五年级数学上册知识点
- 格式:docx
- 大小:36.67 KB
- 文档页数:3
五年级上册数学知识点汇总一、小数乘法1. 小数乘法的意义:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2. 小数乘法的计算法则:①先按整数乘法的法则算出积;②再给积点上小数点。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
乘得的积的小数位数不够,要添0补位。
3. 小数乘法中,两个因数与积的小数位数的关系:一个因数的小数位数+另一个因数的小数位数=积的小数位数。
4. 积的近似值:根据要求,要省略某一位后面的尾数求近似值时,要看这一位的下一位,用“四舍五入”法求近似值。
注意:近似值与原数是相等的,求近似值后一般都要写出计数单位。
5. 连乘、乘加、乘减:小数连乘时,先把小数看成整数,再按整数乘法法则算出积,然后点上小数点;如果使用简便算法,先确定积的小数位数,再点上小数点;注意:连乘、乘加、乘减时,不要忘记加进小数点后的位数;当乘得的结果末尾有0时,应根据小数的基本性质,把末尾的0去掉。
二、小数除法1. 小数除法的意义:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2. 小数除以整数的计算方法:小数除以整数先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够在被除数的末尾用0补足);然后按照除数是整数的除法进行计算。
3. 商的近似值:根据要求,要省略商的某一位后面的尾数求近似值时,要看这一位的下一位,用“四舍五入”法求近似值。
注意:近似值与原数是相等的,求近似值后一般都要写出计数单位。
4. 循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
依次不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节的首位和末位两个数字中间添上一个“·”,(相当于循环点)的方法。
五年级(上册)数学知识点归纳人教版小学数学五年级(上册)各单元知识点第一单元:小数乘法一、小数乘整数的计算方法:先将小数转化为整数,然后按照整数乘法的计算方法算出积,最后确定积的小数点的位置。
如果积的小数部分末尾出现0,需要去掉小数末尾的0,使小数成为最简形式。
二、小数乘小数的算理及计算方法:1.按照整数乘法算出积,再确定小数点的位置;2.确定小数点的位置时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;3.如果积的小数位数不够,在前面用0补足,再点小数点;4.积的小数部分末尾有的要去掉。
三、积与因数的关系一个因数(除了1)乘大于1的数,积比原来的因数大;一个因数(除了1)乘小于1的数,积比原来的因数小。
四、求一个数的小数倍数的解题方法:用乘法计算,即用这个数乘小数倍数。
五、小数乘法的常用验算方法:1.根据因数与积的大小关系检验;2.交换两个因数的位置,重新计算;3.用计算器验算。
六、用“四舍五入”法求积的近似数:1.先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2.用四舍五入法保留一定的小数位数。
四舍五入法:小于5,把它和右边的数全舍去;大于5,向前进1,再把它和右面的数全舍去。
由于小数的末尾去掉和加上,小数的大小不变,所以取小数的近似数时不用把数改写成分数,直接去掉。
七、乘除法运算定律1.乘法交换律:两个数相乘,交换两个因数的位置,积不变。
用字母表示为:a×b=b×a。
例如:85×18=18×85,23×88=88×23.2.乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
用字母表示为:(a×b)×c=a×(b×c)。
注意:乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
1、小数除以整数的方法:先将小数乘以10、100、1000……把小数点向右移动相应的位数,使得被除数变成整数,然后进行整数除法运算,最后把商的小数点向左移动相应的位数,还原成小数。
五年级上册数学复习要点
1. 整数
- 理解正整数、负整数和零的概念
- 掌握整数的加减法运算
- 能够用数轴表示整数
2. 分数
- 理解分数的概念和意义
- 掌握分数的加减法运算
- 能够将分数化简为最简形式
3. 小数
- 理解小数的概念和意义
