化学镀金工艺技术指标
- 格式:docx
- 大小:36.85 KB
- 文档页数:2
镀金厚度标准
镀金厚度标准是指在进行镀金处理时,金属表面所覆盖的金属层的厚度要达到的标准要求。
镀金厚度的标准通常采用微米(μm)作为单位进行表示。
一般而言,镀金厚度标准可以根据不同的应用领域和要求进行划分。
以下是一些常见的镀金厚度标准:
1. 一般镀金厚度标准:一般工业中常用的镀金厚度标准为0.5-1.0 μm。
2. 高标准镀金厚度:高档电子设备、精密仪器等领域常要求更高的镀金厚度,一般要求达到1.5-
3.0 μm。
3. 特殊应用镀金厚度:某些特殊应用领域,如航空航天、卫星通信等,对镀金层的保护和导电性能要求非常高,镀金厚度可达到3.0 μm以上。
需要注意的是,镀金厚度的标准也会因不同的金属基材和镀金工艺而有所差异。
通常,采用电镀方法进行镀金的厚度标准较为常见,而采用其他方法(如化学镀金、真空镀金)进行镀金时,厚度标准可能有所不同。
此外,镀金厚度的测试方法和仪器也是十分重要的,通常使用划痕测试、X射线荧光光谱仪等方法进行测量。
化学镀铝和铝合金有易产生晶间腐蚀,表面硬度低,不耐磨损等弱点。
在其表面进行化学镀处理,可以改善一些性能:改善耐腐蚀性,提高耐磨性,良好的耐磨性,高硬度,提高装饰性。
而纳米TiO2的加入,可以显著提高镀层的耐磨性,硬度,自润滑性,耐腐蚀性等性能。
化学镀概述化学镀:也称无电解镀,是在无外加电流的化学沉积过程。
借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到零件表面的一种镀覆方法。
也叫做”自催化镀”,”无电解电镀”。
化学镀可以分为“置换法”,“接触度”,“还原法”。
一.化学镀相对电镀优点①化学镀可以用于各种基体,包括金属,非金属以及半导体。
②化学镀镀层均匀,无论工件如何复杂,只要采用合适的施镀方法,都可以在工件上得到均一镀层。
③对于可以自催化的化学镀而言,理论上可以得到任意厚度的镀层。
④化学镀所得到的镀层有很好的化学,机械,磁性性能。
⑤化学镀相对电镀而言最大的优点是镀层厚度均匀,针孔率低。
二.发展概况1.1844年,A.Wurtz通过亚磷酸盐还原镍得到了金属镍的镀层。
2.1911年,Bretean发表有关沉积过程是镍与次磷酸盐的催化过程的化学镀研究报告。
3.1916年,Roux从柠檬酸盐一次亚磷酸盐体系中得到了镀镍层,注册了第一份化学镀镍专利。
4.1944年,美国国家标准局从事轻武器改进研究的A.Brenner与G.Riddel在枪管实验中证实了次亚磷酸钠催化还原镍,1946年,1947年,两人公布了研究结果。
5.20世纪五十年代,美国通用运输公司对化学镀镍溶液组成与工艺进行系统研究。
为后来化学镀镍工业应用奠定基础。
6.1955年,开发出“Kanigen”技术;1964年,开发出“Durapositli”技术;1968年,开发出“Durnicoat”技术;1978年至1982年,开发成“诺瓦泰克”商品镀液。
7.20世纪六十年代,小规模化学镀镍工艺进入美国市场。
8.20世纪七十年代末至八十年代初,化学镀镍研究重点转向高磷镀层。
化学镀镍相关标准与规范化学镀镍过程的标准和规范有许多,几乎各国都有自己的标准,这些标准和规范是由许多学科的专业人员共同制定的,为了方便我国技术人员参考,现将其中比较重要的一些标准名称列出:国际标准:ISO 4527(1987),ISO/TC107 自催化镍磷镀层-规范和试验方法(Autocatalyticnickel-phosphoruscoatings-specification and test methods)中国:自催化镍-磷镀层技术要求和试验方法 GB/T 13913-92美国:ASTM B733-97 金属上自催化镍磷镀层标准规范(Standard Specification for Autocatalytic(Electroless) Nickel-Phosphorous Coatings on Metal)ASTMB656-91 工程用金属自催化镍磷沉积标准(Standard Guide for Autocatalytic (Electroless)Nickel-Phosphorus on Metals for Engineering Use)ASTM B656-79 金属上工程用自催化镀镍标准实施办法(该标准于2000年废止)MILC 