正激输出电感设计
- 格式:docx
- 大小:106.96 KB
- 文档页数:8
正激变换器变压器以及输出电感的简单计算首先,我们来讨论变压器的计算。
变压器是利用电磁感应原理工作的电子设备,可以将输入的直流电压变换成输出的交流电压。
变压器由一个原边线圈和一个副边线圈组成,通过改变线圈的匝数比可以实现电压的变换。
变压器的电压变换比由下式给出:Vp/Vs=Np/Ns其中Vp和Vs分别为主线圈(原边)和副线圈(副边)的电压,Np和Ns分别为主线圈和副线圈的匝数。
根据这个公式,我们可以根据所需的输出电压和输入电压来选择变压器的参数。
例如,如果我们需要将输入电压12V转换为输出电压120V,假设变压器的匝数比为10:1,即Np/Ns=10:1、那么我们可以通过求解下面的方程来计算出主线圈和副线圈的匝数:12V/Vs=10/1得到Vs=1.2V。
因此,我们需要选择一个副线圈匝数为1.2的变压器,以实现输入电压到输出电压的变换。
接下来,我们来讨论输出电感的计算。
输出电感通常用于滤波和稳压,它可以减少输出电压中的纹波和噪声。
输出电感的电感值取决于所需的滤波效果和负载电流。
一般来说,输出电感的电感值越大,滤波效果越好。
输出电感的计算可以通过下面的公式给出:L=(Vr*T)/(ΔI*2),其中L为输出电感的电感值,Vr为输出电压的纹波峰峰值,T为一个纹波周期的时间,ΔI为负载电流的纹波值。
例如,如果我们需要输出电压的纹波峰峰值为0.1V,负载电流的纹波值为0.02A,一个纹波周期的时间为10ms。
那么根据上面的公式,输出电感的电感值可以通过计算得到。
L = (0.1V * 10ms) / (0.02A * 2) = 0.25H。
因此,我们需要选择一个电感值为0.25H的输出电感,以实现所需的滤波效果和稳压。
综上所述,正激变换器中变压器和输出电感的计算涉及到输入输出电压之间的变换比、负载电流的变化以及所需的滤波效果。
通过合理地选择变压器参数和输出电感的电感值,可以实现正激变换器的正常工作和所需的电力转换效果。
一、正激式开关电源高频变压器:No待求参数项 详细公式1 副边电压Vs Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感Lso Lso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4 实际工作占空比θon 如果输出电感Ls≥Lso:θon=θonmax否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5 导通时间Ton Ton =θon /f6 最小副边电流Ismin Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7 副边电流增量ΔIs ΔIs = (Vs-0.5-Vo)* Ton/ Ls8 副边电流峰值Ismax Ismax = Ismin+ΔIs9 副边有效电流Is Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10 副边电流直流分量Isdc Isdc = (Ismin+ΔIs/2) *θon11 副边电流交流分量Isac Isac = √(Is2- Isdc2)12 副边绕组需用线径Ds Ds = 0.5*√Is电流密度取5A/mm213 原边励磁电流Ic Ic = Vp*Ton / Lp14 最小原边电流Ipmin Ipmin = Ismin*Ns/Np15 原边电流增量ΔIp ΔIp = (ΔIs* Ns/Np+Ic)/η16 原边电流峰值Ipmax Ipmax = Ipmin+ΔIp17 原边有效电流Ip Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18 原边电流直流分量Ipdc Ipdc = (Ipmin+ΔIp/2) *θon19 原边电流交流分量Ipac Ipac = √(Ip2- Ipdc2)20 原边绕组需用线径Dp Dp = 0.55*√Ip电流密度取4.2A/mm221 最大励磁释放圈数Np′ Np′=η*Np*(1-θon) /θon22 磁感应强度增量ΔB ΔB = Vp*θon / (Np*f*Sc)23 