摩擦型高强螺栓拉剪连接计算
- 格式:xlsx
- 大小:72.98 KB
- 文档页数:4
第三章连接返回§3-6 高强度螺栓连接的构造和计算高强度螺栓连接的工作性能和构造要求一、高强度螺栓连接的工作性能1、高强度螺栓的抗剪性能由图中可以看出,由于高强度螺栓连接有较大的预拉力,从而使被连板叠中有很大的预压力,当连接受剪时,主要依靠摩擦力传力的高强度螺栓连接的抗剪承载力可达到1点。
通过1点后,连接产生了滑解,当栓杆与孔壁接触后,连接又可继续承载直到破坏。
如果连接的承载力只用到1点,即为高强度螺栓摩擦型连接;如果连接的承载力用到4点,即为高强度螺栓承压型连接。
2、高强度螺栓的抗拉性能高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力P,板层之间则有压力C,而P与C维持平衡(图)。
当对螺栓施加外拉力N t,则栓杆在板层之间的压力未完全消失前被拉长,此时螺杆中拉力增量为ΔP,同时把压紧的板件拉松,使压力C减少ΔC(图)。
计算表明,当加于螺杆上的外拉力N t为预拉力P的80%时,螺杆内的拉力增加很少,因此可认为此时螺杆的预拉力基本不变。
同时由实验得知,当外加拉力大于螺杆的预拉力时,卸荷后螺杆中的预拉力会变小,即发生松弛现象。
但当外加拉力小于螺杆预拉力的80%时,即无松弛现象发生。
也就是说,被连接板件接触面间仍能保持一定的压紧力,可以假定整个板面始终处于紧密接触状态。
但上述取值没有考虑杠杆作用而引起的撬力影响。
实际上这种杠杆作用存在于所有螺栓的抗拉连接中。
研究表明,当外拉力N t≤时,不出现撬力,如图所示,撬力Q大约在N t达到时开始出现,起初增加缓慢,以后逐渐加快,到临近破坏时因螺栓开始屈服而又有所下降。
由于撬力Q的存在,外拉力的极限值由N u下降到N'u。
因此,如果在设计中不计算撬力Q,应使N≤;或者增大T形连接件翼缘板的刚度。
分析表明,当翼缘板的厚度t1不小于2倍螺栓直径时,螺栓中可完全不产生撬力。
实际上很难满足这一条件,可采用图所示的加劲肋代替。
在直接承受动力荷载的结构中,由于高强度螺栓连接受拉时的疲劳强度较低,每个高强度螺栓的外拉力不宜超过。
普通螺栓螺栓种类受力状态连接简图内力分布承载力设计值螺栓内力计算公式验算公式说明普通螺栓受剪轴心力当l1≤15d0(d0为孔径)时可认为均匀受剪nNNV=bVNNm in≤各螺栓均匀受力验算求承载力设计偏心力nFNF=1∑∑∑∑====+⋅=+⋅=niniiiTyniniiiTxyxxTNyxyTN112211112211()bFTyTxNNNNmin21121≤++验算求承载力受拉轴心力btebtfAN=nNNF=btFNN≤各螺栓均匀受力验算求承载力设计弯矩∑=211iyMyN btNN≤1中和轴在底排螺栓处验算求承载力小偏心中和轴在螺栓群形心处验算求承载力大偏心中和轴在底排螺栓处验算求承载力拉剪联合作用拉剪两种受力的组合btebtfAN=122≤⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫⎝⎛bttbvvNNNNbcvNnVN≤=tN按实际受拉情况区别计算验算摩擦型高强螺栓螺栓种类受力状态连接简图内力分布承载力设计值螺栓内力计算公式验算公式说明摩擦型高强螺栓受剪轴心力与普通螺栓相同)633(9.0-⋅⋅=PnNfbvμ与普通螺栓相同bvVNN≤各螺栓均匀受力验算求承载力设计偏心力与普通螺栓相同与普通螺栓相同()b vFTyTxNNNN≤++21121验算求承载力受拉轴心力与普通螺栓相同)733(8.0-=PN bt与普通螺栓相同btNN≤1各螺栓均匀受力验算求承载力设计弯矩∑=211iyMyN中和轴在螺栓形心处验算求承载力偏心力∑=⋅+=niiyyMnNN1211中和轴在螺栓形心处验算求承载力拉剪联合作用)25.1(9.08.0,tfbt vbtNPnNPN-==μ)25.1(9.08.01211tifniiNnPnVPyyMnNN∑∑-≤≤⋅+==μ中和轴在底排螺栓处验算承压型高强螺栓(请同学完成)螺栓种类受力状态受力简图内力分布承载力设计值螺栓内力计算公式验算公式说明承压型高强螺栓受剪轴心力偏心力受拉轴心力弯矩偏心力拉剪联合作用FeMNFN N。