26074B-军用规范,化学镀镍层的技术要求(Coatings,Electroless Nickel Requirements for Military)AMS 2404A-航空材料规范化学镀镍(Electroless Nickel Plating)AMS 2405-航空材料规范化学镀镍,低磷(Electroless Nickel Plating,Low Phosphrous) NACE T-6A-54 美国腐蚀工程师学会文件化学镀镍层英国:DEE STD 03-5/1 材料的化学镀镍层(Electroless Nickel Coatings of Material)法国:NFA 91-105 化学镀镍层特性和测试方法(Dépôt Chimique s de Nickel-Propciétés Caractéristiques atMéthodes Déssais德国:DIN 50966(1987) 功能化学镀镍层RAL-RG 660(第二部分)(1984)硬铬和化学镀镍层的质量保证苏联标准:ΓOCT 9.305-84奥地利:ÖNOrm c2550(1987) 化学镀镍磷镀层-技术要求和测试日本标准:JISH 8654-89 金属上自催化镍磷镀层H8645-99 ??解ンツケル?りんめフき11.1 国际标准ISO4527该国际标准于1987年发布,论述了含磷2~15wt%的化学镀镍,并阐述了实际的沉积和预处理步骤。
PCB化学镀镍金工艺介绍PCB化学镀镍金工艺是一种常用的金属化学镀工艺,用于在印刷电路板(PCB)表面镀覆一层金属防护层,以提高电路板的导电性、耐腐蚀性和焊接性能。
本文将介绍PCB化学镀镍金工艺的基本原理、工艺步骤和优缺点。
基本原理:PCB化学镀镍金工艺是利用电化学原理,在PCB表面镀覆一层金属镍,然后再在镍层上镀覆一层金属金。
电化学镀镍过程中,利用电解液中的镍离子在PCB表面还原成金属镍,形成一层均匀的金属薄膜。
而电化学镀金过程类似,利用电解液中的金离子在镍层上还原成金属金,形成一层优质的金属薄膜。
这样,PCB表面就得到了一层耐腐蚀、导电性好的金属保护层,提高了PCB的性能和可靠性。
工艺步骤:1.清洗:将PCB放入碱性清洗液中,去除表面的油污和污垢,保证良好的粘接性。
2.除锡:在酸性溶液中进行脱锡处理,去除PCB表面的焊锡层,以免对后续工艺产生干扰。
3.洗涤:将PCB放入清水中进行冲洗,去除脱锡液。
4.化学镀镍:将清洗后的PCB放入镀镍槽中,通过电解作用,在PCB表面上镀覆一层金属镍。
镀镍工艺中的关键是电解液的配方和调节,以确保镀层的均匀性和质量。
5.洗涤:将镀镍后的PCB放入清水中进行冲洗,去除残留的电解液。
6.电镀:将镀镍后的PCB放入金镀槽中,通过电解作用,在镀镍层上镀覆一层金属金。
和镀镍工艺一样,金镀工艺中的关键是电解液的配方和调节,以确保金属镀层的均匀性和质量。
7.洗涤:将金镀后的PCB放入清水中进行冲洗,去除残留的电解液。
8.烘干:将洗涤后的PCB放入烘干箱中进行烘干,去除水分,使PCB表面干燥。
优缺点:1.镀层均匀:化学镀镍金工艺能够在PCB表面形成一层均匀的镍层和金属金层,不仅提高了密着性,还提高了导电性能。
2.镀层良好的硬度:化学镀镍金镀层具有一定的硬度,提高PCB的耐磨、耐刮性能。
3.阻焊性好:镀金层在PCB表面形成一层阻焊层,提高了PCB的焊接性能和可靠性。
4.节省成本:与其他金属化工艺相比,化学镀镍金工艺更加节省成本,适用于大批量生产。
镀金的工艺技术镀金是一种常用的表面技术,通过将金属金属沉积在物体的表面,使其具备金属的光泽和保护能力。
下面将介绍一下镀金的工艺技术。
镀金首先要进行表面处理,以确保金属涂层的牢固性。
通常会采用机械抛光、化学蚀刻、酸洗等方法,去除物体表面的杂质和氧化层,使其表面光洁并具备良好的附着力。
镀金可以使用多种金属材料,常用的有黄金、白金、银等。
其中黄金是最常用的材料,因为它具有高纯度和抗氧化能力。
一般来说,镀金工艺分为电镀金和火法镀金两种。
电镀金是最常见的一种镀金方法。
它将金属材料通过电化学方法沉积在物体表面。
首先将金属材料制成电极,然后将物体放在电解液中,再将电极接到电源上,形成电流。
在电流的作用下,金属离子从电极中溶解出来,并沉积在物体表面。
这种方法可以控制金属涂层的厚度和均匀性,但是需要严格控制电流的大小和时间,以及电解液的组成。
