温度传感器
- 格式:doc
- 大小:824.00 KB
- 文档页数:14
1.温度传感器概述温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。
1.热电偶热电偶由两个不同材料的金属线组成,在末端焊接在一起。
对这个连接点加热,在它们不加热的部位就会出现电位差。
这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。
这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。
由于它必须有两种不同材质的导体,所以称之为热电偶。
不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。
热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。
对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
2.热敏电阻热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。
温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。
但热敏电阻的线性度极差,并且与生产工艺有很大关系。
制造商给不出标准化的热敏电阻曲线。
热敏电阻体积非常小,对温度变化的响应也快。
但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。
热敏电阻在两条线上测量的是绝对温度,有较好的精度,但它比热偶贵,可测温度范围也小于热偶。
一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。
注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。
它非常适合需要进行快速和灵敏温度测量的电流控制应用。
尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。
3.电阻传感器电阻传感器热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计。
各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
温度传感器特点及使用场合温度传感器是一种广泛应用于工业、医疗、农业等领域的传感器。
它能够感知周围环境的温度,并将温度转化为电信号输出,从而实现对环境温度的监测和控制。
本文将从温度传感器的特点和使用场合两个方面进行详细介绍。
一、温度传感器的特点1.高精度温度传感器具有较高的精度,能够准确地测量环境中的温度变化。
这种高精度使得它在许多应用场合中都能发挥重要作用,比如在医疗设备中需要对体温进行精确测量时,就需要使用高精度的温度传感器。
2.灵敏快速温度传感器具有灵敏快速的特点,能够迅速地反应环境中的温度变化。
这种特性使得它在许多需要实时监测和控制环境温度的场合中得到广泛应用,比如在工业生产过程中需要对物料或设备进行实时监测和控制时,就需要使用灵敏快速的温度传感器。
3.稳定可靠温度传感器具有稳定可靠的特点,能够长期稳定地工作,不受环境影响。
这种稳定可靠性使得它在许多重要的应用场合中得到广泛应用,比如在航空航天、国防和医疗等领域,需要对关键设备或系统进行长期稳定监测时,就需要使用稳定可靠的温度传感器。
4.多种类型温度传感器有多种类型,包括热电偶、热敏电阻、红外线测温等。
每种类型的传感器都有其独特的优点和适用范围。
比如热电偶具有较高的灵敏度和响应速度,适用于高温环境下的测量;而热敏电阻则具有较高的精度和稳定性,适用于低温环境下的测量。
二、温度传感器的使用场合1.工业生产在工业生产过程中,需要对物料或设备进行实时监测和控制。
其中包括对环境温度进行监测和控制。
比如在钢铁生产过程中需要对高炉内部温度进行实时监测和控制,以确保生产过程的稳定和安全;在电子产品生产过程中需要对设备温度进行实时监测和控制,以确保产品质量。
2.医疗设备在医疗设备中,需要对患者的体温进行精确测量。