剩磁Br Br = 0.1T24 最大磁感应强度Bm Bm = ΔB+Br25标称磁芯材质损耗P Fe(100KHz 100℃ KW/m3)磁芯材质PC30:P Fe = 600磁芯材质PC40:P Fe = 45026 选用磁芯的损耗系数ωω= 1.08* P Fe / (0.22.4*1001.2)1.08为调节系数27 磁芯损耗Pc Pc = ω*Vc*(ΔB/2)2.4*f1.228 气隙导磁截面积Sg 方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29 有效磁芯气隙δ′ δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp 式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简 得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30 实际磁芯气隙δ如果δ′/lc≤0.005: δ=δ′如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp 否则 δ=δ′*Sg/Sc31 穿透直径ΔD ΔD = 132.2/√f32 开关管反压Uceo Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33 输出整流管反压Ud Ud = Vo+√2 *Vinmax*Ns/Np′34 副边续流二极管反压Ud′ Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器设计步骤:No待求参数项 详细公式1 副边电压Vs 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
正激式转换拓扑之 BUCK电感计算相对于线性调整器,BUCK转换器提供了高的多的效率,功率密度大幅提高,现在一些流行的专业BUCK控制IC制作的电源其功率密度甚至可以达到50W/inch^3. 广泛用于板级电源系统。
设计一个性能满足需要的BUCK转换器,首先应保证一个具有合理的参数的储能电感。
从前面的工作原理讨论可见,输出电流在某个特定值(临界电流)之上时,电路工作在电流连续模式,流过功率管的电流为一个有阶梯的斜坡电流,斜坡的中点等于输出电流。
在输出电流从最大值下降到临界电流之前时,功率管导通时间都基本保持不变,并且电感电流的上升斜率也保持不变,但斜坡的高度即斜坡中点会随着输出电流的下降而下降;当输出电流下降到临界电流时,开关电流的前端阶梯将下降到零,这时电路将进入电流不连续模式,输出电压将不在满足 Vo=D*Vin的关系,开关导通时间将迅速降低以保持输出电压稳定。
《功率管电流波形图》临界电流的大小主要取决于储能电感的感量。
通常需要设定一个最小输出电流作为临界电流。
如果设临界电流与输出电流的比值为 K, 则输出储能电感感量 Lp 可由如下公式给出:Lp=(Vin-Vo)*Vo*T/(2*K*Vin*Io)在一般的应用中常选取输出电流的10%作为最小输出电流,这主要是在折衷负载调整率和输出响应的结果,过小的临界电流将导致电感感量较大,输出负载调整率较好,但瞬态响应变差,输出过冲变大;较大的临界电流可有效改善输出过冲和瞬态响应,但需要更大的最低输出电流才能得到较好的输出负载调整率。
另外,一个容易忽略的问题是电感饱和,储能电感工作在一个高直流成分的条件下极易出现饱和现象,电感值下降,甚至失去电感量,设计时应保证在输出少许过载的情况下电感也不会进入饱和状态。
对于待使用的电感可以使用如下参数简单计算一下可能的最大磁通密度,检验是否会出现饱和现象:Bs=(Lp*I_max)/(Ae*Np)其中,Lp是最大开通电流下的电感量(uH), I_max是最大开通电流(A), Ae 是磁心有效截面积(mm^2), Np是电感的绕线匝数(Ts). 磁心所能承受的最大不饱和磁通密度可查阅厂商相关资料。
多路输出正激式变换器耦合滤波电感的设计多路输出正激式变换器耦合滤波电感的设计1引言近年来高频开关电源在电子产品中得到广泛应用。
正激式DC/DC变换器以其输出纹波小、对开关管的要求较低等优点而适合于低压、大电流、功率较大的场合。
