数值分析第三章 解线性方程组的直接方法 ppt课件
- 格式:ppt
- 大小:656.00 KB
- 文档页数:23
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
数值分析讲义第三章线性方程组的解法§3.0 引言§3.1 雅可比(Jacobi)迭代法§3.2 高斯-塞德尔(Gauss-Seidel)迭代法§3.3 超松驰迭代法§3.7 三角分解法§3.4 迭代法的收敛性§3.8 追赶法§3.5 高斯消去法§3.9 其它应用§3.6 高斯主元素消去法§3.10 误差分析§3 作业讲评3 §3.11 总结§3.0 引言重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题.分类:线性方程组的解法可分为直接法和迭代法两种方法.(a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高.(b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.§3.1 雅可比Jacobi 迭代法 (AX =b )1基本思想:与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2问题:(a) 如何建立迭代格式?(b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析:考虑解方程组⎪⎩⎪⎨⎧=+--=-+-=--2.453.82102.7210321321321x x x x x x x x x (1)其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式:⎪⎩⎪⎨⎧++=++=++=84.02.01.083.02.01.072.02.01.0213312321x x x x x x x x x (2) 据此建立迭代公式:⎪⎩⎪⎨⎧++=++=++=+++84.02.01.083.02.01.072.02.01.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3) 取迭代初值0)0(3)0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp迭代次数 x1 x2 x30 0 0 01 0.72 0.83 0.842 0.971 1.07 1.153 1.057 1.1571 1.24824 1.08535 1.18534 1.282825 1.095098 1.195099 1.2941386 1.098338 1.198337 1.2980397 1.099442 1.199442 1.2993358 1.099811 1.199811 1.2997779 1.099936 1.199936 1.29992410 1.099979 1.199979 1.29997511 1.099993 1.199993 1.29999112 1.099998 1.199998 1.29999713 1.099999 1.199999 1.29999914 1.1 1.2 1.315 1.1 1.2 1.34Jocobi迭代公式:设方程组AX=b, 通过分离变量的过程建立Jocobi迭代公式,即),,2,1()(1),,2,1(0,11n i x a b a x n i a b x a n ij j j ij i iii ii ni i j ij =∑-==≠∑=≠== 由此我们可以得到Jacobi 迭代公式:),,2,1()(11)1(n i x a b a xn ij j k i ij i iik i=∑-=≠=+[Jacobi 迭代公式的算法] 1: 初始化. n , (a ij ), (b j ), (x 1) , M . 2: 执行k =1直到M 为止. ① 执行i =1直到n 为止.ii nij j j ij i i a x a b u /)(1∑-←≠= ;② 执行i =1直到n 为止.i i u x ← ;③输出k , (x i ).另外,我们也可以建立Jacobi 迭代公式的矩阵形式. 设方程组AX =b ,其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T将系数阵A 分解为: A =U +D +L ,U 为上三角矩阵,D 为对角矩阵,L 为下三角矩阵.于是AX =b 可改写为 (U +D +L )X =b⇔ X =D -1b -D -1(U +L )X由此可得矩阵形式的Jocobi 迭代公式: X k +1=BX (k )+f □§3.2 高斯-塞德尔Gauss-Seidel 迭代法注意到利用Jocobi 迭代公式计算)1(+k ix 时,已经计算好)(1)(2)(1,,,k i k k x x x - 的值,而Jocobi 迭代公式并不利用这些最新的近似值计算,仍用)(1)(2)(1,,,k i k k x x x - .这启发我们可以对其加以改进,即在每个分量的计算中尽量利用最新的迭代值,得到),,2,1()(1111)1()1(n i x a x a b a xn i j k jij i j k j ij i iik i=∑-∑-=+=-=++上式称为Gauss-Seidel 迭代法. 其矩阵形式是X =-(D +L )-1UX +(D +L )-1b , X k +1=BX (k )+f .迭代次数 x1 x2 x3 0 0 0 0 1 0.72 0.902 1.1644 2 1.04308 1.167188 1.282054 3 1.09313 1.195724 1.2977714 1.099126 1.199467 1.2997195 1.09989 1.199933 1.2999656 1.099986 1.199992 1.2999967 1.099998 1.199999 1.2999998 1.1 1.2 1.3§3.3 超松驰迭代法SOR 方法1基本思想:逐次超松弛迭代法(Successive Over Relaxation Method,简写为SOR)可以看作带参数ω的高斯-塞德尔迭代法,是G-S 方法的一种修正或加速.