定向井井身轨迹计算公式
- 格式:docx
- 大小:37.29 KB
- 文档页数:3
定向井施工中常用计算方法钻井一公司赵相泽编内部资料。
讲课用,错误难免,请误外传一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。
2、垂深:井眼轴线上任一点,到井口所在水平面的距离。
3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。
也称该点的闭合距。
4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。
5、最大井斜角:全井井斜角的最大值。
6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。
7、造斜率:在定向井中,开始定向造斜的位置叫造斜点。
通常以开始定向造斜的井深来表示。
8、井斜变化率:单位井段内井斜角的变化值。
通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。
9、方位变化率:单位井段内方位角的变化值。
通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。
10、造斜率:表示造斜工具的造斜能力。
11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。
12、增斜率:井斜角随井深增加的井段。
13、稳斜段:井斜角保持不变的井段。
14、降斜段:井斜角随井深增加而逐渐减小的井段。
15、目标点:设计规定的必须钻达的地层位置。
通常以地面井口为坐标原点的空间坐标系的坐标来表示。
16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。
17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。
18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。
19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。
反扭角总是工具面逆时针转动。
20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。
井底圆上的最高点称为高边。
定向井轨迹控制实施办法一、定向井技术规程1.定向井施工钻机,应按如下公式选择钻机类型,钻机原有能力=井深(斜深)×(1+井斜角/100),以确保安全运行。
2.定向井施工前,必须作出详细的剖面设计,定向段造斜率按3.6°/30米,复合钻近增斜段按4°/100米,最大井斜与原设计最大井斜相符。
7.井斜超过40度,或位移超过500米的井段,钻具在井下静止时间不得超过2分钟。
8.井下钻具的摩阻,应控制在钻机允许范围之内,对大斜度、大位移井特须注意观测,必要时采取各种措施降低摩阻,如加减阻剂等。
9.当定向井位于井位密集的油区或在井的设计方向有一至数口已钻井时,为避免新老井眼相碰,必须参考老井有关资料,作出合理的井深设计;施工中运用防碰技术,严密监视及控制井眼发展趋势,两井轨迹的最小距离不得小于5米。
10.要求定向井各项技术资料及施工记录齐全、准确、及时、并充分利用已有资料进行分析,以提高定向中靶率和降低综合成本。
二、定向井安全施工规定(一)井身轨迹控制1.严格按设计施工。
井身轨迹尽可能接近设计的井身轴线,保持井身轨迹圆滑。
造斜点、最大井斜角均不得随意更改。
定向前直井段之井斜角控制在1°/1000米以内。
2.严格控制全角变化率12°~13°/100米。
一般情况下使用1°单弯螺杆定向。
(二)泥浆1.固控设备必须全功能运转,使用率不低于95%。
泥浆密度1.20以下固含10%,1.60固含25%,含砂量小于0.3%。
2.泥浆要有良好的润滑性,对其润滑性要定深化验。
定向前化验一次,定向后200米或每天化验一次。
泥浆摩阻系数符合设计要求。
3.为了保持良好的润滑性,泥浆中必须加入足量的润滑剂或混入原油。
加润滑剂和混原油可交替使用。
(三、)钻具管理1.入井钻具应有记录,并打钢印号、丈量内外径及长度,计算准确,确保井深无误,为施工提供数据。
2.为保证井下安全,钻具结构要简化。
第三节--定向井轨迹控制技术井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术,其中直井段的控制技术见第七章第四节。
一.定向选斜井段初始造斜方法有五类,即井下马达和弯接头定向、喷射法、造斜器法、弯曲导管定向、倾斜钻机定向。