火法镀金是将金属材料加热至熔点,使其融化后涂覆在物体表面。
首先将金属材料研磨成粉末,然后以一定的温度和时间加热,使其融化后涂覆在物体表面。
这种方法可以使金属涂层均匀且密封性好,但是需要熟练掌握加热的温度和时间,以防止金属材料过热和融化不均匀。
镀金的工艺技术还可以根据具体需求进行改变,以满足不同的应用场景。
比如,在一些需要高耐磨性和抗腐蚀性的场合,可以在金属涂层上再进行覆盖层,如聚合物涂层或陶瓷涂层,以增加金属涂层的硬度和保护性能。
此外,还可以通过控制镀金的时间和温度,来调整金属涂层的颜色和光泽,进一步满足不同的设计需求。
总之,镀金是一种常用的表面技术,通过将金属材料沉积在物体表面,使其具备金属的光泽和保护能力。
它可以通过电镀金和火法镀金等方法进行,需严格控制工艺参数,以确保金属涂层的质量。
此外,还可以根据具体需求进行改变,以满足不同的应用场景。
化学镀镍-磷合金层表面化学镀金工艺及其性能刘海萍;毕四富;王尧【摘要】采用化学镀镍-磷/化学镀钯/置换镀金(ENEPIG)工艺获得镍/钯/金组合镀层,对比分析了它与化学镀镍/置换镀金(ENIG)、化学镀镍/化学镀金(ENEG)工艺的相关沉积特征及镀层耐蚀性能.镀金过程中开路电位和沉积速率均发生明显的变化,反映了基体电极表面状态的变化.ENEG工艺的化学镀金过程中的平台电位最正,沉积速率最快.与ENIG工艺的置换镀金相比,ENEPIG工艺中置换镀金的平台电位更正,对基体的腐蚀也更慢,所得置换镀金层更致密,具有良好的耐腐蚀性能.综合对比ENIG、ENEG、ENEPIG工艺所得3种镀层,ENEPIG工艺的镀层性能最优.%A nickel/palladium/gold composite coating was obtained by electroless nickel plating followed by electroless palladium plating and immersion gold plating (ENEPIG) successively.The related deposition properties of ENEPIG,ENIG (electroless nickel plating/immersion gold plating) and ENEG (electroless nickel/gold plating),as well as the corrosion resistance of their coatings were compared.Both open circuit potential and deposition rate during the gold plating change obviously,which reflects the change on the surface of substrate.The electroless gold plating in ENEG process has the highest potential platform and deposition pared with the immersion gold plating in ENIG process,the immersion gold plating in ENEPIG process has a higher potential platform and a lower corrosion rate of substrate.The obtained immersion gold coating is more compact and resistant to corrosion.It is found that the coating obtained by ENEPIG process has the best performances through a comprehensive comparisonamong the three kinds of coatings obtained by ENIG,ENEG and ENEPIG processes.