- 掌握小数的加减法运算
- 能够将小数转化为分数或百分数
4. 平面图形
- 理解正方形、长方形、三角形和圆的特征及性质- 能够计算平面图形的周长和面积
- 能够进行简单的图形变换,如平移、旋转和翻转
5. 数据统计
- 理解调查、收集数据和制作统计图表的过程
- 能够读懂和分析简单的统计图表,如条形图和折线图
- 能够计算平均数和中位数
6. 时、钟、日、历
- 能够读懂和表示小时、分钟、秒钟的概念
- 能够用24小时制表示时间
- 能够计算时间的间隔和运算
7. 问题解决
- 能够运用所学知识解决实际生活中的简单问题
- 能够提出问题、分析问题和寻找解决方法
以上是五年级上册数学的复习要点,希望你能够针对这些内容进行复习和巩固。
祝你学习进步!。
小学五年级数学上册知识点第一节:数字的认识与运算1. 数的大小比较:比较数字的大小,可以使用大于、小于、等于的符号进行比较。
2. 十进制与单位:以十为基数的计数方式,使用十进制数。
3. 数的进位与退位:在进行加减运算时,当某一位的数加减后超过10时,需向前进一位或退一位。
4. 数的拆分与组合:可以将一个数拆分成不同的数位之和,或将多个数位进行组合得到一个整数。
第二节:数的整数运算1. 加法与减法的运算法则:加法的交换律、结合律,减法的正负消去律。
2. 正数与负数:正数表示增加量,负数表示减少量,0表示相等。
3. 两个正数相加、相减:两个正数相加结果为正数,相减结果为正数或零。
4. 两个负数相加、相减:两个负数相加结果为负数,相减结果为负数或零。
第三节:数的小数运算1. 小数的认识:小数是带有小数点的数,小数点后面的数字代表不同的数位。
2. 小数的读法和写法:小数可以用阿拉伯数字表示,小数点读作“点”。
3. 小数的比较:可以使用大小符号进行小数的大小比较。
4. 小数的加减法:小数的加减法与整数的加减法类似,将小数点对齐后进行计算,并保留相应的小数位数。
第四节:数的分数运算1. 分数的认识:分数表示整体中分成若干份的一部分,由分子和分母组成。
2. 分数的读法和写法:分子在上方,分母在下方,中间用横线隔开。
3. 分数的比较:可以使用大小符号进行分数的大小比较。
4. 分数的加减法:分数的加减法需要先找到分母的最小公倍数,然后相加或相减分子,分母保持不变。
第五节:数的乘法与除法1. 乘法的运算法则:乘法的交换律、结合律。
2. 乘法的计算:将两个因数的数值相乘得到积。
3. 除法的运算法则:除法的定义,被除数除以除数得到商。
4. 除法的计算:确定商和余数的大小,进行整除或可整除的除法运算。
第六节:平面图形与三维图形1. 点、线和面:点是没有大小的位置,线是由无数个点组成的直线,面是由无数个线组成的平面。
2. 正方形、长方形、三角形和圆形的认识:正方形的四条边相等且都是直角,长方形有两个相等且都是直角的边,三角形有三个角和三条边,圆形由一个圆心和一组等半径的圆弧组成。
数学五年级上册总复习要点整理一. 算数1. 整数1.1 正整数和负整数的概念1.2 整数的比大小1.3 整数的加减法则及应用1.4 整数的乘除法则及应用2. 分数2.1 分数的概念和性质2.2 分数的比较大小和约分2.3 分数的加减法则及应用2.4 分数的乘除法则及应用3. 小数3.1 小数的概念和性质3.2 小数的读法和写法3.3 小数的比较大小和四则运算4. 算式的变形和计算4.1 算式的基本等式4.2 算式的变形4.3 算式的括号应用4.4 算式的口算加减乘除5. 数的应用5.1 包括数值解释、图形解释等二. 几何1. 植入几何学1.1 植入几何中的点和线1.2 植入几何中的角和三角形1.3 植入几何的统计图形初步2. 视图几何学2.1 视角的概念和画法2.2 视图及其分类3. 几何变换3.1 平移和旋转的概念和画法3.2 对称的概念和画法三. 量1. 长度1.1 长度的测量1.2 长度的运算2. 面积2.1 面积的概念和测量2.2 面积的运算3. 重量3.1 重量的测量3.2 重量的运算4. 容积和长度之间的换算4.1 容积和长度的概念4.2 容积和长度之间的换算四. 数据1. 数据資料1.1 資料的收集1.2 資料的分析2. 平均数2.1 一般用算术平均数2.2 一般应用3. 计数方法3.1 排列表和频数分布表3.2 众数和中位数五. 算法1. 数字串/字符运算1.1 数字串和字符的概念1.2 字符的比较和分类1.3 数字串的基本操作2. 计算机图形学2.1 图形学的概念和分类2.2 图形计算和显示2.3 特殊效果的实现以上是数学五年级上册总复习的要点整理,希望能够对同学们的学习有所帮助。