目前,我国海洋定向井一般采用第一种方式,常用造斜钻具组合为:钻头十井下马达十弯接头十非磁钻铤十普通钻铤(0~30米)十挠性接头十震击器十加重钻杆。
这种造斜钻具组合是利用弯接头使下部钻具产生一个弹性力矩,迫使井下动力钻具驱动钻头侧向切削,使钻出的新井眼偏离原井眼轴线,达到定向造斜或扭方位的目的。
造斜钻具的造斜能力主要与弯接头的弯角和动力钻具的长度有关。
弯接头的弯角越大,动力钻具长度越短,造斜率也越高。
弯接头的弯角应根据井眼大小、井下动力钻具的规格和要求造斜率的大小选择。
现场常用弯接头的弯角为1.5~2.25度,一般不大于2.5度。
弯接头在不同条件下的造斜率见第四节。
造斜钻具组合使用的井下动力钻具型号应根据造斜井段或扭方位井段的井深选择。
使用井段在2000米以内,一般采用涡轮钻具或普通螺杆钻具,深层走向造斜或扭方位应使用耐高温的多头螺杆钻具。
造斜钻具组合、钻井参数和钻头水眼应根据厂家推荐的钻井参数设计。
由于井下动力钻具的转速高,要求的钻压小[一般为29.4~78.4千牛(3~8吨)],因此,使用的钻头不宜采用密封轴承钻头,尤其是在浅层,可钻性好的软地层应使用铣齿滚动轴承钻头或合适的PDC钻头。
根据测斜仪器的种类不同,分为四种定向方式:1.单点定向此方法只适用造斜点较浅的情况,通常井深小于1000米。
定向钻曲线计算标题:定向钻曲线计算简介:本文将介绍定向钻曲线计算的基本概念和方法,旨在帮助读者理解和应用该技术。
正文:定向钻曲线计算是石油工程中常用的技术之一,它能够帮助油井工程师控制钻井方向和轨迹,以实现更高效、更精准的油井开采。
本文将从以下几个方面介绍定向钻曲线计算的相关内容。
首先,我们将简要介绍定向钻井的基本原理。
定向钻井是通过改变钻头的方向和角度,使钻井方向偏离垂直井眼,实现在地下水平或倾斜方向上的钻井。
这种钻井方式能够有效利用油藏资源,提高井筒的暴露面积,增加油井产能。
接下来,我们将详细介绍定向钻曲线计算的方法。
定向钻曲线计算需要考虑多种因素,包括地质构造、岩性特征、井斜角度、方位角度等。
通过综合分析这些因素,可以确定最佳的钻井参数,以实现预期的钻井效果。
在计算过程中,需要使用一些数学模型和计算公式,例如正弦定理、余弦定理等,以确保计算结果的准确性和可靠性。
此外,我们还将介绍一些定向钻曲线计算的实际应用。
定向钻曲线计算不仅可以用于油井开采,还可以应用于其他领域,如地质勘探、矿山开采等。
通过合理运用定向钻曲线计算技术,可以大大提高工作效率,降低成本,减少工作风险。
最后,我们将总结定向钻曲线计算的重要性和优势。
定向钻曲线计算是现代油井工程中不可或缺的一环,它能够帮助工程师更好地掌握钻井过程,实现准确的井眼控制和钻井轨迹规划。
通过合理应用定向钻曲线计算技术,可以提高油井开采效率,降低环境风险,实现可持续发展。
总之,定向钻曲线计算是一项重要的技术,它在石油工程领域具有广泛的应用前景。
通过本文的介绍,相信读者能够对定向钻曲线计算有一个初步的了解,并能够应用于实际工作中。
1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。
(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。
1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。
测斜:一口实钻井的井眼轴线乃是一条空间曲线。
为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。
测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。
这些井段被称为“测段”,这些点被称为“测点”。
基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。
这三个参数就是轨迹的基本参数。
井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。
井深是以钻柱或电缆的长度来量测。
井深既是测点的基本参数之一,又是表明测点位置的标志。
井深常以字母L表示,单位为米(m)。
井深的增量称为井段,以ΔL表示。
二测点之间的井段长度称为段长。
一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。
井深的增量总是下测点井深减去上测点井深。
井斜角:井眼轴线上每一点都有自己的井眼前进方向。
过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。
井眼方向线与重力线之间的夹角就是井斜角。
井斜角常以希腊字母α表示,单位为度(°)。
一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。