【期刊名称】《电镀与涂饰》【年(卷),期】2017(036)019【总页数】4页(P1025-1028)【关键词】化学镀;置换;镍-磷合金;金;钯;耐蚀性【作者】刘海萍;毕四富;王尧【作者单位】哈尔滨工业大学(威海)海洋科学与技术学院,山东威海264209;哈尔滨工业大学(威海)材料科学与工程学院,山东威海264209;哈尔滨工业大学(威海)海洋科学与技术学院,山东威海264209【正文语种】中文【中图分类】TQ153.2;TG150化学镀镍/置换镀金(ENIG)镀层具有优良的耐蚀性、热稳定性和可焊性,在电子产品表面处理中得到广泛应用.但置换镀金时容易对化学镀镍-磷合金镀层造成过腐蚀,导致微电子产品后续焊接失效,这制约了ENIG技术的发展与应用[1-3].为了减缓置换镀金时对Ni-P合金的腐蚀,国内外研究者进行了许多工作.如采用耐腐蚀性较好的高磷化学镀镍-磷合金,采用中性、低温的置换镀金液,在置换镀金液中添加硫脲等还原剂或聚乙烯亚胺类缓蚀剂[4-5],开发半置换半还原的复合镀金层[6-7],等等.这些方法虽然在一定程度上减轻了镍-磷合金的腐蚀,但并不能杜绝上述问题.化学镀镍/化学钯/置换镀金技术(ENEPIG)是在化学镀 Ni-P层与置换镀金层之间增加化学镀钯的工艺.化学镀钯层一方面可以避免镀金液对Ni-P合金的腐蚀,防止"黑盘"的发生;另一方面,钯层作为阻挡层,能够防止后续热处理时Ni-P层与金层之间的扩散,提高铝线、金线的键合能力[8].因此,ENEPIG工艺具有良好的焊接可靠性,能够满足RoHS的无铅焊接要求,被誉为"万能"镀层,在微电子领域具有很好的应用前景.本文采用课题组前期开发的较稳定的化学镀钯液,以纯铜为基体,通过ENEPIG工艺获得镍/钯/金组合镀层,并对比分析了化学镀镍/置换镀金、化学镀镍/化学镀金等的相关沉积特征及镀层性能.以20 mm X 20 mm的纯铜片为基体,依次进行酸洗、微刻蚀、预浸、活化后化学镀Ni-P合金4 ~5 μm [6],再分别进行置换镀金(IG)、化学镀钯/置换镀金(EPIG)、化学镀金(EG),分别得到 ENIG、ENEPIG 和ENEG镀金试样.置换镀金的配方和工艺为:亚硫酸金钠2 g/L,亚硫酸钠15 g/L,硫代硫酸钠17 g/L,配位剂3 g/L,添加剂 50 mg/L,温度(80 ± 2) °C,pH 7.0.化学镀金液除了增加2 g/L硫脲(还原剂)外,其余参数与置换镀金相同.化学镀钯的配方和工艺为:硫酸钯2 g/L,硫脲2 mg/L,乙二胺四乙酸20 g/L,次磷酸钠15 g/L,磷酸二氢钠12 g/L,温度60 °C,pH 7.0.使用上海辰华CHI604E电化学工作站测量镀金过程中开路电位(OCP)随时间的变化.研究电极为化学镀Ni-P、Ni-P/Pd的铜片(工作面积为1 cm2),辅助电极为铂电极,参比电极为饱和甘汞电极(SCE).使用德国Bruker AXS S4Explorer型X射线荧光光谱仪(XRF)测量金层厚度,计算镀金速率.目视观察镀层的外观和色泽,以德国Zeiss MERLIN Compact型扫描电子显微镜(SEM)观察镀层的微观形貌.分别采用润湿角法(3.5% NaCl溶液)及塔菲尔(Tafel)曲线测量,比较不同镀金试样的耐蚀性.测Tafel曲线前,将待测试片放入丙酮中浸泡5 min,以去除镀层表面油污,再在3.5% NaCl溶液中浸泡15 min以平衡其电极电位,将此平衡电位作为开路电位,以5 mV/s的速率在开路电位的± 300 mV范围内扫描.根据式(1)和式(2)计算镀金层的孔隙率ρ.式中,Rp为极化电阻(单位:Ω.cm2),Rpm为基体的极化电阻(单位:Ω.cm2),Δφ为镀层与基体之间的电位差(单位:V),jcorr为镀层的腐蚀电流密度(单位:µA/cm2),βa为阳极 Tafel斜率,βc为阴极的 Tafel斜率.由图1可知,Ni-P和Ni-P/Pd合金表面金沉积过程的开路电位随时间的变化规律基本相似.随金沉积过程的进行,开路电位先正移,最后达到基本稳定的平台值.ENEG 工艺对应的平台电位最正,约为-0.16 V,ENEPIG、ENIG的平台电位分别在-0.23 V 和-0.30 V左右.ENEG工艺到达平台电位所需时间最短,其次为 ENEPIG.将待镀电极浸入镀金液后会发生 Au+的还原沉积反应,使基体表面逐渐被金层覆盖,导致电极电位正移.到达平台电位的时间越短,表明基体被金层完全覆盖所需时间越短,而平台电位越正,则意味着金层的覆盖率越高[5].因此,在Ni-P合金上化学镀金时所得金层覆盖率比置换镀金层要高;而在Ni-P合金上先进行化学镀钯也有利于提高金层在Ni-P合金表面的覆盖率,从而有助于改善Ni-P合金的不均匀腐蚀等问题.