高强度螺栓连接的构造和计算一、高强度螺栓连接的工作性能1、高强度螺栓的抗剪性能由图3.5.2中可以看出,由于高强度螺栓连接有较大的预拉力,从而使被连板叠中有很大的预压力,当连接受剪时,主要依靠摩擦力传力的高强度螺栓连接的抗剪承载力可达到1点。
通过1点后,连接产生了滑解,当栓杆与孔壁接触后,连接又可继续承载直到破坏。
如果连接的承载力只用到1点,即为高强度螺栓摩擦型连接;如果连接的承载力用到4点,即为高强度螺栓承压型连接。
2、高强度螺栓的抗拉性能高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力P,板层之间则有压力C,而P与C维持平衡(图3.6.1a)。
当对螺栓施加外拉力Nt,则栓杆在板层之间的压力未完全消失前被拉长,此时螺杆中拉力增量为ÄP,同时把压紧的板件拉松,使压力C减少ÄC(图3.6.1b)。
计算表明,当加于螺杆上的外拉力Nt为预拉力P的80%时,螺杆内的拉力增加很少,因此可认为此时螺杆的预拉力基本不变。
同时由实验得知,当外加拉力大于螺杆的预拉力时,卸荷后螺杆中的预拉力会变小,即发生松弛现象。
但当外加拉力小于螺杆预拉力的80%时,即无松弛现象发生。
也就是说,被连接板件接触面间仍能保持一定的压紧力,可以假定整个板面始终处于紧密接触状态。
但上述取值没有考虑杠杆作用而引起的撬力影响。
实际上这种杠杆作用存在于所有螺栓的抗拉连接中。
研究表明,当外拉力Nt≤0.5P时,不出现撬力,如图3.6.2所示,撬力Q大约在Nt达到0.5P 时开始出现,起初增加缓慢,以后逐渐加快,到临近破坏时因螺栓开始屈服而又有所下降。
由于撬力Q的存在,外拉力的极限值由Nu下降到N'u。
因此,如果在设计中不计算撬力Q,应使N≤0.5P;或者增大T 形连接件翼缘板的刚度。
分析表明,当翼缘板的厚度t1不小于2倍螺栓直径时,螺栓中可完全不产生撬力。
实际上很难满足这一条件,可采用图3.5.7所示的加劲肋代替。
在直接承受动力荷载的结构中,由于高强度螺栓连接受拉时的疲劳强度较低,每个高强度螺栓的外拉力不宜超过0.5P。
高强度螺栓摩擦型和承压型连接的区别高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。
在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。
板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。
在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。
总之,摩擦型高强螺栓和承压型高强螺栓实际上是同一种螺栓,只不过是设计是否考虑滑移。
摩擦型高强螺栓绝对不能滑动,螺栓不承受剪力,一旦滑移,设计就认为达到破坏状态,在技术上比较成熟;承压型高强螺栓可以滑动,螺栓也承受剪力,最终破坏相当于普通螺栓破坏(螺栓剪坏或钢板压坏)。
几点补充意见1)高强度螺栓摩擦型连接和高强度螺栓承压型连接不是两个连接接头形式,而是同一个连接的两个不同阶段。
对同一个高强度螺栓连接,承压型连接的承载力应该高于摩擦型连接的承载力,但在设计时,需要考虑连接板厚度与螺栓直径的匹配。
2)摩擦型连接和承压型连接在施工方面所使用的高强度螺栓连接副是相同的,而且高强度螺栓连接副紧固的方法和预拉力值的要求也相同。
也就是说,设计时只确定高强度螺栓连接副的性能等级,如8.8级、10.9级等,施工单位应根据工程(特别是节点构造)情况,施工经验以及市场价格等因素,自行采购何种类型的高强度螺栓连接副。
第三章 连接返回§3-6 高强度螺栓连接的构造和计算3.6.1高强度螺栓连接的工作性能和构造要求 一、高强度螺栓连接的工作性能 1、高强度螺栓的抗剪性能由图3.5.2中可以看出,由于高强度螺栓连接有较大的预拉力,从而使被连板叠中有很大的预压力,当连接受剪时,主要依靠摩擦力传力的高强度螺栓连接的抗剪承载力可达到1点。
通过1点后,连接产生了滑解,当栓杆与孔壁接触后,连接又可继续承载直到破坏。
如果连接的承载力只用到1点,即为高强度螺栓摩擦型连接;如果连接的承载力用到4点,即为高强度螺栓承压型连接。
