线段中点坐标公式和定比分点坐标公式
- 格式:ppt
- 大小:450.50 KB
- 文档页数:22
平面向量公式1.向量三要素:起点,方向,长度2.向量的长度=向量的模3.零向量:⎩⎨⎧方向任意长度为.20.14.相等向量:⎩⎨⎧长度相等方向相同.2.15.向量的表示:AB ()始点指向终点6.向量的线性加减运算法则:()()⎪⎩⎪⎨⎧=-=+终点指向始点始点指向终点,CB AC AB AC BC AB ,21 7.实数与向量的积:()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=⋅ 5.a b b a ⋅=⋅ 6.()()b a b a ⋅⋅=⋅λλ 7.()c b c a c b a ⋅+⋅=⋅+ 注;()()c b a c b a ≠⋅8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得:a b λ=9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1⎪⎭⎫ ⎝⎛+=y x a⇒yx22+=()2已知;A ()y x 11+,B ()y x 22+⇒()()()⎪⎩⎪⎨⎧+=--=--y y x x y y x x AB 12122,.1221212()3已知;()y x a 11,= ,()y x b 22,=()()⎪⎩⎪⎨⎧+⋅=•±±=±⇒和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=⇔01221=⋅-⋅y x y x (横纵交错乘积之差为0)()5已知;已知;()y x a 11,=⊥()y x b 22,=02121=⋅+⋅⇔y y x x (对应坐标乘积之和为0)10.数量积ba ⋅等于ab 在a 的方向上的投影θcos ⋅的乘积:θcos =⋅b a()的夹角与为b a θ变形⇒b a =θcos11.线段的定比分点:设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p p 21,上的任意两点;即有:p p p p 21λ=⎪⎩⎪⎨⎧⇒<⇒>外在点内在点p p p p p p 212100λλ (其中p 为定比分点;λ为定比。
线段中点坐标公式和定比分点坐标公式线段中点坐标公式和定比分点坐标公式是几何学中常用的计算坐标的公式,用于确定线段上点的位置。
它们在许多实际应用中都有重要的作用,如建筑设计、工程测量等。
本文将分别介绍线段中点坐标公式和定比分点坐标公式,并举例说明其应用。
设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的中点C的坐标可通过以下公式计算:Cx=(x1+x2)/2Cy=(y1+y2)/2其中,Cx和Cy分别代表中点C的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(4,2)和B(8,6),则线段AB的中点C的坐标可通过以下计算得到:Cx=(4+8)/2=12/2=6Cy=(2+6)/2=8/2=4因此,线段AB的中点C的坐标为(6,4)。
线段中点坐标公式的应用十分广泛。
例如,在建筑设计中,我们常常需要确定一个房间或一个场地的中心点,以便布置家具或进行其他相应的规划工作。
在这种情况下,我们可以利用线段中点坐标公式计算出房间或场地的中心点的坐标。
除了线段的中点,我们还经常需要确定线段上的其他分点位置。
这时,我们可以使用定比分点坐标公式。
定比分点坐标公式:设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),若在AB上有一点P将AB分为内部比例m:n(m+n>0)的两部分,那么点P的坐标可以通过以下公式计算:Px = (nx1 + mx2) / (m + n)Py = (ny1 + my2) / (m + n)其中,Px和Py分别代表点P的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(2,4)和B(6,8),且要在AB上以内部比例2:1将其分割,即将AB分为两段,其中一段长度为整体长度的2/3,另一段长度为整体长度的1/3、那么按照定比分点坐标公式,点P的坐标可通过以下计算得到:Px=(2*2+1*6)/(2+1)=(4+6)/3=10/3≈3.33Py=(2*4+1*8)/(2+1)=(8+8)/3=16/3≈5.33因此,点P的坐标为(3.33,5.33)。
直线的知识点总结一、 直线的倾斜角与斜率:1. 直线的倾斜角:1) 定义:当直线与x 轴相交时,沿x 轴正方向为始边,按照逆时针方向旋转所得的最小正角;规定:与x 轴平行或重合的直线的倾斜角为0; 2) 范围:直线l 的倾斜角α的范围是0απ≤<; 2. 直线的斜率:1) 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
斜率反映直线与轴的倾斜程度。
2) 公式: tan k α=a.当[)οο90,0∈α时,0≥k ,当α=0°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当()οο180,90∈α时,0<k ,随着α的增大,斜率k 也增大; 当ο90=α 时,k 不存在,即直线与y 轴平行或者重合.这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.b. 如果知道直线上两点()11,A x y ,()22,B x y2112122112()AB y y y y k x x x x x x --==≠-- 注意:(1)特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k=0. (2)k 与A 、B 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
c .设直线():00l Ax By C B ++=≠ 则A k B=-注:三点A ,B ,C 共线,则AB BC k k =二、直线的方程:①点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.注意:当直线的倾斜角为0°时,k=0,直线的方程是y =y 0。
当直线的倾斜角为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 0,所以它的方程是x =x 0。