但正激变换器对输出电感的设计有较高要求,特别在多路输出的情况。
本文分析对比正激变换器多路输出滤波电感采用独立方式和耦合方式的不同特点,讨论了耦合电感的设计方法,给出了一个设计实例,并给出仿真及试验结果。
2正激变换器普通多路输出的分析图1所示为180W正激变换器的变压器及输出部分。
两路输出分别采用无耦合的滤波电感。
其一路输出UO1为:UO1=(Uin1-UV1a)D-UV1b(1-D)=Uin1D-UV1b(1)式(1)中,D为初级开关脉冲的占空比,UV1a、UV1b分别为整流二极管和续流二极管的压降,并假设它们相等。
该电路L的最小值一般由所需维持最小负载电流的要求决定,而电感L中的电流又分连续和不连续两种工作情况。
如果负载电流IO逐步降低,L中的波动电流最小值刚好为0时,即定义为临界情况。
在控制环中,连续状况的传递函数有两个极点,不连续状况只有一个极点。
因而在临界点上下,传递函数是突变的。
图1电路的Uin1,Uin2绕组通常都为紧耦合状态,而每一路LC滤波器的串联谐振频率不相同,这一情况将使控制环在连续状况时传递函数增加新的极点。
在多路输出时,如果辅助输出电压要保持在一定的稳定范围内,则主输出的电感必须一直超过临界值,即一直处于连续状态。
从性能上讲,L过大限制了输出电流的最大变化率,而且带直流电流运行的大电感造价昂贵。
在图1所示的电路中,当UO1保持5V不变时,随着UO2负载上的突然变化,其15.8V的电压有可能突变4V~5V,且在经过数十至数百毫秒后才能恢复。
图1独立滤波电感两路输出正激变换器图2耦合滤波电感的两路输出正激变换器图3图4 图3电路的归一化电路图5 图4电路的重新排列为了简化设计,通常都使电感电流工作于连续状态。
多路输出正激式变换器耦合滤波电感的设计1引言近年来高频开关电源在电子产品中得到广泛应用。
正激式DC/DC变换器以其输出纹波小、对开关管的要求较低等优点而适合于低压、大电流、功率较大的场合。
但正激变换器对输出电感的设计有较高要求,特别在多路输出的情况。
本文分析对比正激变换器多路输出滤波电感采用独立方式和耦合方式的不同特点,讨论了耦合电感的设计方法,给出了一个设计实例,并给出仿真及试验结果。
2正激变换器普通多路输出的分析图1所示为180W正激变换器的变压器及输出部分。
两路输出分别采用无耦合的滤波电感。
其一路输出UO1为:UO1=(Uin1-UV1a)D-UV1b(1-D)=Uin1D-UV1b(1) 式(1)中,D为初级开关脉冲的占空比,UV1a、UV1b分别为整流二极管和续流二极管的压降,并假设它们相等。
该电路L的最小值一般由所需维持最小负载电流的要求决定,而电感L中的电流又分连续和不连续两种工作情况。
如果负载电流IO逐步降低,L中的波动电流最小值刚好为0时,即定义为临界情况。
在控制环中,连续状况的传递函数有两个极点,不连续状况只有一个极点。
因而在临界点上下,传递函数是突变的。
图1电路的Uin1,Uin2绕组通常都为紧耦合状态,而每一路LC滤波器的串联谐振频率不相同,这一情况将使控制环在连续状况时传递函数增加新的极点。
在多路输出时,如果辅助输出电压要保持在一定的稳定范围内,则主输出的电感必须一直超过临界值,即一直处于连续状态。
从性能上讲,L过大限制了输出电流的最大变化率,而且带直流电流运行的大电感造价昂贵。
在图1所示的电路中,当UO1保持5V不变时,随着UO2负载上的突然变化,其15.8 V的电压有可能突变4V~5V,且在经过数十至数百毫秒后才能恢复。
图1独立滤波电感两路输出正激变换器图2耦合滤波电感的两路输出正激变换器图3图4 图3电路的归一化电路图5 图4电路的重新排列为了简化设计,通常都使电感电流工作于连续状态。
正激变换器变压器以及输出电感的简单计算变压器是正激变换器的核心部件之一,主要用于将输入的交流电源变换为需要的电压。
变压器由磁性铁芯和两个或多个线圈组成。
其中一个线圈称为初级线圈,另一个或多个线圈称为次级线圈。
变压器通过电感耦合原理将输入电源的能量传输到输出电路。
变压器中的磁性铁芯能够集中磁力线,从而实现高效的能量传输。
在正激变换器中,变压器的运作是一个周期性的过程。
每个周期,输入交流电源施加在变压器的初级线圈上,进而在次级线圈中产生电压。