2、高强度螺栓的抗拉性能高强度螺栓在承受外拉力前,螺杆中已有很高的预拉力P ,板层之间则有压力C ,而P 与C 维持平衡(图3.6.1a )。
当对螺栓施加外拉力N t ,则栓杆在板层之间的压力未完全消失前被拉长,此时螺杆中拉力增量为ΔP ,同时把压紧的板件拉松,使压力C 减少ΔC (图3.6.1b )。
计算表明,当加于螺杆上的外拉力N t 为预拉力P 的80%时,螺杆内的拉力增加很少,因此可认为此时螺杆的预拉力基本不变。
同时由实验得知,当外加拉力大于螺杆的预拉力时,卸荷后螺杆中的预拉力会变小,即发生松弛现象。
但当外加拉力小于螺杆预拉力的80%时,即无松弛现象发生。
也就是说,被连接板件接触面间仍能保持一定的压紧力,可以假定整个板面始终处于紧密接触状态。
但上述取值没有考虑杠杆作用而引起的撬力影响。
实际上这种杠杆作用存在于所有螺栓的抗拉连接中。
研究表明,当外拉力N t ≤0.5P 时,不出现撬力,如图3.6.2所示,撬力Q 大约在N t 达到0.5P 时开始出现,起初增加缓慢,以后逐渐加快,到临近破坏时因螺栓开始屈服而又有所下降。
由于撬力Q的存在,外拉力的极限值由N u下降到N'u。
因此,如果在设计中不计算撬力Q,应使N≤0.5P;或者增大T形连接件翼缘板的刚度。
分析表明,当翼缘板的厚度t1不小于2倍螺栓直径时,螺栓中可完全不产生撬力。
1 高强螺栓选定:长度=连接板层总厚+紧固长度加长值+螺母公称厚度+垫圈个数*垫圈厚度+3*螺纹螺距高强度螺栓就是可承受的载荷比同规格的普通螺栓要大.普通螺栓的材料是Q235(即A3)制造的.高强度螺栓的材料35#钢或其它优质材料,制成后进行热处理,提高了强度.两者的区别是材料强度的不同.从原材料看:高强度螺栓采用高强度材料制造。
高强螺栓的螺杆、螺帽和垫圈都由高强钢材制作,常用 45号钢、40硼钢、20锰钛硼钢。
普通螺栓常用Q235钢制造。
从强度等级上看:高强螺栓,使用日益广泛。
常用和两个强度等级,其中级居多。
普通螺栓强度等级要低,一般为级、级、级和级。
从受力特点来看:高强度螺栓施加预拉力和靠摩擦力传递外力。
普通螺栓连接靠栓杆抗剪和孔壁承压来传递剪力,拧紧螺帽时产生预拉力很小,其影响可以忽略不计,而高强螺栓除了其材料强度很高之外,还给螺栓施加很大预拉力,使连接构件间产生挤压力,从而使垂直于螺杆方向有很大摩擦力,而且预拉力、抗滑移系数和钢材种类都直接影响高强螺栓的承载力。
根据受力特点分承压型和摩擦型.两者计算方法不同。
高强螺栓最小规格M12,常用M16~M30,超大规格的螺栓性能不稳定,设计中应慎重使用。
高强度螺栓摩擦型和承压型连接的区别:高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。
在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。
板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。
在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。
长度=连接板层总厚+紧固长度加长值+螺母公称厚度+垫圈个数*垫圈厚度+3*螺纹螺距高强度螺栓就是可承受的载荷比同规格的普通螺栓要大.普通螺栓的材料是Q235(即A3)制造的.高强度螺栓的材料35#钢或其它优质材料,制成后进行热处理,提高了强度.两者的区别是材料强度的不同.从原材料看:高强度螺栓采用高强度材料制造。
高强螺栓的螺杆、螺帽和垫圈都由高强钢材制作,常用 45号钢、40硼钢、20锰钛硼钢。
普通螺栓常用Q235钢制造。
从强度等级上看:高强螺栓,使用日益广泛。
常用和两个强度等级,其中级居多。
普通螺栓强度等级要低,一般为级、级、级和级。
从受力特点来看:高强度螺栓施加预拉力和靠摩擦力传递外力。
普通螺栓连接靠栓杆抗剪和孔壁承压来传递剪力,拧紧螺帽时产生预拉力很小,其影响可以忽略不计,而高强螺栓除了其材料强度很高之外,还给螺栓施加很大预拉力,使连接构件间产生挤压力,从而使垂直于螺杆方向有很大摩擦力,而且预拉力、抗滑移系数和钢材种类都直接影响高强螺栓的承载力。
根据受力特点分承压型和摩擦型.两者计算方法不同。
高强螺栓最小规格M12,常用M16~M30,超大规格的螺栓性能不稳定,设计中应慎重使用。