比如在手术室中需要对患者体温进行实时监测,以确保手术过程的安全和顺利;在ICU 中需要对患者体温进行长期稳定监测,以及时发现并处理患者病情变化。
3.农业生产在农业生产中,需要对环境温度进行监测和控制。
温度传感器1. 什么是温度传感器?温度传感器是用于测量温度的一种传感器。
它们的作用是将温度转换为数字或电信号,以便电子设备可以读取并做出相应的反应。
温度传感器通常由许多不同的技术和组件制成,包括硅、热敏电阻、电子表和红外测温技术。
2. 温度传感器的种类2.1 热敏传感器主要由半导体材料制造,其特点是可以根据温度的变化来改变电阻的值。
常见的热敏传感器有热敏电阻、热电偶和热电阻等。
2.2 红外传感器通过检测物体发射的红外线来推断它的温度。
这种传感器通常被用于工业控制和医疗领域等需要测量远距离、高温度或速度的地方。
2.3 摆线传感器由材质伸缩时带动摆线轴转动而产生的位移变化来测量温度的传感器。
常见摆线传感器有基于壳体扩张和丝杆伸缩两种。
2.4 压敏传感器使用高温陶瓷或聚合物材料制作而成,可以通过材料的微变形来测量温度。
依靠互联网和移动通信传输数据,可用于大范围监测温度的变化。
3. 温度传感器的应用作为一种基本设备,温度传感器被广泛应用于各个领域。
以下列举几个常见的场景:3.1 家庭和商业应用温度传感器在家庭和商业应用中有着广泛的应用场景,例如空调、热水器等家电的温度控制,以及各种包括居民楼、医院、学校、大楼、商场在内的商业建筑的温度控制。
3.2 工业和制造业领域在工业和制造业领域,温度传感器主要用于测量和控制过程温度以及检测设备的运行状态。
3.3 医疗领域温度传感器在医疗领域中有着广泛的应用,如体温计和高科技的红外温度计。
3.4 航空航天领域温度传感器在航空航天领域中被广泛应用,如测量飞机发动机温度、航空发动机热损伤评估等。
4. 温度传感器的市场前景随着人们不断对生活质量的提高,温度控制技术在各行各业中的应用越来越广泛。
预计到2025年,全球温度传感器市场将达到47亿美元。
由于可靠性需求的提高,热敏电阻和红外传感器技术应用数量将增加,从而进一步促进市场增长。
结语总的来说,温度传感器已经成为生活中不可缺少的一部分。
温度传感器工作原理及应用一、引言温度传感器是一种广泛应用于各种领域的传感器,它可以测量物体的温度并将其转换为电信号输出。
本文将介绍温度传感器的工作原理及其应用。
二、温度传感器分类根据不同的工作原理和测量范围,温度传感器可以分为多种类型,例如热电偶、热敏电阻、红外线温度计等。
1. 热电偶热电偶是利用两种不同金属之间产生的热电势差来测量温度的传感器。
当两个接触金属处于不同温度时,它们之间会产生一个微小的电势差。
通过将两端连接到一个电路中,可以测量出这个微小的电势差,并据此计算出物体的温度。
2. 热敏电阻热敏电阻是一种利用材料在不同温度下具有不同电阻值来测量温度的传感器。
常见的热敏电阻材料有铂、镍、铜等。
当这些材料受到加热时,它们会导致其内部自由载流子数量变化,从而导致电阻值的变化。
通过测量电阻值的变化,可以推算出物体的温度。
3. 红外线温度计红外线温度计是一种可以通过红外线测量物体表面温度的传感器。
它们通常使用红外线探头来检测物体表面放射出的红外线,并据此计算出物体的温度。
三、温度传感器工作原理不同类型的温度传感器有不同的工作原理,但它们都需要将物体的温度转换为电信号输出。
以热敏电阻为例,当热敏电阻受到加热时,其内部自由载流子数量变化会导致电阻值发生变化。
这个变化可以通过一个简单的电路来测量。
例如,在一个简单的电路中,将一个已知电压施加在热敏电阻上,然后测量通过热敏电阻流过的电流大小。
根据欧姆定律和基尔霍夫定律,可以得到以下公式:R = V / I其中,R是热敏电阻的电阻值,V是施加在热敏电阻上的已知电压大小,I是通过热敏电阻流过的电流大小。
由于热敏电阻的电阻值与温度有关,因此可以通过测量电阻值的变化来推算出物体的温度。
四、温度传感器应用由于温度传感器具有广泛的应用领域,因此在不同领域中使用不同类型的温度传感器。
1. 工业控制在工业控制领域中,温度传感器通常用于检测和控制工业过程中液体、气体和固体材料的温度。
温度传感器分类与特点1.热电阻温度传感器(RTD):热电阻温度传感器是一种基于电阻值随温度变化的原理工作的传感器。