这种电压随后被整流电路整流为直流电压,供应给整个正激变换器的输出电路。
变压器的变比可以通过比较输入电压和输出电压的比值来计算。
输出电感是正激变换器的另一个重要组成部分。
它位于输出电路中,用于稳定输出电压。
输出电感由线圈和磁性铁芯组成。
当负载电流发生变化时,输出电感能够通过储存和释放能量来保持输出电压的稳定性。
输出电感的大小和特性取决于输出电流的需求以及系统的稳定性要求。
正激变换器的计算主要涉及到变压器和输出电感的选取和设计。
在计算变压器时,首先需要确定所需的输入电压和输出电压。
根据输入电压和输出电压的比值,可以计算出变压器的变比。
变压器的变比与输入输出电压的比值成正比,即变压比等于输出电压除以输入电压。
在计算输出电感时,需要考虑输出电流的需求和系统的稳定性要求。
输出电感的大小和选取取决于输出电流的变化范围和要求的稳压性。
通常,输出电感越大,输出电流的稳定性越好。
输出电感的选取需要计算输出电感所能提供的能量储存量,以满足系统的需求。
总结来说,正激变换器变压器和输出电感的计算是设计正激变换器的重要环节。
正确选择和设计这两个部件能够确保正激变换器系统的性能和稳定性。
计算包括确定输入电压和输出电压,计算变压器的变比以及计算输出电感的大小和能量储存量。
7-3 正激式开关电源的设计中山市技师学院 葛中海由于反激式开关电源中的开关变压器起到储能电感的作用,因此反激式开关变压器类似于电感的设计,但需注意避免磁饱和的问题。
反激式在20~100W 的小功率开关电源方面比较有优势,因其电路简单,操纵也比较容易。
而正激式开关电源中的高频变压器只起到传输能量的作用,其开关变压器可按正常的变压器设计方式,但需考虑磁复位、同步整流等问题。
正激式适合50~250W 之低压、大电流的开关电源。
这是二者的重要区别!7.3.1 技术指标正激式开关电源的技术指标见表7-7所示。
表7-7 正激式开关电源的技术指标7.3.2 工作频率的确信工作频率对电源体积和特性阻碍专门大,必需专门好选择。
工作频率高时,开关变压器和输出滤波器可小型化,过渡响应速度快。
但主开关元件的热损耗增大、噪声大,而且集成操纵器、主开关元件、输出二极管、输出电容及变压器的磁芯、还有电路设计等受到限制。
那个地址大体工作频率0f 选200kHz ,那么301020011⨯==f T =5μs式中,T 为周期,0f 为大体工作频率。
7.3.3 最大导通时刻的确信关于正向鼓励开关电源,D 选为40%~45%较为适宜。
最大导通时刻max ON t 为max ON t =T ⨯max D (7-24)max D 是设计电路时的一个重要参数,它对主开关元件、输出二极管的耐压与输出维持时刻、变压器和和输出滤波器的大小、转换效率等都有专门大阻碍。
此处,选max D =45%。
由式(7-24),那么有max ON t =5μs ⨯0.45=2.25μs正向鼓励开关电源的大体电路结构如图7-25所示。
图7-25 正向鼓励开关电源的大体电路结构7.3.4 变压器匝比的计算1.次级输出电压的计算如图7-26所示,次级电压2V 与电压O V +F V +L V 的关系能够如此明白得:正脉冲电压2V 与ON t 包围的矩形“等积变形”为整个周期T 的矩形,那么矩形的“纵向的高”确实是O V +F V +L V ,即()ONF L O t T V V V V ⨯++=2 (7-25) 式中,F V 是输出二极管的导通压降,L V 是包括输出扼流圈2L 的次级绕组接线压降。
正激变换器通常使用无气隙的磁芯,电感值较高,初次级绕组峰值电流较小,因而铜损较小,开关管峰值电流较低,开关损耗较小,其高可靠高稳定性使得其在很多领域和苛刻环境得到应用.下面举例给大家分享下对正激变换器的设计方法:规格:输入电压Vin=400V(一般在输入端会有CCM APFC将输入电压升压在稳定的DC400V左右)输出电压Vout=12V输出功率Pout=1200W效率η=85%开关频率Fs=68KHz最大占空比Dmax=0.35第一,选择磁芯的材质选择高μ低损,高Bs材质,一般常采用TDK PC40或同等材。
