大学物理电磁学参考答案
- 格式:docx
- 大小:36.55 KB
- 文档页数:1
一、选择题:(每题3分)1、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2r 2B . (B) r 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos . [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) . (B) .(C) . (D) . [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外.(C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l IB π=0222μ.(C) l IB π=0122μ,02=B .(D) l I B π=0122μ,lIB π=0222μ.[ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为n Bα Sc Id b aa I I I a aa a 2a I P Q O aIB 1I B 12a b c dI(A)R140πμ. (B)R 120πμ. (C) 0. (D) R140μ. [ ]8、一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B、2B 及3B ,则O 点的磁感强度的大小 (B) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠0,因为虽然B 3= 0,但021≠+B B. [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为B 3≠ 0,021≠+B B,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B.B 3 = 0(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零 (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的 (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2dI I ab12c d O II a b 12OⅠ ⅢⅡ Ⅳ ii C q q qq OL 2 L 1 L 3 L 42I I(C) I l H L -=⎰⋅3d . (D) I l H L -=⎰⋅4d.[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅L l B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布 (A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的I 不变,L 上各点的B不变.(B) 回路L 内的I 不变,L 上各点的B改变.(C) 回路L 内的I 改变,L 上各点的B不变.(D) 回路L 内的I 改变,L 上各点的B改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) ×10-2T . (D) T .(已知真空的磁导率0 =4×10-7 T ·m/A) [ ] 27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则: L OIIIa bc d120°L 2P 1 P 2I 1 I 2 I 3I 1 I 2 (a)(b)⊙⊙ ⊙⊙ ⊙(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠. [ ]28、如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qBm y v +=. (B) qB m y v 2+=. (C) qB m y v 2-=. (D) qB m y v-=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变. (C)其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1.(C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生 (A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速.]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的 (A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变. (C) 粒子进入磁场后,其动能和动量都不变. (D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆. [ ]×× ×33、一电子以速度v垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) R r I I 22210πμ. (B) R r I I 22210μ.(C) r R I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为, < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使角减小.(B) 转动使角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]42、图示一测定水平方向匀强磁场的磁感强度B(方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为 (A) 6m . (B) 3m /2. (C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I a B π=02μ. (B) I a B 2π=02μ. (C) B = 0. (D) I aB π=μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:y AOCDInBαi BI 1I 2 I I II 2a2a O(A) B R = 2 B r . (B) B R = B r . (C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(0 =4×10-7 N ·A -2)(A) B =0. (B) B = ×10-4 T . (C) B = ×10-4 T. (D) B =×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ]48、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A) H仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C) 若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D) 以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极. (C) O 的右端出现N 极. (D) P 的右端出现N 极. [ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为 T ,则可求得铁环的相对磁导率r 为(真空磁导率0 =4×10-7 T ·m ·A -1) (A) ×102 (B) ×102(C) ×102(D) [ ]52、磁介质有三种,用相对磁导率r表征它们各自的特性时,(A) 顺磁质r>0,抗磁质r<0,铁磁质r>>1. (B) 顺磁质r >1,抗磁质r =1,铁磁质r >>1.O a(A)SN (B)SN(C)NS (D)NS ++++----KM OμP-+(C) 顺磁质r >1,抗磁质r <1,铁磁质r>>1.(D) 顺磁质r <0,抗磁质r <1,铁磁质r >0. [ ]53、顺磁物质的磁导率: (A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = 0 r NI . (B) 磁感强度大小为B = r NI / l . (C) 磁场强度大小为H = 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略) (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度增大到原来的两倍. [ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移. (D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]57、如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:O BvBI O t(D)IO t (C)O t (B)I I(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ ]b d b cdcd v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos t |. (B) abB(C)t abB ωωcos 21. (D) abB | cos t |.