井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。
井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。
井斜方位角常以字母θ表示,单位为度(°)。
井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。
一、定向井基本概念1、定向井:一口井的设计目标点,按照人为的需要,在一个既定的方向上与井口垂线偏离一定的距离的井,统称为定向井。
2、井深(m):井眼轴线上任一点,到井口的井眼长度,称为该点的井深,单位为“米”。
3、垂深(m):井眼轴线上任一点,到井口所在水平面的距离,称为该点的垂深,单位为“米”。
4、水平位移(m):井眼轨迹上任一点,与井口铅垂直线的距离,称为该点的水平位移,也称为该点的闭合距,单位为“米”。
5、视位移(m):水平位移在设计方位线上的投影长度,称为视位移,是绘制垂直投影图的重要参数,单位为“米”。
6、井斜角(°):井眼轴线上任一点的井眼方向线与通过该点的重力线之间的夹角,称为该点的井斜角,单位为“度”。
7、方位角(°):在以井眼轴线上任一点为原点的平面坐标系中,以通过该点的正北方向线为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角,单位为“度”。
8、磁偏角:在某一地区内,其磁北极方向线与地理北极方位线之间的夹角,称为该地区的“磁偏角”,顺时针为正,逆时针为负。
磁方位校正为磁方位角加上该地区的磁偏角。
9、造斜点(KOP):在定向井中,开始定向造斜的位置叫“造斜点”。
通常以开始定向造斜的井深来表示。
10、造斜率:表示造斜工具的造斜能力,常用“°/100m”表示。
11、井斜变化率:单位井段内井斜角的变化速度称为“井斜变化率”,常用“°/100m”表示。
12、方位变化率:单位井段内方位角的变化速度称为“井斜变化率”,常用“°/100m”表示。
13、全角变化率K(狗腿度):指的是单位井段内井眼钻进的方向在三维空间内的角度变化,它既包含了井斜角的变化又包含着方位角的变化。
常用“°/100m”表示。
14、靶点(目标点):设计规定的、需要钻达的地层位置,称为靶点。
15、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离,成为靶区半径。
定向井施工中常用计算方法钻井一公司赵相泽编内部资料。
讲课用,错误难免,请误外传一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。
2、垂深:井眼轴线上任一点,到井口所在水平面的距离。
3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。
也称该点的闭合距。
4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。
5、最大井斜角:全井井斜角的最大值。
6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。
7、造斜率:在定向井中,开始定向造斜的位置叫造斜点。
通常以开始定向造斜的井深来表示。
8、井斜变化率:单位井段内井斜角的变化值。
通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。
9、方位变化率:单位井段内方位角的变化值。
通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。
10、造斜率:表示造斜工具的造斜能力。
11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。
12、增斜率:井斜角随井深增加的井段。
13、稳斜段:井斜角保持不变的井段。
14、降斜段:井斜角随井深增加而逐渐减小的井段。
15、目标点:设计规定的必须钻达的地层位置。
通常以地面井口为坐标原点的空间坐标系的坐标来表示。
16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。
17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。
18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。
19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。
反扭角总是工具面逆时针转动。
