二、电阻触摸按键方案电阻触摸按键方案基于电阻原理,通过两个电阻层之间的接触来检测按键触发。
电阻触摸按键方案具有以下特点:1. 较低成本:电阻触摸按键的制作成本相对较低,适用于一些低成本的应用场景。
2. 耐用性强:电阻触摸按键具有较好的耐久性,可以经受长时间的使用而不容易损坏。
3. 对环境要求低:电阻触摸按键对环境的要求较低,可以在较恶劣的环境下正常工作。
三、声表面波触摸按键方案声表面波触摸按键方案利用声表面波传感器来检测按键触发,其原理是通过声波在表面传播产生的能量变化来实现按键的触发。
声表面波触摸按键方案具有以下特点:1. 高精度:声表面波触摸按键具有较高的精度,可以提供准确的触摸定位。
2. 抗干扰能力强:声表面波触摸按键具有较好的抗干扰能力,可以在噪音较大的环境下正常工作。
3. 适用范围广:声表面波触摸按键可以适用于各种表面材质,如金属、玻璃、塑料等。
综上所述,电容触摸按键、电阻触摸按键和声表面波触摸按键是目前常见的触摸按键方案。
在选择合适的方案时,可以根据应用场景的需求和预算来综合考虑各种因素。
触摸按键方案的不断创新和改进将为人机交互领域带来更多的可能性和便利性,为用户提供更好的交互体验。
电容式触摸感应按键解决方案方案简介在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸式按键作为一种接口技术已被广泛采用。
由于具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统的机械按键转向触摸式按键。
基于LPC1100 系列Cortex-M0 微控制器的电容式触摸感应按键方案,采用LPC1100 的GPIO 口和两个内部定时器,即可实现多达24 个独立按键或滑条式电容触摸按键的应用。
本方案采用外围RC 电路加软件检测技术,集成FIR 滤波算法,拥有良好的抗干扰性能,可通过EFT(脉冲群抗干扰度测试)4KV 的指标,非常适合由交流电驱动的电子设备。
原理概述电容式触摸感应按键的基本原理如图1 所示,当人体(手指)接触金属感应片的时候,由于人体相当于一个接大地的电容,因此会在感应片和大地之间形成一个电容,感应电容量通常有几pF 到几十pF。
利用这个最基本的原理,在外部搭建相关电路,就可以根据这个电容量的变化,检测是否有人体接触金属感应片。
图1 电容式触摸感应原理基于LPC1100 系列Cortex-M0 微控制器电容式触摸感应按键原理如图2 所示,利用LPC1100 的GPIO 中断功能加上内部定时器,可很方便的测量外部电容量变化。
处理流程如下:初始化KEY n 为GPIO 口,必须关闭内部上拉功能,配置为既不上拉也不下拉的模式;使能并配置KEY n 的高电平中断;将KEY n 设置为输出,并输出低电平,此时电容放电;开启定时器,将KEY n 配置为输入,并开启高电平中断,此时电容开始充电,在KEY n 的中断服务函数中读取定时器的时间;根据这个充电时间的变化量就可以判断出是否有按键按下。
图2 基于LPC1100 触摸按键原理注:图2 中只是示意了2 个独立按键连接方案,利用LPC1100 内部的GPIO 输入可以连接多达24 个独立按键或滑条。
RC 电路充放电在有无人体触摸时的充放电波形图如图3所示。
触摸按键方案触摸按键是现代家电和电子产品常见的人机交互方式之一。
相比于传统机械按键,触摸按键的优势在于无需物理按下键位,操作更加简便、灵活,并具有时尚、高端的外观。
而触摸按键方案的设计和实现,则是关键所在。
一、触摸按键的实现方式触摸按键的实现方式主要有电容触摸和电阻触摸两种方式。
电容触摸通过电容感应原理,当手指接触触摸面板时,被触摸的电容体会和周围的电容元件相互影响,从而被检测到触摸,并产生反应。
电阻触摸采用导电材料作为触摸面板和控制电路之间的桥梁。
当手指触摸面板时,产生电感应,被检测到触摸并产生反应。
二、触摸按键的设计要点1.触摸点灵敏度。
触摸按键要能够快速、准确地检测到触摸动作,达到良好的交互体验。
2.抗干扰性。
触摸按键在工作环境中要能够过滤一定程度的噪声和干扰,保证稳定可靠。
3.节能耗电。
触摸按键在设计时应考虑最低功耗的实现方案,以节省电力。
4.外观设计。
触摸按键的外观设计要美观、时尚、符合产品风格,能够更好地满足用户购买需求。
三、触摸按键方案的实现1.硬件实现。
触摸按键方案需要设计合适的触摸面板、接收电路、处理电路等硬件部分,以保证触摸按键的稳定、可靠实现。
2.软件实现。
触摸按键方案需要针对不同用户场景和交互需求设计合适的软件算法和控制程序,以实现触摸按键的正常工作,并提升交互用户体验。
3.集成方案。
目前市场上有多种触摸按键集成方案,可以有效简化设计流程、缩短开发周期、提高生产效率,同时也可以提供更好的用户体验和性能表现。