(E)abB | sin t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21vBl .(C) vBl . (D) 2vBl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B中以匀角速度绕通过其一端的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ]67、如图,长度为l 的直导线ab 在均匀磁场B中以速度v 移动,直导线ab 中的电动势为 (A) Blv . (B) Blv sin . (C) Blv cos . (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势O Bab ωz By lVBω L O θ blb a vαt O (A) t O (C)t O(B)tO (D) C D Oω BOO ′ BB AC[ ]70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且t it i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为21,判断下述哪个论断正确. (A) M 12 = M 21,21 =12. (B) M 12≠M 21,21≠12. (C) M 12 = M 21,21 >12.(D) M 12 = M 21,21 <12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21表示,线圈2的电流所产生的通过线圈1的磁通用12表示,则21和12的大小关系为:(A) 21 =212. (B) 21 >12.(C) 21 =12. (D) 21 =2112.[ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.c abdNMB12S 2 SI I A B I AI Brr L, .RRK(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ(C) ∞. (D) 221LI 020ln 2r dI π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21a I μμ [ ]78、电位移矢量的时间变化率t D d /d的单位是(A )库仑/米 2 (B )库仑/秒(C )安培/米 2 (D )安培•米 2[]79、对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ]80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面SI I d 2r 0的磁通量=__________.若通过S 面上某面元Sd 的元磁通为d,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ',则d ∶d '=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(0 =4×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =×10-10 C ,以速度v =×105 m ·s -1在半径为R =×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(0 =4×10-7 H ·m -1)IIIa Oa I1 O2a b1 O 2xyzOII A A ′O + -。
题8-12图8-12 两个无限大的平行平面都均匀带电.电荷的面密度分别为1σ和2σ.解: 如题8-12图示.两带电平面均匀带电.电荷面密度分别为1σ与2σ.两面间. n E)(21210σσε-= 1σ面外. n E)(21210σσε+-= 2σ面外. n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体.如题8-13图所示.试求:两球心O 与O '点的场强.并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合.见题8-13图(a).(1) ρ+球在O 点产生电场010=E.ρ-球在O 点产生电场dπ4π3430320r E ερ= ∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r'.相对O 点位矢为r (如题8-13(b)图)则 03ερrEPO=. 03ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C .两电荷距离d=0.2cm.把这电偶极子放在1.0×105N ·C -1.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C.2q =3.0×10-8C.相距1r =42cm.要把它们之间的距离变为2r =25cm.需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示.在A .B 两点处放有电量分别为+q ,-q 的点电荷.AB 间距离为2R .现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性.AB 和CD 段电荷在O 点产生的场强互相抵消.取θd d R l =则θλd d R q =产生O 点Ed 如图.由于对称性.O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势.以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg.电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ.在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1.超过这个数值时空气要发生火花放电.今有一高压平行板电容器.极板间距离为d =0.5cm.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= .求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q .半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q .半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说.(1)相向的两面上.电荷的面密度总是大小相等而符号相反;(2)相背的两面上. 证: 如题8-21图所示.设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ.2σ.3σ.4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时.有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P .则其场强为零.并且它是由四个均匀带电平面产生的场强叠加而成的.即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等.符号相同.8-22 三个平行金属板A .B 和C 的面积都是200cm 2.A 和B 相距4.0mm.A 与C 相距2.0 mm .B .C 都接地.如题8-22图所示.如果使A 板带正电3.0×10-7C.略去边缘效应.问B 板和C 板上的感应电荷各是多少?以地的电势为零.则A 板的电势是多少?解: 如题8-22图示.令A 板左侧面电荷面密度为1σ.右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =.即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳.现给内球壳带电+q .(1)(2)先把外球壳接地.然后断开接地线重新绝缘.*(3)再使内球壳接地.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +.且均匀分布.其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时.外表面电荷q +入地.外表面不带电.内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-.外壳外表面带电量为+-q q ' (电荷守恒).此时内球壳电势为零.且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远.并用导线与地相联.在与球心相距为R d 3=处有一点电荷+q .试求:金属球上的感应电荷的电量.解: 如题8-24图所示.设金属球感应电荷为q '.则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球.小球1.2带有等量同号电荷.相距甚远.其间的库仑力为0F .试求: (1)用带绝缘柄的不带电小球3先后分别接触1.2后移去.小球1.2之间的库仑力; (2)小球3依次交替接触小球1.2很多次后移去.小球1.2 解: 由题意知 202π4r q F ε=(1)小球3接触小球1后.小球3和小球1均带电2q q =',小球3再与小球2接触后.小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后.