是求解大型稀疏矩阵方程组的有效方法之一. 2 SOR 算法的构造:设方程组AX =b , 其中,A =(a ij )n 为非奇异阵,X =(x 1,x 2,…,x n )T , b =(b 1,b 2,…,b n )T . 假设已算出x (k ),),,2,1()(1111)1()1(n i x a x a b a xn i j k j ij i j k j ij i iik i=∑-∑-=+=-=++ (1)相当于用高斯-塞德尔方法计算一个分量的公式. 若对某个参数ω,作)1(+k ix与)(k i x 加权的平均,即)()1()()1()()1()(1k i k ik i k ik ik ix xx xxx-+=+-=+++ωωω (2)其中,ω称为松弛因子.用(1)式代入(2)式,就得到解方程组AX =b 的逐次超松弛迭代公式:⎪⎩⎪⎨⎧=∑-∑-=∆∆+==-=++),,2,1()()(11)1()()1(n i x a x a b a x x x x n ij k j ij i j k j ij i iii i k i k i ω (3) 显然,当取ω=1时,式(3)就是高斯-塞德尔迭代公式. 3 例题分析:利用SOR 方法解方程组⎪⎩⎪⎨⎧=+---=-+-=--3322242024321321321x x x x x x x x x (1) 其准确解为X *={1, 1, 2}. 建立与式(1)相等价的形式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=132315.05.05.025.05.021*******x x x x x x x x x (2) 据此建立迭代公式:⎪⎪⎩⎪⎪⎨⎧++=-+=+=+++132315.05.05.025.05.0)(2)(1)1(3)(3)(1)1(23)(2)1(1k k k k k k kk k x x x x x x x x x (3)利用SOR 算法,取迭代初值1)0(3)0(2)0(1===x x x ,ω=1.5,迭代结果如下表.逐次超松弛迭代法次数 x1 x2 x3 1 0.625000 0.062500 1.750000 2 0.390625 0.882813 1.468750 3 1.017578 0.516602 1.8085944 0.556885 0.880981 1.7104495 1.023712 0.743423 1.8681036 0.746250 0.908419 1.8387377 0.997715 0.860264 1.9138948 0.864050 0.936742 1.9086059 0.986259 0.922225 1.94552310 0.928110 0.958649 1.94749311 0.985242 0.955944 1.96619812 0.961661 0.973818 1.96952113 0.988103 0.974699 1.97928914 0.979206 0.983746 1.98217215 0.991521 0.985318 1.98741616 0.988509 0.990038 1.98951317 0.994341 0.991414 1.99239718 0.993538 0.993946 1.99380619 0.996367 0.994950 1.99542420 0.996313 0.996342 1.99633121 0.997724 0.997018 1.99725422 0.997871 0.997798 1.99782223 0.998596 0.998234 1.998355GS迭代法须迭代85次得到准确值X*={1, 1, 2};而SOR方法只须55次即得准确值.由此可见,适当地选择松弛因子ω,SOR法具有明显的加速收敛效果. □§3.4 迭代法的收敛性1. 向量和矩阵范数 (a) 向量范数R n 空间的向量范数 || · || ,对任意n R y x ∈,, 满足下列条件:00||||;0||||)1(=⇔=≥x x x (正定性)||||||||||)2(x x⋅=αα (齐次性)||||||||||||)3(y x y x+≤+ (三角不等式)常见的向量范数有: (1) 列范数:(2) 谱范数:(欧几里德范数或向量的长度,模)(3) 行范数:(4) p 范数:上述范数的几何意义是:∞||||x =max(|x 2-x 1|,|y 2-y 1|) ; 1||||x =|x 2-x 1|+|y 2-y 1| ;2122122)()(||||y y x x x -+-=.向量序列}{)(k x依坐标收敛于向量x * 的充要条件是向量序列}{)(k x 依范数收敛于向量x *,即0||||lim *)(=-∞→x x k k .(b) 矩阵范数n m R ⨯空间的向量范数 || ·|| ,对任意 n m R B A ⨯∈,, 满足下列条件:|||||||| || AB || (4)||||||||||||)3(||||||||||)2(00||||;0||||)1(B A B A B A A A A A A ≤+≤+⋅==⇔=≥αα常见的矩阵范数有:∑==∞≤≤nj ij a A ni 1||max ||||1 (行和范数)∑==≤≤ni ij a A nj 11||max ||||1 (列和范数))(||||max 2A A A T λ= (谱范数)若A 对称,则有)()(2max max A A A T λλ=.矩阵A 的谱半径记为)(||||2A A ρ=,ρ(A ) =||max1i ni λ≤≤,其中λi 为A 的特征根。