20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。
井底圆上的最高点称为高边。
定向井施工中常用计算方法钻井一公司赵相泽编内部资料。
讲课用,错误难免,请误外传一、定向井剖面专业术语1、井深:井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称该点的测量井深或斜深。
2、垂深:井眼轴线上任一点,到井口所在水平面的距离。
3、水平位移:井眼轨迹上任一点,与井口铅垂线的距离。
也称该点的闭合距。
4、井斜角:井眼轴线上任一点的井眼方向,与通过该点的重力线之间的夹角。
5、最大井斜角:全井井斜角的最大值。
6、方位角:在以井眼轨迹上任一点为原点的平面坐标系中,以通过该点的正北方向为始边,按顺时针方向旋转至该点处井眼方向线在水平面上的投影线为终边,其所转过的角度称为该点的方位角。
7、造斜率:在定向井中,开始定向造斜的位置叫造斜点。
通常以开始定向造斜的井深来表示。
8、井斜变化率:单位井段内井斜角的变化值。
通常以两测点间井斜角的变化量与两测点间的井段的长度的比值表示。
9、方位变化率:单位井段内方位角的变化值。
通常以两测点间方位角的变化量与两测点间的井段的长度的比值表示。
10、造斜率:表示造斜工具的造斜能力。
11、全角变化率:在单位井段内井眼前进的方向在三维空间内的角度变化。
12、增斜率:井斜角随井深增加的井段。
13、稳斜段:井斜角保持不变的井段。
14、降斜段:井斜角随井深增加而逐渐减小的井段。
15、目标点:设计规定的必须钻达的地层位置。
通常以地面井口为坐标原点的空间坐标系的坐标来表示。
16、靶区半径:允许实钻井眼轨迹偏离设计目标点的水平距离。
17、靶心距:在靶区平面上,实钻井眼轴线与目标点之间的距离。
18、工具面:在造斜钻具组合中,由弯曲工具的两个轴线所决定的那个平面。
19、反扭角:使用井底马达带弯接头进行定向造斜或扭方位时,动力钻具启动前的工具面与启动后且加压钻进时工具面之间的夹角。
反扭角总是工具面逆时针转动。
20、高边:定向井的井底是一个呈倾斜状态的圆平面,称为井底圆。
井底圆上的最高点称为高边。
定向井井身轨迹计算公式
井身轨迹计算公式通常基于方位角和倾角的变化,通过测量这两个参数并施加合适的计算方法,从而获得井身轨迹的实时数据。
以下为常见的井身轨迹计算公式的详细介绍。
1.一般井身轨迹计算公式:
在一般情况下,井身轨迹可以通过使用方位角(Azimuth)和倾角(Inclination)来计算。
方位角是井身相对于参考轴线的平面角度,倾角是井身相对于参考轴线的垂直角度。
(1)水平井身轨迹计算公式:
对于水平井身,方向角为固定值0度,而倾角根据测量得到。
根据勾股定理的公式,可重写为:
X=COS(倾角)*MD
Y=SIN(倾角)*MD
Z=0
其中,X、Y、Z分别是井身在三维空间坐标系中的X、Y、Z轴坐标,MD为测量的累计测深或测距。
(2)非水平井身轨迹计算公式:
对于非水平井身,方向角和倾角都是动态变化的。
根据测量得到的方向角和倾角,可以使用三角函数计算井身在三维空间中的坐标位置。
X=COS(方位角)*COS(倾角)*MD
Y=SIN(方位角)*COS(倾角)*MD
Z=SIN(倾角)*MD
其中,X、Y、Z分别是井身在三维空间坐标系中的X、Y、Z轴坐标,MD为测量的累计测深或测距。
2.井身轨迹计算方法:
井身轨迹的计算方法有很多,以下是其中两种常见的方法:
(1)正演计算法:
正演计算法是一种基于初始位置和起始方向进行连续迭代计算的方法,通过在每个测深点处使用三角函数和向量运算,根据方向角和倾角计算后
面的点的位置。
这种方法适用于复杂的三维轨迹计算。
(2)逆演计算法:
逆演计算法是一种从目标位置逆向计算的方法,它通过目标位置和方向,以及前一个点的位置和方向,通过反向的三角函数和向量运算计算前
一个点的位置。
这种方法适用于实时测量和校正井身轨迹。
3.计算误差和改进方法:
根据测量过程和仪器的精度,井身轨迹计算可能会引入误差。
为了减
小误差,可以采用以下方法:
(1)校正误差:在测量过程中,根据测量仪器的精度和标定,进行
误差校正和修正。
这样可以提高轨迹计算的准确性。
(2)多点校正:使用多个测量点进行校正和验证。
通过在不同的深
度或距离测量井身轨迹,可以检查计算结果是否一致。
(3)模拟和优化:使用计算机模拟和优化算法,结合实际测量数据,对井身轨迹进行模拟和优化,以找到最佳的轨迹计算方法。
总之,井身轨迹计算公式是根据方位角和倾角的变化,通过测量和计
算方法来获得井身在三维空间中的坐标位置和方向。
这些公式和方法在油
气勘探和钻井过程中起着重要的作用,可以帮助实时监测井身位置和方向,指导钻井作业和油气开发工作。
同时,为了提高计算的准确性,还需要进
行误差校正和模拟优化等方法。