每个小球带电量均为32q .∴ 小球1、2间的作用力00294π432322F r qq F==ε *8-26 如题8-26图所示.一平行板电容器两极板面积都是S.相距为d .分别维持电势A U =U .B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间.片的面积也是S.片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ.2σ.3σ.4σ,5σ,6σ如图所示.由静电平衡条件.电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电.所以2U U C ≠.若C 片不带电.显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳.介质相对介电常数为r ε.金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sdrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示.在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示.充满电介质部分场强为2E .真空部分场强为1E.自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D .22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面.长度均为l .半径分别为1R 和2R (2R >1R ).且l >>2R -1R .两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时.求:(1)在半径r 处(1R <r <2R =.厚度为dr.长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时.Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r .A 和B 原来都不带电.现在A 的中心放一点电荷1q .在B 的中心放一点电荷2q .如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力.2q 有无加速度;(2)去掉金属壳B .求1q 作用在2q 上的库仑力.此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律.即2210π41r q q F ε=但2q 处于金属球壳中心.它受合力..为零.没有加速度. (2)去掉金属壳B .1q 作用在2q 上的库仑力仍是2210π41r q q F ε=.但此时2q 受合力不为零.有加速度.题8-30图 题8-31图8-31 如题8-31图所示.1C =0.25μF.2C =0.15μF.3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”.把它们串联起来后等值电容是多少?如果两端加上1000 V .是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U .而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿.然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源.再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示.设联接后两电容器带电分别为1q ,2q题8-33图 则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球.外套有一同心的导体球壳.壳的内、外半径分别为2R =4.0cm 和3R =5.0cm.当内球带电荷Q =3.0×10-8C .求:(1)整个电场储存的能量;(2)如果将导体壳接地.计算储存的能量;(3)此电容器的电容值.解: 如图.内球带电Q .外球壳内表面带电Q -.外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时.只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J (3)电容器电容 )11/(π422102R R Q W C-==ε 121049.4-⨯=F。
大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^9 m/s答案:A2. 法拉第电磁感应定律描述的是哪种现象?A. 电荷守恒定律B. 电荷的产生和消失C. 磁场变化产生电场D. 电场变化产生磁场答案:C3. 根据洛伦兹力公式,当一个带电粒子垂直于磁场运动时,其受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与带电粒子速度方向相同D. 与带电粒子速度方向垂直答案:D4. 麦克斯韦方程组中描述电荷分布与电场关系的是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定理D. 洛伦兹力公式答案:A5. 一个闭合电路中的感应电动势与什么因素有关?A. 磁通量的变化率B. 磁通量的大小C. 电路的电阻D. 电流的大小答案:A6. 根据电磁波的性质,以下哪种波长与频率的关系是正确的?A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比,但与速度无关答案:B7. 在电磁学中,磁感应强度的单位是什么?A. 库仑B. 特斯拉C. 安培D. 伏特答案:B8. 电磁波的传播不需要介质,这是因为电磁波具有哪种特性?A. 粒子性B. 波动性C. 传播性D. 能量性答案:B9. 根据电磁学理论,以下哪种情况下磁场强度最大?A. 导线电流较小B. 导线电流较大C. 导线电流为零D. 导线电流变化答案:B10. 电磁波的频率与波长的关系是什么?A. 频率越高,波长越长B. 频率越高,波长越短C. 频率与波长无关D. 频率与波长成正比答案:B二、填空题(每题2分,共20分)1. 电磁波的传播速度在真空中是______。
答案:3×10^8 m/s2. 根据法拉第电磁感应定律,当磁通量发生变化时,会在______产生感应电动势。
大学物理电磁学习题1、动圈式扬声器利用了电磁感应的原理[判断题] *对错(正确答案)答案解析:动圈式扬声器利用了通电导体在磁场中受力的原理,动圈式话筒利用了电磁感应的原理2、25.一种A4打印纸,包装袋上标有“80g/m2”的字样,一包有500张,小丽用刻度尺测出50张纸的厚度是50cm,则下列说法正确的是()[单选题] *A.一张这种规格的打印纸的厚度为01mmB.这种规格打印纸的密度为8g/cm3(正确答案)C.80g/m2的含义是每立方米的A4纸的质量为80gD.小丽测50张纸厚度,而不是测1张纸厚度,是为了改正测量错误3、地面上的木箱必须持续用力推才能不停地向前运动,说明力是维持物体运动的原因[判断题] *对错(正确答案)答案解析:木箱受摩擦力4、下列关于声音的说法正确的是()[单选题]A.调节电视机音量改变了声音的音调B.房间的窗户安装双层中空玻璃是在传播过程中减弱噪声(正确答案)C.能从不同乐器中分辨出小提琴的声音主要是因为响度不同D.用大小不同的力先后敲击同一音叉,音叉发声的音色不同5、32.下列涉及的物态变化现象解释正确的是()[单选题] *A.清晨河面上出现的薄雾是汽化形成的B.冰冻的衣服变干是熔化现象C.烧水时,壶嘴附近出现的“白气”是液化形成的(正确答案)D.浓雾逐渐散去是升华现象6、D.环形电流的电流强度跟m成反比(正确答案)下列说法不符合分子动理论观点的是()*A.用气筒打气需外力做功,是因为分子间的后斥力作用(正确答案)B.温度升高,布朗运动显著,说明悬浮颗粒的分子运动剧烈C.相距较远的两个分子相互靠近的过程中,分子势能先减小后增大D.相距较远的两个分子相互靠近的过程中,分子间引力先增大后减小(正确答案)7、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害8、下列情形中,矿泉水瓶中水的质量会发生变化的是()[单选题] *A. 打开瓶盖,喝掉几口(正确答案)B. 将这瓶水放入冰箱,水温度变低C. 水结成冰,体积变大D. 宇航员将这瓶水带到太空9、3.物体的平均速度为零,则物体一定处于静止状态.[判断题] *对错(正确答案)10、1.民乐团演奏中国名曲《茉莉花》时,其中的声现象,下列说法错误的是()[单选题] *A.竹笛声是由空气柱振动产生的B.胡琴、琵琶发出的声音音色不同C.敲击鼓面的节奏越快,鼓声传播得就越快(正确答案)D.听众关闭手机,是从声源处控制噪声11、水平桌面上的文具盒在水平方向的拉力作用下,沿拉力的方向移动一段距离,则下列判断正确的是()[单选题]A.文具盒所受拉力做了功(正确答案)B.文具盒所受支持力做了功C.文具盒所受重力做了功D.没有力对文具盒做功12、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力13、3.实验前要平衡小车受到的阻力.[判断题] *对错(正确答案)14、4.这一秒末的速度比前一秒末的速度小5 m/s. [判断题] *对(正确答案)错15、88.如图为甲、乙两种物质的m﹣V图像,下列说法中正确的是()[单选题] *A.体积为15cm3的乙物质的质量为30g(正确答案)B.甲的质量一定比乙的质量大C.甲、乙体积相同时,乙的质量是甲的2倍D.甲、乙质量相同时,甲的体积是乙的2倍16、2.