常见的热电阻材料有铂(Pt100、Pt1000)、镍(Ni100、Ni1000)等。
热电阻温度传感器具有较高的精度、较宽的测量范围和较好的线性特性。
但是,它们的响应时间较慢,对环境干扰较为敏感。
2.热敏电阻温度传感器(NTC):热敏电阻温度传感器是一种采用热敏电阻材料工作的传感器,其电阻值随温度变化。
常见的热敏电阻材料有氧化锡(SnO2)、氧化镁(MgO)等。
热敏电阻温度传感器具有较高的灵敏度和较低的成本,适用于大量应用场合。
但是,由于其非线性特性,需要进行校准和补偿,测量精度相对较低。
3.热电偶温度传感器:热电偶温度传感器是基于两种不同金属的电动势随温度变化的原理工作的传感器。
常见的热电偶有铜-铜镍(Type T)、铁-铜镍(Type J)等。
热电偶温度传感器具有较大的测量范围、良好的线性特性和较快的响应速度。
但是,由于热电偶两端的接触材料不同,容易受到外界电磁干扰的影响。
4.热电堆温度传感器:热电堆温度传感器是一种由多个热电偶组成的传感器,用于测量较高温度下的温度变化。
热电堆温度传感器具有较高的测量精度和较大的温度范围,适用于高温环境。
但是,由于需要多个热电偶的组合,造成了较高的成本。
5.红外温度传感器:红外温度传感器是一种基于物体放射出的红外线辐射功率与其温度成正比的原理工作的传感器。
红外温度传感器具有非接触式测量、快速响应和长测量距离等特点。
但是,其测量精度受到环境因素的影响较大,同时需要针对不同物体进行校准。
总的来说,不同类型的温度传感器各具特点,适用于不同的应用场合。
选择合适的温度传感器需要根据测量范围、精度要求、响应速度以及环境干扰等因素综合考虑。
盘点四种常用的温度传感器温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
设计中最常用的温度传感器有:热电偶传感器、热敏电阻传感器、铂电阻传感器(RTD)、集成(IC)温度传感器。
下图给出代表性的实物照片。
1. 热电偶传感器热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,由该原理可知热电偶的一个优势是其无需外部供电。
另外,热电偶还有测温范围宽、价格便宜、适应各种大气环境等优点,但其缺点是测量精度不高,故在高精度的测量和应用中不宜使用热电偶。
热电偶两种不同成份的材料连接是标准的,根据采用材料不同可分为K型热电偶、S型热电偶、E型热电偶、N型热电偶、J 型热电偶等等。
2. 热敏电阻传感器热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变。
按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。
正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件,被广泛应用于各种电子元器件中。
热敏电阻通常在有限的温度范围内可实现较高的精度,通常是-90℃〜130℃。
3. 铂电阻传感器铂电阻,又称为铂热电阻,它的阻值会随着温度的变化而改变。
并且铂电阻阻值会随着温度的升高匀速有规律的变大。
铂电阻可分为PT100和PT1000等系列产品,PT100即表示它在0℃时阻值为100欧姆,PT1000即表示它在0℃时阻值为1000欧姆。
铂电阻具有抗振动、稳定性好、准确度高、耐高压等优点,被广泛应用于医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备中。
4. 集成(IC)温度传感器集成(IC)温度传感器是将温度传感器集成在一个芯片上、可完成温度测量及信号输出功能的专用IC。
温度传感器:温度传感器的类型温度传感器是一种测量温度的仪器,广泛用于温控系统、温度自动控制仪和工业过程控制等领域。
温度传感器的类型根据测温原理和使用场景不同,可以分为多种类型。
1. 热电偶温度传感器热电偶温度传感器是利用热电效应来测量物体温度的一种传感器。
热电偶由两种不同金属接触后形成一个回路,当两种金属的温度不同时,就会产生电势差,通过测量这个电势差来计算温度。
热电偶能够在高温下工作,并且具有较高的测量精度和稳定性,因此被广泛应用于高温领域,比如炉温测量、火箭发射等。