第一章小数乘法1,当一个数乘比1小的数,积比这个数小。
当一个数乘比1大的数,积比这个数大。
例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。
3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。
4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。
把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。
6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。
7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。
①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。
小学五年级数学上册35个重要知识点归纳五年级数学上35个重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
小学数学五年级上册知识点总结第一单元、小数乘法1、小数乘法的计算法则计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。
如果积的小数点位数不够,要在前面用0补足,再点小数点。
如果积的末尾有0,在确定积的小数点位置时,应先点上小数点,然后再把小数末尾的0划掉。
2、小数乘整数的意义求几个相同加数和的简便运算3、一个乘法算式中,一个数(0除外)乘大于1的数,积比原来的数大。
如:3×1.2>3一个数(0除外)乘小于1的数,积比原来的数小。
如:3×0.8<34、积的变化规律一个因数不变,另一个因数乘或除以几(0除外),积也乘或除以几。
5、求积的近似数的方法先按小数乘法的计算方法算出积,再看需要保留数位的下一位数字,最后按照“四舍五入”法求出结果,并用“≈”连接,表示求出的是近似数。
6、整数乘法的交换律、结合律、分配律,对于小数乘法同样适用。
第二单元、位置1、“列”“行”的含义:竖排叫做列,确定第几列一般是从左往右数;横排叫做行,确定第几行一般是从前往后数。
2、用数对表示物体的位置时,列和行两个数字间用逗号隔开,并用括号括起来。
例:第二行,第三列,(2,3)。
第三单元、小数除法1、小数除法的意义:与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。
2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数,要添0再继续除。
3、被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1,商等于原来的数。
五年级数学上册知识点归纳一、整数与小数1. 整数的概念:整数包括自然数、0和负整数。
2. 整数的表示:正整数、负整数和0可以表示为数轴上的点,数轴上的点可以表示为整数。
3. 整数的比较:比较整数大小时,可以用数轴、大小关系符号(<、>、=)进行表示。
4. 小数的概念:小数是有限位数或无限循环小数。
二、小数的运算1. 小数的加法:小数相加时,先对齐小数点,然后按照位数进行相加,最后写下小数点。
2. 小数的减法:小数相减时,可以通过改变被减数的符号并转化为加法运算来进行计算。
3. 小数的乘法:小数相乘时,先按照整数乘法的规则进行运算,最后确定小数点的位置。
4. 小数的除法:小数相除时,可以将除数与被除数都乘以相同的10的倍数,使被除数变为整数,然后按照整数除法的规则进行运算,最后确定小数点的位置。
三、分数的概念与运算1. 分数的概念:分数是由分子和分母构成的,分子表示被分的份数,分母表示分成几份。
2. 分数的相等:当分子分母成比例时,表示的分数是相等的。
3. 分数的比较:比较分数大小时,可以通过相等分母,然后比较分子的大小来判断。
4. 分数的加法减法:分数相加减时,需要先找到相同的分母,然后按照分母进行运算,最后化简(约分)。
5. 分数的乘法除法:分数相乘除时,可以直接按照分子分母进行运算,最后化简(约分)。
四、面积和周长1. 面积的概念:面积是二维图形所占的单位面积的总和。
2. 面积的计算:不同二维图形的面积计算方式不同,例如正方形面积=边长的平方,矩形面积=长乘以宽。
3. 周长的概念:周长是封闭图形边界的长度总和。
4. 周长的计算:不同图形的周长计算方式不同,例如正方形周长=4倍边长,矩形周长=2倍长+2倍宽。