这一秒末的速度比前一秒初的速度小10 m/s. [判断题] *对(正确答案)错17、77.小明研究液体密度时,用两个完全相同的容器分别装入甲、乙两种液体,并绘制出总质量m与液体体积V的关系图象如图所示,由图象可知()[单选题] *A.容器的质量是40kgB.甲液体的密度是5g/cm3C.乙液体的密度是0g/cm3(正确答案)D.密度是0g/cm3 的液体的m﹣V图象应位于Ⅲ区域18、19.学校楼道内贴有“请勿大声喧哗”的标语,这是提醒同学们要控制声音的([单选题] *A.响度(正确答案)B.音调C.音色D.频率19、C.分子间存在着间隙(正确答案)D.分子在永不停息地做无规则运动(正确答案)答案解析:扩散现象是一种物质的分子进入另一种物质内部的现象,因而说明分子间有间隙,且分子在永不停息地做无规则运动下列关于布朗运动的叙述,正确的有()*A.悬浮小颗粒的运动是杂乱无章的(正确答案)20、63.下列说法中正确的是()[单选题] *A.空气中细小的灰尘就是分子B.弹簧能够被压缩,说明分子间有间隙C.由于分子非常小,人们无法直接用肉眼进行观察(正确答案)D.把一块铜锉成极细的铜屑就是铜分子21、56.在没有任何其他光照的情况下,舞台追光灯发出的紫光照在穿白上衣、红裙子的演员身上,观众看到她()[单选题] *A.全身呈紫色B.上衣呈紫色,裙子不变色C.上衣呈黑色,裙子呈紫色D.上衣呈紫色,裙子呈黑色(正确答案)22、24.雪天为了使积雪尽快熔化,环卫工人在路面上撒盐,这是因为()[单选题] * A.盐使积雪的熔点降低(正确答案)B.盐使积雪的温度升高到0℃而熔化C.盐使积雪的熔点升高D.撒盐后的雪不再属于晶体,不需要达到熔点就可以熔化23、39.下列关于热现象的解释正确的是()[单选题] *A.从冰箱中拿出的雪糕冒“白气”是雪糕升华后的水蒸气液化而成的B.汽车必须熄火加油,是因为汽油在常温下易升华成蒸气,遇明火容易爆炸C.被水蒸气烫伤比沸水烫伤更严重是因为水蒸气液化时要放出热量(正确答案)D.衣柜中的樟脑丸过一段时间会变小甚至没有了,这是汽化现象24、51.下列关于物质结构和运动的说法中正确的是()[单选题] *A.原子核带正电,也是运动的(正确答案)B.组成固体的分子或原子是静止不动的C.组成液体的分子可以是运动的也可以是静止的D.原子核是单一粒子不可再分25、人耳听不到次声波,是因为响度太小[判断题] *对答案解析:次声波和超声波的频率超过了人耳的听觉范围26、做匀速直线运动的物体,其机械能保持不变[判断题] *对错(正确答案)答案解析:匀速直线运动的物体,动能保持不变,重力势能无法判断,机械能无法判断。
大学物理电磁学答案【篇一:大学物理电磁学练习题及答案】(c) u12增大,e不变,w增大;vd(c) ib球壳,内半径为r。
在腔内离球心的距离为d处(d?r),固定一点电荷?q,如图所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心o处的电势为[ ]q?qq11(c)2. 一个平行板电容器, 充电后与电源断开,当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差u12、电场强度的大小e、电场能量w将发生如下变化:[ ](a) u12减小,e减小,w减小; (b) u12增大,e增大,w增大;(d) u12减小,e不变,w不变.3.如图,在一圆形电流i所在的平面内,选一个同心圆形闭合回路l?(a) lb?dl??0?,且环路上任意一点b?0(b) lb??dl??0?,且环路上任意一点b?0 (c) lb??dl??0?,且环路上任意一点b?0 ??(d),且环路上任意一点b? lb?dl?0?常量. [ ]4.一个通有电流i的导体,厚度为d,横截面积为s,放置在磁感应强度为b的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。
现测得导体上下两面电势差为v,则此导体的霍尔系数等于[ ]ibv(a) dsbvs(b)idivs(d) bd5.如图所示,直角三角形金属框架abc放在均匀磁场中,磁场b平行于ab边,bc的长度为l。
当金属框架绕ab边以匀角速度?转动时,abc回路中的感应电动势?和a、c两点间的电势差ua?uc为 [ ] (a)??0,u2a?uc?b?l(b)? ? 0, ua?u2c??b?l/2 (c)??b?l2,u2a?uc?b?l/2(d)??b?l2,u2a?uc?b?l6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ ](a) 位移电流是由变化的电场产生的;(b) 位移电流是由线性变化的磁场产生的; (c) 位移电流的热效应服从焦耳——楞次定律;(d) 位移电流的磁效应不服从安培环路定理.二、填空题(20分) 1.(本题5分)若静电场的某个区域电势等于恒量,则该区域的电场强度为,若电势随空间坐标作线性变化,则该区域的电场强度分布为 .2.(本题5分)一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3a电流时, 铁芯中的磁感应强度b的大小为;铁芯中的磁场强度h的大小为。
大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。
这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。
安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。
该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。
即磁场的闭合性质。
2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。
title大学物理—相对论、电磁学(大连理工大学) 中国大学mooc答案100分最新版content第二周相对论基础(2)相对论单元测验1、地面观察者测得地面上事件A和B同时发生,并分别处于x轴上x1和x2两点(x1< x2),则沿x 轴负向高速运动的飞船上的观察者测得此两事件中答案: B晚发生2、 p 介子静止时平均寿命为t. 用高能加速器把p 介子加速到u ,则在实验室中观测,p 介子平均一生最长行程为。
答案:3、若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,则宇宙飞船相对该惯性系的速度为()。
答案:4、 K系与K¢系是坐标轴相互平行的两个惯性系,K¢系相对K系沿ox轴正方向以接近光速的速度匀速运动。
一根刚性尺静止在K¢系中,与o¢x¢轴成60°角,则在K系中观察该尺与ox轴的夹角q ,有()。
答案: q >60º5、两枚静止长度为20m 的火箭A、B,它们均以 0.9 c 的速度相对地面背向飞行。
在火箭 A上测量火箭B 的速度为()。
答案: 0.994 c6、一个静止质量是m0的粒子,以接近光速的速度v相对地面作匀速直线运动,则地面上的观测者测量其动能为( ).答案:7、由狭义相对论原理可知,相对于某些惯性系,运动物体的速度是可以达到真空中的光速的.答案: 错误8、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中一定不是同时发生的.答案: 错误9、在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中可能不是同时发生的.答案: 正确10、由洛伦兹变换可得出下面的结论:有因果关系的两个事件发生的时间顺序在两个不同的惯性系中观察,有可能是颠倒的。
答案: 错误11、广义相对论的等效原理指出加速度和引力场等效.答案: 正确12、由狭义相对论原理可知:在任何一个惯性系中做光学实验都用来确定本参考系的运动速度。
第五章 静 电 场5 -1 电荷面密度均为+ζ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εζ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r re εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有2202π41r e εr m =v由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4m e E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰ 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为ζ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+= 考虑到z >>d ,简化上式得()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-= 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度k E 403π41z Q ε= 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=ER θθER θθER SS 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰S E Φ5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==D EFG O ABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABG F CD EO -=-=ΦΦ同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q ζE单位面积额外电子数25cm 1063.6/-⨯=-=e ζn5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤=0R r 0 k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2Sπ4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场r rεq e E 20π4d d = 由电场叠加可解得带电球体内外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R )()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无限大均匀带电薄平板,电荷面密度为ζ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度ζ′=-ζ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εζe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εζe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εζe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εζx r εζe e E 02202/112≈+= 上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体内部一点的电场强度为r E 03ερ= 所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 根据几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E += 电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεζR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεζrL εL λr ελE === 这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30C· m .求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4rεθp r εq r εq V V V =-+=+=-+-+ (1) 若o0=θ V 1023.2π4320P -⨯==rεpV (2) 若o45=θ V 1058.1π445cos 320oP -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==r εp V5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+ζ和-ζ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εζ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εζa x0 2 00i E电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εζV x <<--=⋅=⎰ d 0l E ()a x a εζV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εζV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b )所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V lE d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面内电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r rεQ Q R r R rεQ R r r r>+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-== 5 -28 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度ζ=2.00×10-5 C·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布. 解 (1) 带电圆环激发的电势220d π2π41d xr rr ζεV +=由电势叠加,轴线上任一点P 的电势的()x x R εζx r r r εζV R-+=+=⎰222202d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεζx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==ζR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεqE 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚。
大学物理电磁学练习题及答案题目一:1. 电场和电势a) 一个均匀带电圆环上各点的电势如何?答:电场和电势是描述电荷之间相互作用的物理量。
对于一个均匀带电圆环上的各点,其电势是相同的,因为圆环上的每个点与圆心的距离相等且圆环上的电荷密度是均匀分布的。
所以,圆环上任意一点的电势与其它点是等势的。
b) 电势能和电势的关系是什么?答:电势能是电荷在电场中由于位置而具有的能量,而电势则是描述电荷因所处位置而具有的势能单位的物理量。
电势能和电势之间的关系可以用公式:电势能 = 电荷 ×电势来表示。
题目二:2. 高斯定律a) 高斯定律适用于哪些情况?答:高斯定律适用于具有球对称性、圆柱对称性和平面对称性的问题,其中球对称性是最常见和最简单的情况。
b) 高斯定律的数学表达式是什么?答:高斯定律的数学表达式是∮E·dA = ε₀q/ε,其中∮E·dA表示电场E通过闭合曲面积分得到的通量,ε₀是真空介电常数,q表示闭合曲面内的电荷总量,ε表示物质的介电常数。
题目三:3. 电动力学a) 什么是电感?答:电感是指电流在变化时产生的电磁感应现象所引起的抗拒电流的能力。
电感的单位是亨利(H)。
b) 电感的大小与什么因素有关?答:电感的大小与线圈的匝数、线圈的形状以及线圈中的铁芯材料的性质有关。
线圈匝数越多,电感越大;线圈形状越复杂,电感越大;线圈中的铁芯材料磁导率越大,电感越大。
题目四:4. 交流电路a) 直流电和交流电有什么区别?答:直流电是指电流方向始终保持不变的电流,而交流电是指电流方向以一定频率周期性地变化的电流。
直流电是恒定电流,交流电是变化电流。
b) 交流电流的形式有哪些?答:交流电流的形式可以是正弦波、方波、锯齿波等。
其中,正弦波是最常见和最基本的交流电流形式,用于描述交流电路中电压和电流的变化规律。
以上是关于大学物理电磁学练习题及答案的一些内容。
希望这些问题和答案能够帮助你更好地理解和学习物理电磁学的知识。
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
大学物理电磁学题库及答案(1)世界上已知动物种类约有150万种,其中昆虫约100万种,是动物王国中种类最多的。
(2)昆虫的特点:具有六条腿、两对翅、头胸腹三部分组成、触角和复眼等。
(3)昆虫对人类的作用:有些昆虫可以作为药用;有些昆虫可以传播植物的病菌;有些昆虫可以传播花粉;有些昆虫是农作物的害虫,有些昆虫是农作物的益虫。
(4)濒临灭绝的动物:我国有许多动物已经灭绝,如麋鹿、华南虎、大熊猫、东北虎等。
世界上有些动物也濒临灭绝,如鲸、海豚、北极熊等。
我们应该保护动物,不乱捕杀,从保护动物,维护生态平衡的角度出发,尽可能地少捕杀动物。
(1)植物的分类:根据植物是否有根茎叶分为植物分为藻类植物、苔藓植物、蕨类植物和种子植物。
种子植物又分为裸子植物和被子植物。
(2)种子植物的特点:具有种子;种子的基本结构是种皮和胚;胚包括胚根、胚芽和胚轴。
(3)种子植物与人类的关系:我们吃的粮食、蔬菜和水果都来自于种子植物。
种子植物与人类的关系非常密切。
(1)常见的金属材料:铁、铜、铝等。
金属具有良好的导电性和导热性。
(2)金属的特性:绝大多数金属具有延展性,可以抽成丝,也可以压成薄片;金属一般具有良好的光泽;金属容易导电;金属容易导热;金属都有良好的延展性;金属都是晶体等。
(3)合金:一种金属与另一种或几种金属或非金属熔合在一起具有金属特性的物质。
合金比组成它的纯金属的硬度大、熔点低、抗腐蚀性强。
青铜是铜锡合金,黄铜是铜锌合金等。
电磁学是物理学的一个分支,研究电磁现象的规律和应用。
电磁学涉及的领域非常广泛,包括电学、磁学、电磁场、电磁波等等。
在大学物理课程中,电磁学通常是一个重要的组成部分,需要掌握一系列相关的公式和定理。
以下是大学物理电磁学公式全集,供大家参考。
在真空中,电荷的分布可以用高斯定理来描述。
公式如下:其中,E是电场强度,S是闭合曲面,ρ是电荷密度,ε是真空中的介电常数。
该定理告诉我们,在闭合曲面内的电荷量等于通过该曲面的电场线的总条数。