2. 热敏电阻温度传感器热敏电阻温度传感器是通过测量抵抗值随温度变化的关系来测量物体温度的一种传感器。
热敏电阻的抵抗值随温度升高而减小,利用这种特性可以计算出物体的温度值。
热敏电阻温度传感器具有响应速度快、精度高、稳定性好等优点,广泛应用于家用电器、汽车等领域。
3. 热电阻温度传感器热电阻温度传感器是利用材料电阻率随温度变化的规律来测量物体温度的一种传感器。
热电阻的电阻值随温度升高而增加,根据这个规律我们可以测量物体的温度。
热电阻温度传感器具有精度高、稳定性好、响应速度快等特点,被广泛应用于航空航天、机械制造等领域。
4. 红外温度传感器红外温度传感器是利用物体表面的红外辐射来测量物体温度的一种传感器。
红外温度传感器可以非接触式地测量物体温度,对于高温、难以接近的物体检测非常有效。
热量来自于物体表面放射的红外辐射,红外温度传感器测得的温度值就是该表面的温度值。
红外温度传感器被广泛应用于安防监控、工业自动化等领域。
总结起来,不同类型的温度传感器测温原理不同、使用场景不同,具有各自的优缺点。
我们根据实际需要选择不同类型的温度传感器就可以达到最佳的测温效果。
温度传感器原理及应用
温度传感器是一种用于测量环境或物体温度的设备。
其原理是基于物质的热特性,在不同温度下产生特定的电信号。
下面将介绍常见的温度传感器原理及其应用。
1. 热敏电阻温度传感器原理:
热敏电阻温度传感器利用材料在温度变化时产生的电阻变化来测量温度。
常见的热敏电阻材料有铂、镍、铜等。
随着温度的升高,热敏电阻的电阻值会减小,反之则增大。
热敏电阻温度传感器广泛应用于家用电器(如空调、冰箱)、工业自动化(如温度控制系统)、医疗设备以及气象观测等领域。
2. 热电偶温度传感器原理:
热电偶利用两种不同金属导线的热电势差随温度变化的特性进行温度测量。
当两个不同金属的接触点处于不同温度时,就会产生电势差。
热电偶温度传感器被广泛应用于石油化工、冶金、电力等高温环境下的温度测量。
3. 红外线温度传感器原理:
红外线温度传感器利用物体的辐射能谱与温度之间的关系来测量物体的表面温度。
红外线温度传感器可以无接触地实时测量目标物体的温度。
红外线温度传感器广泛应用于食品加工、医疗、安防监控以及火灾预警等领域。
总之,温度传感器通过不同的工作原理实现对温度的测量,具有广泛的应用领域。
热敏电阻温度传感器适用于一般温度测量,热电偶温度传感器适用于高温环境温度测量,红外线温度传感器适用于无接触测温场景。
温度传感器温度特性测试与研究(FB810型恒温控制温度传感器实验仪)实验讲义杭州精科仪器有限公司一、集成电路温度传感器的特性测量及应用随着科技的发展,各种新型的集成电路温度传感器器件不断涌现,并大批量生产和扩大应用。
这类集成电路测温器件有以下几个优点:(1)温度变化引起输出量的变化呈现良好的线性关系;(2)不像热电偶那样需要参考点;(3)抗干扰能力强;(4)互换性好,使用简单方便。
因此,这类传感器已在科学研究、工业和家用电器温度传感器等方面被广泛使用于温度的精确测量和控制。
本实验要求测量电流型集成电路温度传感器的输出电流与温度的关系,熟悉该传感器的基本特性,并采用非平衡电桥法,组装成为一台C 50~0︒数字式温度计。
【实验原理】590AD 集成电路温度传感器是由多个参数相同的三极管和电阻组成。
该器件的两端当加有某一定直流工作电压时(一般工作电压可在V 20~5.4范围内),它的输出电流与温度满足如下关系: A t B I +•=式中,I 为其输出电流,单位:A μ,t 为摄氏温度,B 为斜率,一般590AD 的1)C (A 1B -︒μ=,即如果该温度传感器的温度升高或降低C 1︒,那传感器的输出电流增加或减少A 1μ,A 为摄氏零度时的电流值,其值恰好与冰点的热力学温度K 273相对应。
(对市售一般590AD , A 278~273A μ=略有差异。
)利用590AD 集成电路温度传感器的上述特性,可以制成各种用途的温度计。
采用非平衡电桥线路,可以制作一台数字式摄氏温度计,即590AD 器件在C 0︒时,数字电压显示值为“0”,而当590AD 器件处于C t ︒时,数字电压表显示值为“t ”。
【实验仪器】810FB 型恒温控制温度传感器实验仪,如右图所示: 大烧杯、加热器、冰瓶、各种温度传感器等。
