26
MapReduce 技术框架
• 分布式文件系统 • 并行编程模型 • 并行执行引擎
27
分布式文件系统
(Google file system)
• 分布式文件系统运行于大规模集群之上,集 群使用廉价的机器构建.
• 数据采用键/值对(key/value)模式进行存储.
• 整个文件系统采用元数据集中管理、数据 块分散存储的模式,通过数据的复制(每份数 据至少3 个备份)实现高度容错.
4
大数据时代
大规模数据主要来源2: 网站点击流数据
为了进行有效的市场营销和推广,用户在网 上的每个点击及其时间都被记录下来;利用 这些数据,服务提供商可以对用户存取模式 进行仔细的分析,从而提供更加具有针对性 的服务
5
大数据时代
大规模数据主要来源3: 移动设备数据
通过移动电子设备包括移动电话和PDA、 导航设备等,我们可以获得设备和人员的位 置、移动、用户行为等信息,对这些信息进 行及时的分析,可以帮助我们进行有效的决 策,比如交通监控和疏导系统
12
时间序列分析
– 比如在金融服务行业,分析人员可以开发针对性 的分析软件,对时间序列数据进行分析,寻找有 利可图的交易模式(profitable trading pattern), 经过进一步验证之后,操作人员可以使用这些交 易模式进行实际的交易,获得利润
13
大规模图分析和网络分析
• 社会网络虚拟环境本质上是对实体连接性 的描述.在社会网络中,每个独立的实体表示 为图中的一个节点,实体之间的联系表示为 一条边.
40
MapReduce应用领域的扩展
• 若干开发者发起了Apache Mahout 项目的 研究,该项目是基于Hadoop 平台的大规模 数据集上的机器学习和数据挖掘开源程序 库,为应用开发者提供了丰富的数据分析功 能