五、时、钟与时针、分针1. 时钟的制作:时钟通常由表盘、时针、分针、秒针组成。
2. 读时:通过时针和分针的位置来读取时间,时针指向的数字代表小时,分针所在位置代表分钟。
六、几何图形与变换1. 点、线、面的概念:点是没有长度、宽度和高度的,线是由无数个点连接而成的,面是由无数个线连接而成的。
五年级数学上册重点知识点整理篇11、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab正方形的周长公式:c=4a正方形的面积公式:s=3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度) 总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价) 总产量=(单产量)×(数量)单产量=(总产量)÷(数量)数量=(总产量)÷(单价)工作总量=(工作效率)×(工作时间)工作效率=(工作总量)÷(工作时间)工作时间=(工作总量)÷(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数被减数=减数+差减数=被减数-差加数=和-另一个加数被除数=除数×商除数=被除数÷商因数=积÷另一个因数小学数学四边形知识点1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
人教版五年级数学上册各单元复习要点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法: a-b-c=a-(b+c) a-(b+c)=a-b-c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法: a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一一个点的位置。
五年级数学上册知识点第一单元负数的初步认识1.0既不是正数,也不是负数。
正数都大于0,负数都小于0。
2.在数轴上,以“0”为分界点,越往左边的负数越小,左边的数都比右边的数小。
第二单元多边形的面积1.边长是100米的正方形的面积就是1公顷。
边长是1000米的正方形的面积就是1平方千米。
2. 1公顷=10000平方米 1平方千米=100公顷3. 长方形的周长=(长+宽)×2正方形的周长=边长×44.正方形的面积=边长×边长长方形的面积=长×宽平行四边形面积=底×高三角形面积=底×高÷2梯形的面积=(上底+下底)×高÷2第三单元小数的意义和性质1.分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
2.小数的组成:小数是由整数部分、小数点和小数部分组成的。
比较小数的大小时,先比整数部分,再比小数部分。
3.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
第四单元小数加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减。
第五单元小数乘法和除法1.一个小数乘以10、100、1000……只要把小数点向右移动一位、两位、三位……;2.一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……;积不变。
第六单元统计表和条形统计图1. 复式统计表的优点........:把几张相关联的单式统计表合并成一张统计表后,便于从整体上了解、对比、分析数据。
2. 复式条形统计图的优点..........:把两张或多张相关联的条形统计图合并后,能更清楚的表示各种数量的多少,更直观、形象地比较多种数量之间的关系。
第七单元解决问题的策略1.把事情发生的可能性有条理地找出来,从而找出问题的全部答案,这种策略叫2.要做到不重复、不遗漏,就要按顺序来排列。
人教版五年级上册数学知识点汇总一、小数乘法1.小数乘整数:o理解小数乘整数的意义,掌握计算方法。
o会用小数乘整数解决简单的实际问题。
2.小数乘小数:o掌握小数乘小数的计算方法,理解积的小数位数与乘数小数位数的关系。
o能进行小数乘法的简便计算。
3.积的近似数:o理解近似数的概念,学会用四舍五入法求积的近似数。
4.连乘、乘加、乘减:o掌握小数连乘、乘加、乘减的运算顺序和计算方法。
5.整数乘法运算定律推广到小数:o理解并应用加法交换律、结合律,乘法交换律、结合律和分配律进行小数计算。
二、位置1.用数对表示位置:o理解数对的概念,能用数对表示具体情境中物体的位置。