《大学物理CII 》作业 No.04 电磁感应与电磁理论班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题: 一、选择题1.如图,长度为l 的直导线ab 在均匀磁场B中以速度v移动,直导线ab 中的电动势为[ ] (A) Bl v (B) Bl v sin α(C) Bl v cosα(D) 0解:直导线ab 中的感应电动势为动生电动势,如图有ααεsin d 90cos sin d )(0Blv l vB l B v l ==⨯=⎰⎰⋅选B2.一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′ 轴以匀角速度ω旋转(如图所示)。
设0=t 时,线框平面处于纸面内,则任一时刻感应电动势的大小为: [ ](A) t abB ωcos 2 (B) abB ω(C) t abB ωωcos 21(D) t abB ωωcos(E) t abB ωωsin解:因矩形线框绕OO ′ 轴在均匀磁场中以匀角速度ω旋转,则由图示有任一时刻穿过线框的磁通量为⎰=-=⋅=)sin()90cos(d t Bab t Bab S B ωωΦ,则由法拉第电磁感应定律得线框内的感应电动势大小:t abB t i ωωΦcos /d d =-=选D3.圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上。
当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, [ ](A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动 (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动 (C) 铜盘上产生涡流 (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高 (E) 铜盘上有感应电动势产生,铜盘中心处电势最高解:铜盘旋转时,可以视为是沿半径方向的铜导线在做切割磁力线的运动,铜盘上有感应电动势产生(动生电动势),且由⎰⋅⨯=ε沿半径l B vd )(知铜盘边缘处电势最高。
故选D4.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以t ω-ItId d 的变化率增长,一矩形线圈位于导线平面内(如图),则:[ ](A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向不确定解:因0d d >tI ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的感应电流应为顺时针方向,用以反抗原来磁通量的增加。
电磁学(第二版)___习题解答本文档旨在概述《大学物理通用教程_电磁学(第二版)___题解答》的内容和目的。
章节结构本教程共包含以下章节:第一章:电磁学基础概念第二章:库仑定律和电场第三章:电场的高斯定理第四章:静电场的电势第五章:电场中的运动带电粒子第六章:稳恒电流第七章:磁场的基本特性第八章:安培定律和磁场的高斯定理第九章:磁场的矢量势与法拉第电磁感应定律第十章:电磁感应中的动生电动势第十一章:电磁感应中的感生电流第十二章:电磁场的能量与动量第十三章:交变电路理论第十四章:交变电磁场中的能流与坡印廷矢量第十五章:电磁波概论第十六章:辐射和天线每一章节都提供了对应题的解答,帮助读者更好地理解和应用所学的电磁学知识。
该题解答本是《大学物理通用教程_电磁学(第二版)___》的附属部分,旨在补充教材内容,提供题的详细解答,便于读者巩固所学知识。
本文档总结了《大学物理通用教程_电磁学(第二版)___题解答》中的题解答内容特点和方法。
本解答提供了《大学物理通用教程_电磁学(第二版)___题解答》中的题解答方式和思路的例子。
问题:如何计算两个点电荷间的电势差?答案:根据库仑定律可以计算出两个点电荷间的力,将该力乘以电荷间的距离即可得到电势差。
问题:如何确定一个圆环上的电场强度大小与方向?答案:根据环上各点的电荷之间的静电力作用,可以确定该点的电场强度大小和方向。
可以施用库仑定律以及数学公式来计算。
问题:如何计算一个球体内的电势分布?答案:根据球内各点的电荷密度以及球内各处的距离关系,利用电场的定义公式,可以计算出球体内各点的电势。
以上是一些《大学物理通用教程_电磁学(第二版)___题解答》的题目解答示例,希望对你的研究有所帮助。
本文档是《大学物理通用教程_电磁学(第二版)___题解答》的一部分,旨在为读者提供对电磁研究题的解答。
以下是总结本文档的重要性和帮助的几点观点:方便研究:本文档提供了电磁研究题的解答,可以帮助读者更好地理解和掌握这门学科。
大学物理电磁学基础题目及答案一、选择题1. 电荷守恒定律是指:A. 电荷之间相互作用力与电荷互动时间的乘积是一个常数B. 电荷聚集和消散都需要电源的供给C. 一个相对孤立的物体在任何情况下,其电量都保持不变D. 电导率为常数答案:C2. 以下哪种情况下,两个相同物体间的静电力最大?A. 电量相同,距离相同B. 电量减半,距离翻倍C. 电量翻倍,距离减半D. 电量加倍,距离不变答案:D3. 关于电场强度和电势的说法,下列哪个是正确的?A. 电场强度是标量,电势是矢量B. 电场强度和电势都是标量C. 电场强度和电势都是矢量D. 电场强度是矢量,电势是标量答案:D4. 电场线的性质中,下列哪个说法是正确的?A. 电场线可以相交B. 电场线的切线方向与场强方向相同C. 电场线的切线方向与场强方向垂直D. 电场线的切线方向与场强方向相反答案:B5. 两个完全导体平行板之间存在均匀电场,下列哪个说法是正确的?A. 两板之间的电场强度是均匀的B. 两板之间的电势是均匀的C. 两板之间的电势差与电场强度无关D. 两板之间的电势差与电场强度成正比答案:D二、计算题1. 一个带电粒子在电场中的电势能为5J,电量为2C,求该电场的电势差。
解答:电势能等于电量乘以电势差,即 U = qV。
所以 V = U / q = 5J / 2C = 2.5V。
2. 一匀强电场中,两点之间的电势差为10V,两点之间的距离为5m。
求该电场的电场强度。
解答:电场强度等于电势差除以距离,即 E = V / d。
所以 E = 10V / 5m = 2V/m。
3. 一个带有2μC电荷的点电荷在真空中受到的电场力为4N,求该电场中的电场强度。
解答:电场力等于电荷乘以电场强度,即 F = qE。
所以E = F / q = 4N / 2μC = 2N / μC = 2 * 10^9 N/C。
4. 一电势为100V的点电荷在电场中的位置A处势能为60J,位置B处势能为30J。
大学物理学电磁学答案【篇一:大学物理电磁学考试试题及答案——北京航空航天大学】xt>一.选择题(每题3分)1.如图所示,半径为r的均匀带电球面,总电荷为q,设无穷远处的电势为零,则球内距离球心为r的p点处的电场强度的大小和电势为:q.4??0rq(b) e=0,u?.4??0rqq(c) e?,. u?4??0r24??0rqq(d) e?,.[] u?24??0r4??0r(a) e=0,u?+2.一个静止的氢离子(h+)在电场中被加速而获得的速率为一静止的氧离子(o2)在同一电场中且通过相同的路径被加速所获速率的: (a) 2倍.(b) 22倍.(c) 4倍. (d) 42倍.[]3.在磁感强度为b的均匀磁场中作一半径为r的半球面s,s边线所在平面??的法线方向单位矢量n与b的夹角为? ,则通过半球面s的磁通量(取弯面向外为正)为(a) ?r2b..(b) 2??r2b.(c) -?r2bsin?. (d) -?r2bcos?.[]4.一个通有电流i的导体,厚度为d,横截面积为s,放置在磁感强度为b的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为v,则此导体的霍尔系数等于(a)vdsibv.(b) .vsivs(c) . (d) .ibdbdvd(e) .[]ib5.两根无限长载流直导线相互正交放置,如图所示.i1沿y轴的 y正方向,i2沿z轴负方向.若载流i1的导线不能动,载流i2的导线可以自由运动,则载流i2的导线开始运动的趋势是 i 1 x (a) 绕x轴转动. (b) 沿x方向平动. z(c) 绕y轴转动. (d) 无法判断.[]i26.无限长直导线在p处弯成半径为r的圆,当通以电流i时,则在圆心o点的磁感强度大小等于 (a)(c) 0. (d)(e)0ii. (b) 0. 2?r?r0i12r(1?).1(1?).[] 4r?0i7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流i为2.0 a时,测得铁环内的磁感应强度的大小b为1.0 t,则可求得铁环的相对磁导率?r为(真空磁导率?0 =4?8.一根长度为l的铜棒,在均匀磁场 b中以匀角速度?绕通过其一端??的定轴旋转着,b的方向垂直铜棒转动的平面,如图所示.设 t =0时,铜棒与ob成??角(b为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势的大小为:1l2bcost. 2(c) 2?l2bcos(?t??). (d) ?l2b.(e)??lb.[]2(a)l2bcos(t). (b)9.面积为s和2 s的两圆线圈1、2如图放置,通有相同的电流i.线圈1的电流所产生的通过线圈2的磁通用?21表示,线圈2的电流所产生的通过线圈1的磁通用?12表示,则?21和?12的大小关系为:(a) ?21 =2?12. (b) ?21 ?12.(c) ?21 =?12.(d) ?21 =112.[] 210.如图,平板电容器(忽略边缘效应)充电时,沿环路l1的磁场强度 h的环流与沿环路l2的磁场强度h的环流两者,必有:(a) h?dl??h?dl?.(b) h?dl(c) h?dl??l1l1l1l2l2h?dl?.h?dl?.