高强度螺栓摩擦型和承压型连接的区别:高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。
在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。
板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。
在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。
高强度螺栓摩擦型和承压型连接的区别高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。
在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。
板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。
在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。
总之,摩擦型高强螺栓和承压型高强螺栓实际上是同一种螺栓,只不过是设计是否考虑滑移。
摩擦型高强螺栓绝对不能滑动,螺栓不承受剪力,一旦滑移,设计就认为达到破坏状态,在技术上比较成熟;承压型高强螺栓可以滑动,螺栓也承受剪力,最终破坏相当于普通螺栓破坏(螺栓剪坏或钢板压坏)。
几点补充意见1)高强度螺栓摩擦型连接和高强度螺栓承压型连接不是两个连接接头形式,而是同一个连接的两个不同阶段。
对同一个高强度螺栓连接,承压型连接的承载力应该高于摩擦型连接的承载力,但在设计时,需要考虑连接板厚度与螺栓直径的匹配。
2)摩擦型连接和承压型连接在施工方面所使用的高强度螺栓连接副是相同的,而且高强度螺栓连接副紧固的方法和预拉力值的要求也相同。
也就是说,设计时只确定高强度螺栓连接副的性能等级,如8.8级、10.9级等,施工单位应根据工程(特别是节点构造)情况,施工经验以及市场价格等因素,自行采购何种类型的高强度螺栓连接副。
摩擦型高强度螺栓拉力计算螺栓等级(1:8.8级;2:10.9级)2螺栓直径(16;20;22;24;27;30)20螺栓预拉力:155KN124KN螺栓排(对)数:4排假设对称布置1~2:1502~3:2903~4:150(mm)弯距:100KN*M最大轴拉力设计值:68.3第二排螺栓轴拉力设计值:33.5螺栓满足。
端板厚度计算(根据CECS 102:98 7.2.9条端板钢材的抗拉强度设计值f=315N/mm^2端板的宽度b=250mm加肋板的宽度bs=0mm螺栓中心至腹板的距离e w =70mm螺栓中心至翼缘板表面的距离ef =70mm螺栓的间距a =290mm1.伸臂类端板:19.1mm2.无加劲肋类端板:14.5mm3.两边支承类端板:(1)端板外伸13.1mm√(2)端板平齐15.0mm4.三边支承类端板:13.1mm9.2√1.伸臂类端板: 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-1)计算的端板厚度t 1=19.1mm 2.无加劲肋类端板:(7.2.9-2)KN 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-2)计算的端板厚度t 1=14.5mm 3.两边支承类端板:(1)端板外伸(7.2.9-3a ) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-3a)计算的端板厚度t 1=13.1mm (2)端板平齐(7.2.9-3b ) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-3b)计算的端板厚度t 1=15.0mm 4.三边支承类端板:(7.2.9-4) 一个高强螺栓的拉力设计值,Nt =68.3KN 按公式(7.2.9-4)计算的端板厚度t 1= 端板厚度t =13.1mm结 论:端板厚度t =19.1mm bf N e t t f 6≥fe a N e t w tw )5.0(3+≥fe e e b e N e e t wf f w tw f )](2[6++≥fe e e b e N e e t wf f w tw f )](4[12++≥fe b b e N e e tf s w tw f ]4)2([62++≥33.54928 9.186986。