四、触摸按键的应用范围触摸按键广泛应用于家电、电子产品、医疗设备、工业显示器、智能门禁等领域。
随着人机交互方式的不断创新,触摸按键方案也将不断升级和优化,为智能化生活带来更加便捷、高效、舒适的体验。
总之,触摸按键方案在现代家电和电子产品中的重要性不言而喻。
在设计和实现过程中,我们应该根据实际需求和产品特点,综合考虑硬件、软件、用户需求等因素,以实现最佳的交互体验和营销效果。
基于电容感应原理的手机按键设计
张焱焱
【期刊名称】《机械研究与应用》
【年(卷),期】2007(020)004
【摘要】论述了机械按键的不足之处,引出了新兴的电容感应技术,并配合图文,详细论述了电容感应按键的应用原理和方向.
【总页数】2页(P55-56)
【作者】张焱焱
【作者单位】东南大学,机械工程学院,江苏,南京,210096
【正文语种】中文
【中图分类】TM531
【相关文献】
1.轻松实现电容式触摸感应按键开关设计 [J], 陈林
2.无按键时代即将到来——Cypress的电容感应解决方案:界面设计的革命 [J], Wang Yi Hang
3.基于充放电原理的电容式触摸按键设计 [J], 田野;廖明燕
4.PSoC的电容式非接触感应按键设计 [J], 邹明艳;张东来
5.家电电容式轻触感应按键原理以及设计方式 [J], 徐平
因版权原因,仅展示原文概要,查看原文内容请购买。
电容感应触摸感应器的设计目 录1触摸感应器设计介绍 (2)1.1简介 (2)1.2自耦电容和互耦电容类型的感应器 (2)1.3方向分类 (2)1.4重要定义 (3)2基本的设计要求 (5)2.1电荷转移 (5)2.2元件选择 (6)2.3材质 (7)2.4靠近发光二极管 (9)2.5ESD防护 (10)3自耦的无方向感应器 (11)3.1介绍 (11)3.2平面感应器 (11)3.3地负载 (12)3.3非平面结构 (15)4互耦的无方向感应器 (19)4.1简介 (19)4.2平面结构 (19)4.3非平面结构 (27)5自耦的单方向感应器 (31)5.1简介 (31)5.2基本规则 (31)5.3典型的空间插值方式 (32)5.4典型的电阻插值方式 (34)6互耦的单方向感应器 (37)6.1简介 (37)6.2基本规则 (37)6.3典型的空间插值结构 (37)6.4典型的电阻插值方式 (43)7双方向感应器 (46)这篇设计概要的翻译,是为了配合库文件的设计。
目前电容感应触摸越来越多地应用到各个领域,希望这篇文档在按键的设计方面能为大家提供参考和帮助。
阿布猪 2009.07.08于首发,转载请注明出处。
1触摸感应器设计介绍1.1简介在设计触摸感应器的时候,有许多问题需要做出妥善的选择,比如产品结构中的材料,以及机械部分和电子部分的组装关系等等。
而这些问题中最关键的是设计实际的感应器(键/滑条/滚轮/触摸屏)和用户的接口部分。
感应器的设计是一种“黑箱技术”,感应电极和周围电场环境的分布参数只能大略上近似为集总的。
但是,按照一定的原则进行感应器的设计,可以实现一些适应性比较强并且具有相当的实用性和一致性的方案。
本设计指导旨在说明一些基本的规则,以便在PCB 或其它材质上建立感应电极。
当然本文并不能涵盖全部的感应电极设计方法,但它提供了一个基本的建立感应触摸应用的方法和不错的起点。
用户应参考QTAN0032 获得更多的电容感应按键设计的信息。
学校代码: 11059学号: 0805070076Hefei University毕业论文(设计 B A CH ELO R D IS S ERTATIO N论文题目:电容式触摸按键的设计与实现(软件部分学位类别:工学学士学科专业:自动化作者姓名:贾克慎导师姓名:储忠完成时间: 2012-5-24电容式触摸按键的设计与实现(软件部分中文摘要当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸式按键作为一种接口技术已被广泛采用。
由于具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统的机械按键转向触摸式按键。
在触摸按键技术方面,目前主要可分为电阻式触摸按键与电容式感应按键。
由于电阻式的触摸按键需要在设备表面贴一张触摸电阻薄膜, 其耐用性较低;而电容感应按键技术具有在非金属操作面板上无须开孔处理、防水防污、易清洁、无机械开关磨损而寿命长等优点。
本论文通过分析电容式触摸感应技术,研究人体触摸算法,设计出基于PIC单片机的电容式触摸按键系统。
根据系统的要求完成了整体方案设计,在所设计的控制方案里对控制系统的软、硬件设计作了详细论述。
本论文主要介绍软件部分,并将系统软件分为:系统初始化模块、按键识别模块、LCD显示模块、高优先级和低优先级中断服务程序模块。