o能在方格纸上根据数对确定物体的位置。
三、小数除法1.小数除以整数:o理解小数除以整数的意义,掌握计算方法。
o能进行小数除以整数的估算和精确计算。
2.一个数除以小数:o掌握除数是小数的除法计算方法,理解商的变化规律。
3.商的近似数:o理解近似数的必要性,学会用四舍五入法求商的近似数。
4.循环小数:o认识循环小数,能用简便方法表示循环小数。
5.用计算器探索规律:o学会使用计算器进行复杂的小数计算,并通过计算探索数学规律。
四、可能性1.简单事件发生的可能性:o理解可能性的概念,能用“一定”、“可能”、“不可能”等词语描述简单事件发生的可能性。
2.游戏规则的公平性:o理解游戏规则的公平性,能设计简单的公平游戏。
五、简易方程1.用字母表示数:o理解用字母表示数的意义和作用,能用字母表示简单的数量关系。
2.方程的意义:o理解方程的概念,知道等式与方程的关系。
3.解简易方程:o掌握解简易方程的基本步骤和方法,如等式两边同时加、减、乘、除同一个数(不为0)。
4.列简易方程解决问题:o学会根据问题中的等量关系列简易方程,并解方程求解。
六、多边形的面积1.平行四边形的面积:o掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2.三角形的面积:o掌握三角形的面积计算公式,理解等底等高的三角形面积相等。
五年级数学上册必背知识点一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如,2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如,2.5×0.3表示2.5的十分之三是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
当积的小数位数不够时,要在前面用0补足,再点小数点。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如,将1.234×5.67的积保留两位小数,先算出积为6.99678,然后看千分位数字6,向百分位进1,得到7.00。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a× b = b× a,例如,0.5×1.2 = 1.2×0.5。
- 乘法结合律:(a× b)× c=a×(b× c),如(0.2×0.3)×0.4 = 0.2×(0.3×0.4)。
- 乘法分配律:(a + b)× c=a× c + b× c,例如,(1.5+2.5)×3.2=1.5×3.2 +2.5×3.2。
二、位置。
1. 数对。
- 用数对表示位置时,先表示列数,再表示行数。
例如,在方格纸上,点A在第3列第2行,用数对表示为(3,2)。
- 两个数对中第一个数相同,表示在同一列;第二个数相同,表示在同一行。
三、小数除法。
小学五年级上册数学必记知识点汇总,拿给孩子收藏!第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
五年级数学上册知识点
1. 数的大小比较
- 次序:数字的大小比较,包括从小到大和从大到小的顺序。
- 认识整数:正整数和负整数,并了解它们在数轴上的位置。
2. 加减法运算
- 加法和减法的概念和运算方法。
- 两位数和两位数的加减运算。
- 带进位的加法和借位的减法。
3. 乘法运算
- 乘法的概念和运算方法。
- 乘法口诀表的研究和运用。
- 两位数和一位数的乘法。
4. 除法运算
- 除法的概念和运算方法。
- 除法口诀表的研究和运用。
- 两位数除以一位数的除法。
5. 多位数的加减乘除运算
- 多位数和多位数的加减乘除运算。
- 多位数和整数的加减乘除运算。
6. 数的性质与关系
- 偶数和奇数的辨认和性质。
- 因数和倍数的概念及其关系。
7. 小数
- 小数的概念和表示方法。
- 小数的加减运算。
8. 小数和分数的转化
- 小数和分数之间的关系。
- 小数和分数的转化方法。
9. 分数的运算
- 分数之间的大小比较。
- 分数的加减乘除运算。
10. 单位换算
- 长度、重量和容量的单位换算。
- 通过换算解决实际问题。
11. 图形与面积
- 二维图形的认识和分类。
- 面积的概念和计算方法。
12. 时间和日期
- 时钟和时间的概念和读法。
- 日期的表示和计算。
13. 数据的收集和整理
- 数据的收集和整理方法。
- 条形图和表格的制作和分析。
以上是五年级数学上册的知识点,希望对你有帮助!。