【实验内容】一.590AD 的测试方法:1.590AD 为两端式集成电路温度传感器,它的管脚引出端有两个,如图1所示:序号1接电源正端+U (红色引线)。
序号2接电源负端-U (黑色引线)。
至于序号3连接外壳,它可以接地,有时也可以不用。
590AD 工作电压V 30~4,通常工作电压V 15~6,但不能小于V 4,小于V 4出现非线性。
2. 100PT 数显式温度计等。
二. 590AD 传感器温度特性测量及数字式温度计的设计:1. 按图2接线(590AD 的正负极不能接错)。
测量590AD 集成电路温度传感器的电流I 与温度t 的关系,取样电阻Ω=1000R 。
把实验数据用最小二乘法进行拟合,求斜率B 、 截距A 和相关系数r 。
实验时应注意590AD 温度传感器为二端铜线引出,为防止极间短路,两铜线不可直接放在水中,应用一端封闭的薄壁试管套保护,其中注入少量硅油,使之有良好热传递。
(实验中如何保证590AD 集成温度传感器与100PT 数显温度计处在相同温度位置)2.制作量程为C 50~0︒范围的数字温度计。
把590AD 三只电阻箱、直流稳压电源及数字电压表按图3接好。
将590AD 带试管放入冰瓶中(内装冰水混合物),取Ω==1000R R 32,,调节4R 使数字电压表示值为零。
然后把590AD 放入其他温度如室温的水中,用100PT 温标准度计进行读数对比,求出百分差。
3.令图3中电源电压发生变化,如从V 8变为V 10,观测一下,590AD 传感器输出电流有无变化?分析其原因。
三.590AD 传感器的输出电流和工作电压关系测量:将590AD 传感器处于恒定温度,将直流电源、590AD 传感器、电阻箱、直流电压表等按图4接电路线。
调节电源输出电压从V 10~5.1,测量加在590AD 传感器上的电压U 与输出电流))R /U I (I R =的对应值,要求实验数据10点以上。
用坐标纸做590AD 传感器输出电流I 与工作电压U 的关系图,求出该温度传感器输出电流与温度呈线性关系的最小工作电压r U 。
【实验数据及处理】1.测量590AD 传感器输出电流I 和温度t 之间的关系。
求t ~I 关系的经验公式。
表1 数据用最小二乘法拟合: 求斜率1)( ____0.107__ -︒=C A B μ;截距A A μ___011.27___=;相关系数___991.0_=r ;所以,t ,I 关系为:011.27107.0+•=t I 。
与灵敏度标准值1)C (A 000.1B -︒μ=相比,求相对误差 :%_____3.89_=E 。
2.590AD 传感器的输出电流和工作电压关系测量:表2 590AD 传感器伏安特性测量 Ω=︒=10000,4.45R C t用坐标纸作传感器输出电流与工作电压的关系曲线图,从图中求出该温度传感器输出电流与温度呈线性关系的最小工作电压r U 。
从590AD 传感器输出电流I 与工作电压U 的关系曲线图中,得到C t ︒=4.45时,传感器输出电流与温度呈线性关系的最小工作电压V U r 694.3≈。
【思考题】1.电流型集成电路温度传感器有哪些特性?它比半导体热敏电阻、热电偶有哪些优点? 应该是集成电路的控制较完善,相对可以做得更准确,反应速度也会更快,但相对电路的构成会复杂。
2.如何用590AD 集成电路温度传感器制作一个热力学温度计,请画出电路图,说明调节方法。
集成温度传感器将温敏晶体管与相应的辅助电路集成在同一块芯片上,能直接给出正比于绝对温度的理想线性输出,一般用于-55℃~±150℃之间的温度测量。
温敏晶体管在管子的集电极电流恒定时,其基极发射极电压与温度成线性关系,为克服温敏晶体管vb 电压产生时的离散性,采用了特殊的差分电路。
集成温度传感器具有电压型和电流型两种,电流输出型集成温度传感器在一定的温度T 时相当于一个恒流源。
因此,它不易受接触电阻、引线电阻、电压噪音的干扰,具有很好的线性特性。
3.如果590AD 集成电路温度传感器的灵敏度B 不是严格的1)C (A 000.1-︒μ,而是略有差异,请写出解决问题的办法。
AD590相当于是受温度控制的恒流源,R1越大,取得的电压就越高。
一般是在R1上串一个多圈可调电阻【实验范例1】1. 测量590AD 传感器输出电流I 和温度t 之间的关系。
求t ~I 关系的经验公式。