从图2可知,3种工艺的镀金速率在初始阶段都较快,随沉积时间的延长而逐渐降低.沉积时间相同时,ENEG工艺的镀金速率最高,ENEPIG工艺的镀金速率最慢,这与图1的结果吻合.一方面,ENEG工艺中的镀金类型为化学镀金,镀金液中还原剂的存在增强了镀金液的还原能力;另一方面,因Ni/Ni2+与Au/Au+之间的电极电位相差较大,因此ENEG工艺的初始阶段也存在置换镀金过程.因此,ENEG工艺的镀金速率最快.ENIG与ENEPIG两种工艺都是采用置换镀金,其驱动力为金属间电位差,Ni/Ni2+与Au/Au+之间的电位差明显大于Pd/Pd2+与Au/Au+之间的电位差,因此 ENIG工艺的镀金速率比 ENEPIG工艺的镀金速率大.这也表明,与ENIG的置换镀金相比,ENEPIG工艺中的置换镀金过程对基体的腐蚀较小,造成基体过腐蚀的可能性较低.由图3可知,采用不同工艺制备的镀金层均为瘤状结构,结构致密.将3.5% NaCl溶液滴在不同镀层表面测其润湿角,结果见图4.从图4可知,NaCl液滴在Ni-P镀层表面的润湿角为48.92°,在ENIG、ENEG和ENEPIG镀层表面的润湿角则分别为52.72°、65.88°和77.69°.一般而言,润湿角越大,表明 NaCl液滴在镀层表面的吸附性越差[1],镀层的耐蚀性越好.因此,根据NaCl液滴在不同试样表面的润湿角可以初步推断 ENEPIG金镀层的耐蚀性最好,ENEG金镀层次之,ENIG金镀层最差.由图5及表1可知,与Ni-P合金镀层相比,ENIG、ENEPIG、ENIEG工艺镀金层在3.5% NaCl溶液中的腐蚀电位均较正,腐蚀电流密度均较低,表明这3种镀金工艺均可以提高Ni-P合金的耐蚀性.此外,3种工艺镀金层中,ENEPIG工艺镀金层的腐蚀电位最正,腐蚀电流密度和孔隙率最低;ENIG工艺镀金层的腐蚀电位最负,腐蚀电流密度和孔隙率最高.这同样表明ENEPIG工艺镀金层的耐蚀性最好,ENIG镀层的耐蚀性较差.通过对化学镀Ni-P合金层直接置换镀金(ENIG)、化学镀钯后再置换镀金(ENEPIG)和直接化学镀金(ENEG)这3种过程的研究,得出以下结论:(1) 采用ENEG工艺时,由于化学镀金液中含有还原剂硫脲,其镀金速率比ENIG工艺快.(2) 采用ENEPIG工艺时,镀金过程的开路电位比采用ENIG工艺时更正,说明置换镀金液对基体的腐蚀速率明显降低.(3) 在3种镀金工艺中,EPEING工艺所得置换镀金层最致密,孔隙率最小,耐蚀性最优.[ 编辑:周新莉 ]【相关文献】[1] HO C E, FAN C W, HSIEH C W.Pronounced effects of Ni(P) thickness on the interfacial reaction and high impact resistance of the solder/Au/Pd(P)/Ni(P)/Cu reactive system [J].Surface and Coatings Technology, 2014, 259: 244-251.[2] MD ARSHAD M K, JALAR A, AHMAD I.Characterization of parasitic residual deposition on passivation layer in electroless nickel immersion gold process [J].Microelectronics Reliability, 2007, 47 (7): 1120-1126.[3] LIN C P, CHEN C M.Solid-state interfacial reactions at the solder joints employingAu/Pd/Ni and Au/Ni as the surface finish metallizations [J].Microelectronics Reliability, 2012, 52 (2): 385-390.[4] 刘海萍, 李宁, 毕四富.聚乙烯亚胺对置换镀金过程中镍基体腐蚀的影响[J].稀有金属材料与工程, 2009, 38 (6): 1087-1090.