(d) h?dl??0.[]l1l2二.填空题(每题3分)1.由一根绝缘细线围成的边长为l的正方形线框,使它均匀带电,其电荷线密度为?,则在正方形中心处的电场强度的大小e=_____________.2.描述静电场性质的两个基本物理量是___;它们的定义式是____________ ____和__________________________________________.3.一个半径为r的薄金属球壳,带有电荷q,壳内充满相对介电常量为?r 的各向同性均匀电介质,壳外为真空.设无穷远处为电势零点,则球壳的电势u =________________________________.4.一空气平行板电容器,电容为c,两极板间距离为d.充电后,两极板间相互作用力为f.则两极板间的电势差为______________,极板上的电荷为______________.5.真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量w1与带电球体的电场能量w2相比,w1________ w2 (填、=、).87.如图所示.电荷q (0)均匀地分布在一个半径为r的薄球壳外表面上,若球壳以恒角速度??0绕z轴转动,则沿着z轴从-∞到+∞磁感强度的线积分等于____________________.8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为b = 1 t的均匀9.真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为w1 /w2=___________.行板电容器中的位移电流为____________.三.计算题(共计40分)1. (本题10分)一“无限长”圆柱面,其电荷面密度为:??= ?0cos ,式中??为半径r与x轴所夹的角,试求圆柱轴线上一点的场强.2. (本题5分)厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为? .试求图示离左板面距离为a12的一点与离右板面距离为b的一点之间的电势差.3. (本题10分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为r1 = 2 cm,r2 = 5 cm,其间充满相对介电常量为?r 的各向同性、均匀电介质.电容器接在电压u = 32 v的电源上,(如图所示),试求距离轴线r = 3.5 cm处的a点的电场强度和a点与外筒间的电势差.4. (本题5分)一无限长载有电流i的直导线在一处折成直角,p 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a,如?图.求p点的磁感强度b.5. (本题10分)无限长直导线,通以常定电流i.有一与之共面的直角三角形线圈abc.已知ac边长为b,且与长直导线平行,bc边长为a.若线圈以垂直于导线方向的速度v向右平移, i 当b点与长直导线的距离为d时,求线圈abc内的感应电动势的大小和感应电动势的方向.b?v基础物理学i模拟试题参考答案一、选择题(每题3分,共30分)1.[a]2.[b]3.[d]4.[e]5.[a]6.[d]7.[b]8.[e]9.[c] 10.[c]二、填空题(每题3分,共30分)1.0 3分 2. 电场强度和电势 1分e??f?/q0, 1分ua?w/q0??0e?adl(u0=0)1分4.2fd/c 2分5. 3分? 2fdc1分 7.00q2?3分参考解:由安培环路定理b??dlb??dl?0i而 i?q?0,故b??dl??0?0q2?=?2?参考解∶qvb?mv2rv?qbr-k?29. 1∶16 3分参考解:w?12b2/?0? b??0ni2wb2v?0n2i2ld211?2??2??()004w?122220ni2l?(d2/4)w:wd2212?1:d2?1:1610. 3 a 3分3. q / (40r) 6. 12.4 t3分 3分【篇二:大学物理-电磁学部分-试卷及答案】时间 120分钟考试形式闭卷)年级专业层次姓名学号一.选择题:(共30分每小题3分)1.如图所示,两个“无限长”的共轴圆柱面,半径分别为r1和r2,其上均匀带电,沿轴线方向单位长度上的带电量分别为?1和?2,则在两圆柱面之间,距离轴线为r的p点处的场强大小e为:(a)2.如图所示,直线mn长为2l,弧ocd是以n点为中心,l为半径的半圆弧,n点有正电荷+q,m点有负电荷-q.今将一试验电荷+q0从o点出发沿路径ocdp移到无穷远处,设无穷远处电势为零,则电场力作功(a) a< 0且为有限常量.(b) a> 0且为有限常量.(c) a=∞.(d) a= 0.12211.(b).(c).(d).2??0r2??0(r?r1)2??0r2??0(r2?r)3.一带电体可作为点电荷处理的条件是(a)电荷必须呈球形分布.(b)带电体的线度很小.(c)带电体的线度与其它有关长度相比可忽略不计.(d)电量很小.4.下列几个说法中哪一个是正确的?(a)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(c)场强方向可由e?f/q定出,其中q为试探电荷的电量,q可正、可负,f为试探电荷所受的电场力.(d)以上说法都不正确.5.在图(a)和(b)中各有一半径相同的圆形回路l1、l2,圆周内有电流i1、i2,其分(b)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.布相同,且均在真空中,但在(b)图中l2回路外有电流i3,p1、p2为两圆形回路上的对应点,则:(a)b?dl?b?dl,bp1?bp2 (b)b?dl?b?dl,bp1?bp2l1l2l1l2(c)b?dl?b?dl,bp1?bp2 (d)b?dl?b?dl,bp1?bp2l1l2l1l26.电场强度为e的均匀电场,e的方向与x轴正向平行,如图所示.则通过图中一半径为r的半球面的电场强度通量为(a)?r2e.(b)?r2e.(c)2?r2e.(d)0127.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是:(a)场强大的地方电势一定高.(b)场强相等的各点电势一定相等.(c)场强为零的点电势不一定为零.(d)场强为零的点电势必定是零.8.正方形的两对角上,各置点电荷q,在其余两对角上各置电荷q,若q所受合力为零,则q与q的大小关系为(a)q??22q.(b)q??2q.(c)q??4q.(d)q??2q.9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将(a)向下偏.(b)向上偏.(c)向纸外偏.(d)向纸内偏.10.对位移电流,有下述四种说法,请指出哪一种说法正确.(a)位移电流是由变化电场产生的.(b)位移电流是由线性变化磁场产生的.(c)位移电流的热效应服从焦耳—楞次定律.(d)位移电流的磁效应不服从安培环路定理.二.填空题:(共30分每小题3分)1.一平行板电容器,两板间充满各向同性均匀电介质,已知相对电容率为?r,若极板上的自由电荷面密度为?,则介质中电位移的大小d=,电场强度的大小e=.2.一空气平行板电容器,电容为c,两极板间距离为d.充电后,两极板间相互作用力为f.则两极板间的电势差为,极板上的电荷量大小为.4.平行板电容器,充电后与电源保持连接,然后使两极板间充满相对电容率为?0的各向同性均匀电介质,这时两极板上的电量是原来的倍,电场强度是原来的倍;电场能量是原来的倍.5.真空中,半径为r1和r2的两个导体球,相距很远,则两球的电容之比c1:c2=.当用细长导线将两球相连后,电容c =,今给其带电,平衡后两球表面附近场强之比el/e2= .6.电量为?5?10c的试探电荷放在电场中某点时,受到20?10的电场强度大小为,方向.9n向下的力,则该点7.当带电量为q的粒子在场强分布为e的静电场中从a点到b点作有限位移时,电场力对该粒子所作功的计算式为a=.8.图示为某静电场的等势面图,在图中画出该电场的电力线.则通过s面的磁通量的大小为.垂直于半径为r的圆面.今以该圆周为边线,作一半球面s,110.面积为s的平面,放在场强为e的均匀电场中,已知e与平面间的夹角为?(??),2则通过该平面的电场强度通量的数值?e?.三.计算题:(共40分每小题10分)(l)在它们的连线上电场强度e?0的点与电荷量为+q的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势u = 0的点与电荷量为+q的点电荷相距多远?1、两个点电荷,电量分别为+q和-3q,相距为d,试求:q3qd2、无限长直导线折成v形,顶角为 ?,置于x—y平面内,且一个角边与x轴重合,如图.当导线中通有电流i时,求y轴上一点p (0,a)处的磁感应强度大小.3、电量q均匀分布在半径为a、长为l(l>>a)的绝缘薄壁长圆筒表面上,圆筒以角速度?绕中心轴线旋转.一半径为2a、电阻为r的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照0(1?t/t0)的规律(?0和t0是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向.动势为?0的电源连接.匀强磁场b垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保(1) ab能达到的最大速度v.(2) ab达到最大速度时通过电源的电流i.4、图中所示为水平面内的两条平行长直裸导线lm与l′m′,其间距离为l其左端与电持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab将从静止开始向右运动起来.求大学物理(电磁学)试卷1答案一.