三、螺栓连接的构造和计算(一)螺栓的种类在钢结构中应用的螺栓有普通螺栓和高强度螺栓两大类。
普通螺栓又分A级、B级(精制螺栓)和C级(粗制螺栓)两种。
高强度螺栓按连接方式分为摩擦型连接和承压型连接两种。
此外,还有用于钢屋架和钢筋混凝土柱或钢筋混凝土基础处的锚固螺栓(简称锚栓)。
A、B级螺栓采用5.6级和8.8级钢材,C级螺栓采用4.6级和4.8级钢材。
高强度螺栓采用8.8级和10.9级钢材。
10.9级中10表示钢材抗拉极限强度为f u=1000N/mm2,0.9表示钢材屈服强度f y=0.9f u,其他型号以此类推。
锚栓采用Q235或Q345钢材。
A级、B级螺栓(精制螺栓)由毛坯经轧制而成,螺栓杆表面光滑,尺寸较准确,螺孔需用钻模钻成,或在单个零件上先冲成较小的孔,然后在装配好的构件上再扩钻至设计孔径(称I类孔)。
螺杆的直径与孔径间的空隙甚小,只容许0.3mm左右,安装时需轻轻击人孔,既可受剪又可受拉。
但A级、B级螺栓(精制螺栓)制造和安装都较费工,价格昂贵,在钢结构中只用于重要的安装节点处,或承受动力荷载的既受剪又受拉的螺栓连接中。
C级螺栓(粗制螺栓)用圆钢辊压而成,表面较粗糙,尺寸不很精确,其螺孔制作是一次冲成或不用钻模钻成(称Ⅱ类孔),孔径比螺杆直径大1--2mm,故在剪力作用下剪切变形很大,并有可能个别螺栓先与孔壁接触,承受超额内力而先遭破坏。
由于c级螺栓(粗制螺栓)制造简单,价格便宜,安装方便,常用于各种钢结构工程中,特别适宜于承受沿螺杆轴线方向受拉的连接、可拆卸的连接和临时固定构件用安装连接中。
如在连接中有较大的剪力作用时,考虑到这种螺栓的缺点而改用支托等构造措施以承受剪力,让它只受拉力以发扬它的优点。
C级螺栓亦可用于承受静力荷载或间接动力荷载的次要连接中作为受剪连接。
对直接承受动力荷载的螺栓连接应使用双螺帽或其他能防止螺栓松动的有效措施。
(二)普通螺栓的计算和构造1.普通螺栓连接的工作性能和破坏情况普通螺栓连接按螺栓传力方式,可分为受拉螺栓、受剪螺栓和受拉兼受剪螺栓三种。
偏心力作用摩擦型螺栓受剪设计计算已知条件:柱翼缘厚14mm ,连接板厚12mm ,Q235,静力设计值F=100kN ,10.9级摩擦型高强螺栓,接触面喷砂处理,布置如图。
求解问题:试求连接螺栓的最小公称直径d求解步骤:1偏心力向螺栓群形心简化mm kN F T .30000300== kN F V 100==2验算连接计算长度1,5.3221520001==<=ηmm d mm l3计算单个螺栓抗剪承载力设计值P P P n N v b v 405.045.019.09.0=⨯⨯⨯==μ4确定危险螺栓,计算其受力kN y x y T N ii T x 54.54100450610030000222211=⨯+⨯⨯=+=∑∑ kN y x x T N i i T y 27.2710045065030000222211=⨯+⨯⨯=+=∑∑ kN n V N V y 67.1661001===()()kN N NN N V y TyT x 04.7011211=++=4求预紧力kN P N N b v 173,1=≤,6查表确定螺栓直径22=d ,M22螺栓举一反三:#若已知被连接构件、连接盖板截面尺寸,钢材,螺栓直径及布置,如何求连接螺栓的承载力。
1偏心力向螺栓群形心简化F T 300= F V =2验算连接计算长度3计算单个螺栓抗剪承载力设计值 查表22305,140mm N f mm N f bc bv ==b v vb vf d n N 42π=b c b c f t d N ∑={}b c b v b N N N ,min m in =4确定危险螺栓,计算其受力∑∑+=2211i i T x y x y T N ∑∑+=2211ii T y y x x T N nVN V y =1 ()()V y T yT x N NN N 11211++=5求承载力bN N m in 1≤#若已知被连接构件、连接盖板截面尺寸,钢材,螺栓直径及布置,偏心力,如何验算连接的强度。