首先将各个模块进行分析研究,然后进行软硬件联合调试,最后完成该毕业设计所要求的内容。
关键词:电容式触摸感应;模块化;调试;PIC16F1937Design and implementation of capacitive touch keysAbstractNowadays,automatic control systems have been widely used and developed in Every aspect of life,the applicatio n of portable media players and mobile handsets, such as large-capacity, high-visib ility products, the touch buttons as an interface techno logy has been widely adopted. Easy to use, stylish and low-cost advantage, more and more electronic products began to shift fro m the traditio nal mechanical b uttons with to uch button.Touch-button techno logy can be divided into resistive touch butto ns and capacitive sensing buttons. Resistive touch keys touch the surface of the device is attached a resistive film, the lower its d urability; Capacitive sensing key technolo gies has a hand le on the panel o f no n-metallic operating without opening, watering pollution, easy to cleaning, non-mechanical switches wear long life advantages.In this paper, by analyzing capacitive touch sensing techno logy and studying human touch algorithm, we finish the design of capacitive touch b utton system ba sed on PIC microcontroller. According to the requirements of the system we complete the overall design of the control system,in which hardware and software design are discussed in detail. This paper mainly introduces the software part, which is divided into four modules: the system initialization module, the key recognition module, LCD display module, a high priority and low priority interrupt service routine module. First do analysis and stud y on every module. Then co mb ine hardware with so ftware and debug. Finally comp lete the g raduatio n design’s requiremen ts.KEY WORD:Capacitive touch sensing;Modular design;Debugging; PIC16F1937目录第一章前言 (11.1 系统简介 (11.2 课题的研究背景 (11.3 课题研究现状与发展趋势 (1 1.4 课题研究的内容 (21.5 本章小结 (2第二章系统设计 (32.1 设计任务 (32.1.1 电容触摸感应技术的分析 (3 2.1.2人体触摸检测算法的研究 (5 2.2 总体方案分析 (52.2.1中央处理模块 (62.2.2电源转换电路 (62.2.3信息显示模块 (62.3 系统功能结构及组成 (62.3.1 系统功能结构 (62.3.2 系统组成 (72.4 