选择题:(共30分,每小题3分)1.(a)2.(d)3.(c)4.(c)5.(c) 6.(d) 7.(c) 8.(a) 9.(b) 10.(a)二.填空题:(共30分)l. ?2分/(0r)1分 3分 2分2.2fd/c2fdcr r1分 1分 1分 l分15.r1/r24??0(r1?r2)2分r2/r1 6. 4n/c向上ba2分 2分 1分 3分7. q?e?dl8.?e29. ?rb3分 10.escos() 3分三.计算题:(共40分)l.解:设点电荷q所在处为坐标原点o,x轴沿两点电荷的连线.12(l)设e?0的点的坐标为x′,则【篇三:大学物理电磁学考试试题及答案)】一.选择题(每题3分)1.如图所示,半径为r的均匀带电球面,总电荷为q,设无穷远处的电势为零,则球内距离球心为r的p点处的电场强度的大小和电势为:(a) e=0,u? (b) e=0,u?(c) e?(d) e?q4??0rq4??0r2q4??0rq4??0r2..q4??0rq4??0r,u?,u?..[]+2.一个静止的氢离子(h+)在电场中被加速而获得的速率为一静止的氧离子(o2)在同一电场中且通过相同的路径被加速所获速率的: (a) 2倍.(b) 22倍.(c) 4倍. (d) 42倍.[]3.在磁感强度为b的均匀磁场中作一半径为r的半球面s,s边线所在平面向外为正)为(a) ?r2b..(b) 2??r2b.(c) -?r2bsin?. (d) -?r2bcos?.[]4.一个通有电流i的导体,厚度为d,横截面积为s,放置在磁感强度为b的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为v,则此导体的霍尔系数等于(a) (c) (e)vdsibvsibd的法线方向单位矢量n与b的夹角为? ,则通过半球面s的磁通量(取弯面.(b) . (d)ibvds..ivsbdvdib.[]5.两根无限长载流直导线相互正交放置,如图所示.i1沿y轴的 y正方向,i2沿z轴负方向.若载流i1的导线不能动,载流i2的导线可以自由运动,则载流i2的导线开始运动的趋势是 i 1 x (a) 绕x轴转动. (b) 沿x方向平动. z(c) 绕y轴转动. (d) 无法判断.[]i26.无限长直导线在p处弯成半径为r的圆,当通以电流i时,则在圆心o点的磁感强度大小等于 (a)0i2r. (b)0ir.(1?1?).(c) 0. (d)(e)0i4r(1?1?0i2r).[]7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流i为2.0 a时,测得铁环内的磁感应强度的大小b为1.0 t,则可求得铁环的相对磁导率?r为(真空磁导率?0 =4?8.一根长度为l的铜棒,在均匀磁场 b中以匀角速度?绕通过其一端??的定轴旋转着,b的方向垂直铜棒转动的平面,如图所示.设 t =0时,铜棒与ob成??角(b为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势的大小为:b(a) ?lbcos(?t??). (b)2212lbcost.22(c) 2?lbcos(?t??). (d) ?lb.(e)??lb.[]2129.面积为s和2 s的两圆线圈1、2如图放置,通有相同的电流i.线圈1的电流所产生的通过线圈2的磁通用?21表示,线圈2的电流所产生的通过线圈1的磁通用?12表示,则?21和?12的大小关系为:(a) ?21 =2?12. (b) ?21 ?12.(c) ?21 =?12.(d) ?21 =1212.[]10.如图,平板电容器(忽略边缘效应)充电时,沿环路l1的磁场强度 h的环流与沿环路l2的磁场强度h的环流两者,必有:(a) h?dl??h?dl?.l1(b)(c)(d)l1hhhdldll2l2hhdl.dl.l1l2l1dl0.[]二.填空题(每题3分)1.由一根绝缘细线围成的边长为l的正方形线框,使它均匀带电,其电荷线密度为?,则在正方形中心处的电场强度的大小e=_____________.2.描述静电场性质的两个基本物理量是___;它们的定义式是____________ ____和__________________________________________.3.一个半径为r的薄金属球壳,带有电荷q,壳内充满相对介电常量为?r 的各向同性均匀电介质,壳外为真空.设无穷远处为电势零点,则球壳的电势u =________________________________.4.一空气平行板电容器,电容为c,两极板间距离为d.充电后,两极板间相互作用力为f.则两极板间的电势差为______________,极板上的电荷为______________.5.真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量w1与带电球体的电场能量w2相比,w1________ w2 (填、=、).87.如图所示.电荷q (0)均匀地分布在一个半径为r的薄球壳外表面上,若球壳以恒角速度??0绕z轴转动,则沿着z轴从-∞到+∞磁感强度的线积分等于____________________.8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为b = 1 t的均匀9.真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为w1 /w2=___________.行板电容器中的位移电流为____________.三.计算题(共计40分)1. (本题10分)一“无限长”圆柱面,其电荷面密度为:??= ?0cos ,式中??为半径r与x轴所夹的角,试求圆柱轴线上一点的场强.2. (本题5分)厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为? .试求图示离左板面距离为a1的一点与离右板面距离为b的一点之间的电势差.3. (本题10分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为r1 = 2 cm,r2 = 5 cm,其间充满相对介电常量为?r 的各向同性、均匀电介质.电容器接在电压u = 32 v的电源上,(如图所示),试求距离轴线r = 3.5 cm处的a点的电场强度和a点与外筒间的电势差.4. (本题5分)一无限长载有电流i的直导线在一处折成直角,p 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a,如?图.求p点的磁感强度b.5. (本题10分)无限长直导线,通以常定电流i.有一与之共面的直角三角形线圈abc.已知ac边长为b,且与长直导线平行,bc边长为a.若线圈以垂直于导线方向的速度v向右平移,当b点与长直导线的距离为d时,求线圈abc内的感应电动势的大小和感应电动势的方向.ibv基础物理学i模拟试题参考答案一、选择题(每题3分,共30分)1.[a]2.[b]3.[d]4.[e]5.[a]6.[d]7.[b]8.[e]9.[c] 10.[c]二、填空题(每题3分,共30分)1.0 3分 2. 电场强度和电势 1分e??f?/q0, 1分uaw/q00?edla(u0=0)1分4.2fd/c 2分5. 3分? 2fdc?? 1分 7.00q2?3分参考解:由安培环路定理b?dlb?dl??0i而 i?q02?,故bdl=?0?0q??2?rv?qbrmm/s质子动能e1mv2k?2j9. 1∶16 3分参考解:w?12b2/?0?b??0ni2222wb2v1?2??0nil02??(d14)w12222?20nil(d2/4)w?d221:w21:d2?1:16 10. 3 a 3分 3. q / (40r) 6. 12.4 t3分 3分。
大学物理第9章答案第三篇电磁学综合练习题一、填空题1、把一根导线弯成形状固定的平面曲线放在均匀磁场B中,绕其一端α点以角速率逆时针方向旋转,转轴与B平行,如图9-52所示。
则整个回路电动势为,ab两端的电动势为图9-52图-532、引起动生电动势的非静电力是力,其非静电场强度Ek=3、如图9-53所示,在通有电流为I的长直导线近旁有一导线段ab长l,离长直导线距离d,当它沿平行于长直导线的方向以速度平移时,导线中的i=____4、感应电场是由产生的,它的电场线是的,它对导体中的自由电荷的作用力大小为5、如图9-54所示,导体AB长为L,处在磁感应强度为B的匀强磁场中,磁感应线垂直纸面向里,AB搁在支架上成为电路的一部分。
当电路接通时,导体AB弹跳起来,此时导体AB中的电流方向为6、半径为r的小导线圆环置于半径为R的大导线圆环的中心,二者在同一平面内。
且rR。
若在大导线圆环中通有电流iI0int,其中,I0为常量,t为时间。
则任意时刻,小导线圆环中感应电动势的大小为7、一个折成角形的金属导线aoc(aoocl)位于某oy平面中,磁感强度为B的匀强磁场垂直于某oy平面,如图9-55所示。
当aoc以速度沿某轴正方向运动时,导线a,c两点的电势差Vac=;当aoc以速度沿y 轴正方向运动时,导线上o,a两点的电势差Voa=8、自感为0.25H的线圈中,当电流在(1/16)内由2A均匀减少到零时,线圈中自感电动势的大小为63第三篇电磁学图9-54图9-559、在磁感强度为B的磁场中,以速率垂直切割磁力线运动的—长度为L的金属杆,相当于它的电动势为,产生此电动势的非静电力是二、选择题1、如图9-56所示,当闭合线圈ABCD以速度平行长直导线运动时,判断下哪种说法是正确的:()A、线圈磁通不变,线圈上电动势处处相等,故无电流;B、AB、CD切割磁力线,线圈的动生电动势不为零,线圈中存在感应电流;C、线圈中AB、CD存在动生电动势,但线圈总的动生电动势为零,故无感应电流;D、以上说法都不对。