[5] LIU H P, LI N, BI S F, et al.Gold immersion deposition on electroless nickel substrates: the deposition process and the influence factor analysis [J].Journal of the Electrochemical Society, 2007, 154 (12): D662-D668.[6] KANZLER M.Plating method: US6911230 [P].2005-06-28.[7] WON Y S, PARK S S, LEE J, et al.The pH effect on black spots in surface finish: electroless nickel immersion gold [J].Applied Surface Science, 2010,257 (1): 56-61. [8] TECK NG B, GANESH VP, LEE C.Impact of electroless nickel/palladium/immersion gold plating on gold ball bond reliability [C] // 2006 International Conference on Electronic Materials and Packaging.[S.l.: s.n.], 2006: 9858124.[9] WANG Y, LIU H P, BI S F, et al.Effects of organic additives on the immersion gold depositing from a sulfite-thiosulfate solution in an electroless nickel immersion gold process [J].RSC Advances, 2016 (12): 9656-9662.[10] NAM N D, BUI Q V, NHAN H T, et al.Effect of Pd interlayer on electrochemical properties of ENIG surface finish in 3.5wt.% NaCl solution [J].Journal of Electronic Materials, 2014, 43 (9): 3307-3316.。
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. als and M ater Soc ,1998,5(9):30.[4] M akar G L ,K ruger J .Co rro si on of m agnesium [J ].Internati onalM aterials R eview s ,1993,38(3):138.[5] Sach iko O no ,Katsuh iko A as m i .Structure of anodicfil m s fo r m ed on m agnesium [J ].J E lectrochem Soc ,1996,143(3):L 62.[6] O scar Khaselev ,D anny W eiss .A nodizing of purem agnesium in KOH 2alum inate so luti ons under spark 2ing [J ].J E lectrochem Soc ,1999,146(5):1757.[7] Khaselev O ,Yahalom J .Constant vo ltage anodizingof M g 2A l alloys in KOH 2A l (OH )3so luti ons [J ].J E lectrochem Soc ,1998,145(1):190.[8] D elong H K .A nodizing and surface conversi on treat 2m ents fo r m agnesium [A ].L aw rence H ,D nrney J .E lectrop lating H andbook 4th Editi on [C ].W ok inghamBerk sh ire :V an N o strand R einho ld Co ,1984.410.