因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T因为正激电路的磁芯单向磁化,要让磁芯不饱和,磁芯中的磁通密度最大变化量需满足ΔB<Bs-Br,得ΔB=390-55=335mT,但实际应用中由于温度效应和瞬变情况会引起Bs和Bs的变化,导致ΔB的动态范围变小而出现饱和,因此,设计时需保留一定裕量,通常取60%~80%(Bs-Br), ΔBc选得过高磁芯损耗会增加,易饱和,选得过小会使匝数增加,铜损增大,产品体积增大,通常选择60%(Bs-Br),则最大磁通变化量ΔB=(390-55)*0.6=201mT,即0.201T第二,确定磁芯规格根据公式AP=Aw*Ae=(Ps*104)/(2ΔB*Fs*J*Ku)其中:Aw为磁芯的铜窗口截面积(cm2),Ae为磁芯的有效截面积(cm2),Ps为变压器的视在功率(W),J为电流密度(A),Ku为铜窗口占用系数对正激变换器,视在功率Ps=Pout/η+Pout电流密度J根据不同的散热方式取值不同,一般采用300~600A/cm2,此处考虑到趋肤效应采用多股纱包线,取600A/cm2铜窗口占用系数Ku取0.2ΔB=0.20T,J=600A/cm2,Ku=0.2代入公式得AP=[(1200/0.85+1200)*104]/(2*0.201*68*103*600*0.2)=7.962cm4查磁芯规格书,选用磁芯ETD49,第三,计算匝比、匝数1. 根据公式N=Np/Ns=Vin/Vout=(Vin*Dmax)/(Vo+Vf)其中Vf为输出二极管正向压降,取0.8V得匝比N=(400*0.35)/(12+0.8)=10.9375,取匝比N=11验算最大占空比Dmax,最大占空比Dmax=N(Vout+Vf)/Vin=11*(12+0.8)/400=0.3522. 根据公式Np=Vin*Ton/(ΔB*Ae)导通时间Ton=Dmax*Ts,周期Ts=1/Fs*106得初级匝数NP=[Vin*Dmax*(1/Fs*106)]/(ΔB*Ae)={400*0.352*[1/(68*103)*106]}/(0.201*213)=48.3 6Ts,取49Ts3. 次级匝数Ns=Np/N=49/11=4.45Ts4. 取次级匝数Ns=5Ts验算初级匝数Np,初级匝数Np=Ns*N=5*11=55Ts考虑到输入电压较高,采用双管正激比采用单管正激可以大幅减小MOS的电压应力,无需消磁绕组。
正激式变换器(正激开关电源)的设计实例作为功率变压器的一个设计实例,下面我们将设计正激式变换器中的变压器。
显然,这种变压器也不是用于我们的buck变换器中。
现在,我们考虑设计要求:输入电压为直流48V(简便起见,不需要考虑进线电压的波动范围),输出电压为5V,功率100W,开关频率为250kHz,基本电路图如图所示。
容易得到,输出电流为100W/5V=20A。
这个电流值是比较大的,为了减少绕组电阻,副边的线圈匝数应该尽量取小。
这意味着取变比(原边匝数除以副边匝数)的时候,副边最少匝数取为1。
我们来看看变比为整数时会出现什么问题。
1 匝数比=1:1匝数比=1:1,即原边与副边的匝数相等。
当开关导通时,48V输入电压全部加在变压器的原边。
同样,副边也得到48V的电压(忽略漏感),并加于续流二极管两端。
实际上,具有低通态电压的肖特基功率二极管其最大阻断电压为45V左右。
48V的电路中,至少要采用电压为60V的器件,如果电压有过冲或者输入电压有波动,那么要求采用更高电压的器件。
二极管的反向阻断电压越高,其通态电压也越高,变换器的效率将会降低。
在低输出电压的变换器中,整流二极管的通态电压是一个常见的问题。
原因很明显:电感中的电流要么流过整流二极管,要么流过续流二极管,无论哪种情况,在二极管中总会产生一个大小为VfI的损耗。
二极管的损耗使变换器效率进一步下降。
这部分功率不在总功率V outI之中。
解决这个问题的唯一方法是采用同步整流器,但是其驱动非常复杂(同样的道理,当输出Vout降到3.3V,甚至更低时,必须使用同步整流器)。
不管怎么样,对于一个高效率的变换器而言,如果不采用同步整流器,1:1的变压器匝数变比不是一个很好的选择(对我们的例子而言)。
2 匝数比=2:1这时原边匝数是副边的2倍,所以加在原边的电压为48V,副边和二极管上的电压为24V,可以使用肖特基功率二极管。
正激式变换器占空比近似为DC=V out/Vsec=5V/24V=21%(忽略肖特基功率二极管的通态电压Vf)。