表3 数据用最小二乘法拟合得: 斜率1)C (A 987.0B -︒μ=;截距A 8.274A μ=;相关系数999.0r =所以,t ,I 关系为:275t 987.0I +=与灵敏度标准值1)C (A 000.1B -︒μ=相比百分误差为%3.1E =。
2.制作摄氏温度计:由于灵敏度1)C (A 000.1B -︒μ<,所以2R 值取略大于Ω1000,本实验按以下公式加以修正:取Ω=÷=÷==9.1012987.0000.1B m V 000.1R R 32。
将冰用刨冰机制成冰霜放入保温杯中压紧,并用玻璃管压1个小洞。
将带玻璃试管传感器浸入冰霜中,把仪器接成图3电桥电路。
调节4R ,使C 0t ︒=时,数字电压表输出mV 0U =。
用自制摄氏温度计测室温水温为C 7.28︒,而100PT 数显温度计读数也为C 7.28︒。
3.测量590AD 传感器的伏安特性:表2 590AD 传感器伏安特性测量 Ω=︒=10000R ,C 3t测量次数 1 2 3 4 5 6 7 8 )V (U 1.326 1.589 1.736 2.065 2.342 2.456 2.533 2.680 )V (U R0.200 0.777 1.130 1.795 2.306 2.495 2.616 2.770 )A (I μ20.0 77.7 113.0 179.5 230.6 249.5 261.6 277.0 测量次数9 10 11 12 13 14 15 )V (U 2.713 2.880 3.010 3.252 3.440 3.643 4.100 )V (U R2.775 2.760 2.759 2.759 2.760 2.760 2.760 )A (I μ277.5276.0275.9275.9276.0276.0276.0从590AD 传感器输出电流I 与工作电压U 的关系曲线图中,得到C 3t ︒=时,传感器输出电流与温度呈线性关系的最小工作电压V 70.2U r ≈。
二、热敏电阻的温度特性测量热敏电阻通常是用半导体材料制成的,他的电阻随温度变化而急剧变化。
热敏电阻分为负温度系数NTC 热敏电阻和正温度系数PTC 热敏电阻两种。
NTC 热敏电阻的体积很小,其阻值随温度变化比金属电阻要灵敏得多,因此,它被广泛用于温度测量、温度控制以及电路中的温度补偿、时间延迟等。
PTC 热敏电阻分为陶瓷PTC 热敏电阻及有机材料PTC 热敏电阻两类。
PTC 热敏电阻是20世纪80年代初发展起来的一种新型材料电阻器,它的特点是存在一个“突变点温度”,当这种材料的温度超过突变点温度时,其阻值可急剧增加6~5个数量级,(例如由Ω110急增到Ω710以上),因而具有极其广泛的应用价值。
近年来,我国在PTC 热敏电阻器件开发与应用方面有了很大发展,陶瓷PTC 热敏电阻由于其工作功率较大及耐高温性好,已被应用于工业机械、冰箱等作电流过载保护,并可替代镍铬电热丝作恒温加热器和控温电路,用于自热式电蚊香加热器、新型自动控温烘干机、各种电加热器等一系列安全可靠的家用电器;而有机材料PTC 的热敏电阻具有动作时间短、体积小、阻值低等特点,现已被用于国内电话程控交换机、便携式电脑、手提式无绳电话等高科技领域作过载保护,应用范围很广。
本实验用温度计和直流电桥测定热敏电阻器与温度的关系。
要求掌握NTC 热敏电阻器的阻值与温度的关系特性、并学会通过数据处理来求得经验公式的方法。
【实验原理】1. 负温度系数热敏电阻器的电阻-温度特性NTC 热敏电阻通常由Cu ,Fe ,Co ,Cr ,Ni ,Mg 等金属氧化物中的3~2种均匀混合压制后,在C 1500~600︒温度下烧结而成,由这类金属氧化物半导体制成的热敏电阻,具有很大的负温度系数。
在一定的温度范围内,NTC 热敏电阻的阻值与温度关系满足下列经验公式:)T 1T 1(B 00eR R -••=(1)式中,R 为该热敏电阻在热力学温度T 时的电阻值,0R 为热敏电阻处于热力学温度0T 时的阻值。
B 是材料常数,它不仅与材料性质有关,而且与温度有关,在一个不太大的范围内,B 可以看作为常数。
由公式(1)可求得,NTC 热敏电阻在热力学温度0T 时的电阻温度系数α20T T 0T B )dT dR (R 10-=•=α=(2)由公式(2)可知,NTC 热敏电阻的电阻温度系数是与热力学温度的平方有关的量,在不同温度下,α值是不相同的。