[9] Shar m a A K ,Um a R nai R .Studies on anodizati on ofm agnesium alloy fo r ther m al contro l app licati ons [J ].M etal F inish ing ,1997,95(3):43.[10] KUAN G Y F ,L I U J P ,HOU Z H ,et al .P repara 2ti on and analysis of fil m s on alum inium by h igh vo lt 2age anodizati on in pho spho ric acid and sodium tungstate so luti on [J ].Journal of A pp lied E lectro 2chem istry ,2001,31:1267.[11] LUO S L ,T ang H ,Zhou H H ,et al .P reparati onand characteristics of oxide fil m s on AA 339.1cast a 2lum inum [J ].Surface and Coatings T echno logy ,2003,168:91.[12] 唐浩,罗胜联,刘建平1铝表面电化学陶瓷成膜技术及其研究进展[J ]1电镀与涂饰,2001,20(5):51化学镀金工艺 发明了一种可以连续操作的化学镀金溶液,镀液由金氰化物、碱金属氰化物、还原剂、碱金属氢氧化物、晶粒调节剂及稳定剂组成。
镀金技术:酸性和中性镀金
慧聪表面处理网:#hc360分页符#酸性和中性镀金液中金以Au(CN)2+的形式存在。
这种镀液的性能与碱性氰化物镀液基本相同。
镀液稳定,毒性小,实际上是一种低氰工艺,镀层光亮平滑、硬度高、耐磨性好、孔隙率低、可焊性好。
镀液对印制电路板的粘合剂无溶解作用,因此更适合于印制电路板电镀。
1.工艺规范(见表3—10—4)
表3—10—4酸性和中性镀金工艺规范
2.工艺维护要点
(I)严格控制镀液的pH值,以获得满意的镀金层色泽。
柠檬酸镀金液的pH值对镀金层色泽的影响列于表3—10—5。
表3—10—5柠檬酸盐镀金液pH值对金镀层色泽的影响
表3—10—5柠檬酸盐镀金液pH值对金镀层色泽的影响
(2)提高镀液温度和电流密度可以提高电流效率。
但电流密度不宜过高,否则镀层颜色发红,且结晶粗糙。
反之,温度低,电流密度小,镀层颜色浅,甚至为黄铜色。
(3)阳极材料最好采用不溶性阳极,如铂、钛。
若采用不锈钢,使用前必须进行电解或机械抛光,否则会产生腐蚀、污染镀液。
由于阳极为不溶性阳极,故必须定期补充金含量。
化学镀金工艺技术指标
化学镀金是一种将金属涂覆在其他材料表面的技术,通常用于改善材料的耐蚀性,美观性和导电性。
化学镀金的工艺技术指标主要包括溶液的成分和处理条件。
首先是溶液的成分。
化学镀金溶液通常由金盐、还原剂、稳定剂和调节剂等组成。
其中,金盐是溶液中的金源,常用的金盐有氯金酸盐和氰化金酸盐。
还原剂的作用是将金离子还原成金属,常用的还原剂有硫代硫酸钠和亚硫酸钠。
稳定剂的作用是防止金离子氧化、分解和沉淀,常用的稳定剂有硼酸和硫代硫酸盐。
调节剂的作用是调整溶液的pH值和金盐的浓度,常用的调节剂有盐酸和硫酸等。
其次是处理条件。
化学镀金的处理条件包括温度、时间和搅拌等。
温度对化学反应的速率和质量起着重要的影响。
在一定范围内,随着温度的升高,反应速率加快,但过高的温度会导致溶液的挥发和金属表面的烧结。
时间是指材料在溶液中的浸泡时间。
合适的浸泡时间可以保证溶液充分与材料接触,使金属能够均匀地镀在材料表面。
搅拌是指在溶液中加入机械搅拌或气体搅拌,以增加溶液与材料表面的接触,提高镀金效果。
此外,化学镀金的工艺技术指标还包括电流密度和镀层厚度的控制。
电流密度是指单位面积上通过的电流量,是控制镀层均匀性和致密性的重要参数。
高电流密度会导致金属离子在材料表面的局部聚积,形成坑孔和不均匀的镀层厚度。
低电流密度则会使镀层过于薄,影响镀层的耐蚀性和美观性。
因此,选择合适的电流密度对于获得理想的镀层厚度非常重要。
总结起来,化学镀金的工艺技术指标主要包括溶液的成分和处理条件。
通过合理调节这些指标,可以获得质量优良、均匀、致密的金属镀层,满足不同材料的需求。
同时,工艺技术指标的优化也能提高化学镀金工艺的效率和经济性。