本章小结 (7第三章系统软件设计 (83.1 软件设计思想 (83.1.1按键检测思想 (83.1.2 各个显示模块设计思想 (10 3.2 主处理程序设计 (103.3 按键设计模块 (143.3.1 按键识别 (143.3.2 按键的程序框图 (153.4 显示模块程序设计 (183.4.3 LCD显示模块 (183.5 软件开发环境介绍 (193.5.1 工程文件的建立 (193.5.2 源程序的加载 (213.5.3 源程序编译、下载 (223.6 本章小结 (23第四章硬件设计 (244.1 硬件设计原则 (244.2 电容式触摸式按键的设计 (24 4.2.1 PCB常规设计 (244.2.2电极与元件的设计 (264.2.3覆盖物 (284.2.4触摸式按键的原理 (284.3 显示模块的设计 (304.4 段式液晶驱动HT1621 (304.5 本章小结 (32第五章系统测试 (33第六章总结 (37参考文献 (38致谢 (40附录A系统原理图 (41附录B 系统PCB布线图 (42附录C 实物图片 (43附录D 程序代码 (44第一章前言在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸式按键作为一种接口技术已被广泛采用[1]。
轻松实现电容式触摸感应按键开关设计市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,益登科技设计出以Silicon Labs 公司MCU 为内核的电容式触摸感应按键方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。
电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
测量周期的变化,就可以侦测触摸动作。
具体测量方式有两种:一是可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压;二是可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
C8051F9xx MCU 系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23 个感应按键。
而且无须外部器件,通过PCB 走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
与C8051F93x-F92x 方案相比,唯一所需的外部器件是(3+N)电阻器,其中N 是开关的数目,以及3 个提供反馈的额外端口接点。
以上这两种测量方法,都需要通过比较测量数值和一个预先设置的门限值,来判断开关是否被按压。
所以,门限值需要被适当地校准,以免影响开关的灵敏度。
在系统中,可以对所有开关做一次初始校准,设置门限值。
如果系。
电容式触摸传感器在智能手机的触摸按键布局设计
在本系列文章的第1部分中,我们不仅探讨了机械按键用户界面与电容式触摸传感器用户界面的差异,而且还讨论了步骤1(设备的外观与质感)以及步骤2中的原理图设计部分。
第2部分,我们将介绍将机械按键替换成电容式感应按键时所需的设计布局。
此外,我们还将举一个应用实例。
步骤2:布局:
对于电容式传感器设计方案而言,布局非常重要,因为传感器很容易受外部噪声影响。
每个布局都必须针对特定应用创建,因此布局辅助工作通常着眼于提供建议。
所以,一般很难一开始就给出理想的设计。
在设计任何电容式传感器布局时,开发人员必须考虑的重要参数包括:
●传感器尺寸:传感器尺寸取决于覆盖层厚度。
覆盖层越厚,传感器就越大。
考虑到较小按键对触摸不够敏感,而较大按键对触摸太过敏感,这都是我们不想要的,因此要优化按键尺寸。
●寄生电容(CP):传感器的PC电路板迹线的固有电容叫寄生电容。
大传感器CP可使其更难感应传感器电容的微小变动,从而可降低灵敏度。
电容式感应布局应将传感器CP 保持为最小。
●迹线长度:较长的迹线长度可增大传感器的CP,从而可降低传感器灵敏度。
此外,长迹线还会像内部天线一样,降低传感器的抗噪性。
●功耗:传感器CP是影响器件功耗的主要因素之一。
较大的传感器CP可增大传感器因此而必需扫描的时间,导致整体功耗上升。
要降低功耗,传感器CP必须保持最小。
一次成功优化所有这些参数并非小事。
为了避免布局重新设计的多次反复进行,电容式感应技术厂商提供了各种高级工具来简化该流程。
例如,赛普拉斯提供的设计工具套件就是一款这样的工具,可帮助开发人员纠正布局设计。
此外,它还可帮助各团队避免不太容易发现的错误,这些错误的消除可能非常耗时耗力。
该设计工具套件是EZ-Click软件工具的一部分,可帮助配置MBR器件。