2011高考物理金牌复习专题02动量与能量(下)
- 格式:ppt
- 大小:208.50 KB
- 文档页数:21
高中物理学习材料桑水制作2011年高考物理真题分类汇编(详解+精校)动量和能量1.(2011年高考·全国大纲版理综卷)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ。
初始时小物块停在箱子正中间,如图所示。
现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,井与箱子保持相对静止。
设碰撞都是弹性的,则整个过程中,系统损失的动能为A .212mvB .212mM v m M+ C .12N mgL μ D .N μm gL1.BD解析:本设最终箱子与小物块的速度为v 1,根据动量守恒定律:mv =(m +M )v 1,则动能损失△E k =12mv 2-12(m +M )v 12,解得△E k =mM 2(m +M )v 2,B 对;依题意:小物块与箱壁碰撞N 次后回到箱子的正中央,相对箱子运动的路程为S =0.5L +(N -1)L +0.5L =NL ,故系统因摩擦产生的热量即为系统瞬时的动能:△E k =Q =N μmgL ,D 对。
2.(2011年高考·四川理综卷)质量为m 的带正电小球由空中A 点无初速度自由下落,在t 秒末加上竖直向上、范围足够大的匀强电场,再经过t 秒小球又回到A 点,不计空气阻力且小球从末落地。
则A .整个过程中小球电势能变化了2232t mgB .整个过程中小球动量增量的大小为2mgtC .从加电场开始到小球运动到最低点时小球冬耕变化了mg 2t 2v LD .从A 点到最低点小球重力势能变化了2232t mg2.BD 解析:整个过程中小球的位移为0,2211022gt gt t at +⨯-=得a =3g ,根据牛顿第二定律电场力是重力的4倍为4mg ,根据动量定理△P =mgt -3mgt =-2mgt ,B 正确;电势能变化量为4mg ×12gt 2=2mg 2t 2,A 错误;小球减速到最低点和最初加速时的动能变化量大小相等为2221t mg ,C 错误;从A 点到最低点重力势能变化了222232)213121(t mg gt gt mg =+⨯,D 正确。
功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。
2011届高考物理二轮专题复习教案第四讲动量和能量一、特别提示动量和能量的知识贯穿整个物理学,涉及到“力学、热学、电磁学、光学、原子物理学”等,从动量和能量的角度分析处理问题是研究物理问题的一条重要的途径,也是解决物理问题最重要的思维方法之一。
1、动量关系动量关系包括动量定理和动量守恒定律。
(1)动量定理凡涉及到速度和时间的物理问题都可利用动量定理加以解决,特别对于处理位移变化不明显的打击、碰撞类问题,更具有其他方法无可替代的作用。
(2)动量守恒定律动量守恒定律是自然界中普通适用的规律,大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及较复杂的相互作用的物体系统类问题的基本规律。
动量守恒条件为:①系统不受外力或所受合外力为零②在某一方向上,系统不受外力或所受合外力为零,该方向上动量守恒。
③系统内力远大于外力,动量近似守恒。
④在某一方向上,系统内力远大于外力,该方向上动量近似守恒。
应用动量守恒定律解题的一般步骤:确定研究对象,选取研究过程;分析内力和外力的情况,判断是否符合守恒条件;选定正方向,确定初、末状态的动量,最后根据动量守恒定律列议程求解。
应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。
2、能的转化和守恒定律(1)能量守恒定律的具体表现形式高中物理知识包括“力学、热学、电学、原子物理”五大部分内容,它们具有各自的独立性,但又有相互的联系性,其中能量守恒定律是贯穿于这五大部分的主线,只不过在不同的过程中,表现形式不同而已,如:在力学中的机械能守恒定律:在热学中的热力学第一定律:在电学中的闭合电路欧姆定律:,法拉第电磁感应定律,以及楞次定律。
在光学中的光电效应方程:在原子物理中爱因斯坦的质能方程:(2)利用能量守恒定律求解的物理问题具有的特点:①题目所述的物理问题中,有能量由某种形式转化为另一种形式;②题中参与转化的各种形式的能,每种形式的能如何转化或转移,根据能量守恒列出方程即总能量不变或减少的能等于增加的能。
高中物理竞赛讲义动量和能量专题一、冲量1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。
2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。
如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。
因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。
换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。
例:以初速度竖直向上抛出一物体,空气阻力不可忽略。
关于物体受到的冲量,以下说法正确的是:()A、物体上升阶段和下落阶段受到的重力的冲量方向相反;B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。
二、动量1.定义:质量m和速度v的乘积mv.2.公式:p=mv3.单位:千克•米/秒(kg•m/s),1N•m=1kg•m/s2•m=1kg•m/s4.动量也是矢量:动量的方向与速度方向相同。
三、动量的变化1.动量变化就是在某过程中的末动量与初动量的矢量差。
即△P=P’-P。
例1:一个质量是的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化变化了多少例2:一个质量是的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向2.动量是矢量,求其变化量可以用平行四边形定则四、动量定理1.物理意义:物体所受合外力的冲量等于物体的动量变化2.公式:Ft=p’一p=mv'-mv3.动量定理的适用范围:恒力或变力 (变力时,F为平均力)例:质量2kg的木块与水平面间的动摩擦因数μ=,木块在F=5N的水平恒力作用下由静止开始运动。
2011年高考物理——能量和动量专题一、选择题(本大题共8小题,每小题6分,共48分)1.水平传送带以速度v 匀速运动,现将一小物体轻放在传送带上,它将在传送带上滑动一段时间后才与传送带保持相对静止,小物体的质量为m ,它与传送带间的动摩擦因数为μ,在相对滑动的过程中 ( )A .传送带对物体做的功为221mv B .产生的内能为221mv C .传送带对物体做的功为零 D .传送带对物体的冲量为mv2.如图1所示,木块A 放在木块B 上左侧,用恒力F 将A 拉到B 的右侧,第一次将B 固定在地面上,F 做功为1W ,产生的热量为1Q ;第一次让B 可以在光滑的地面上自由滑动,这次F做功为2W ,产生的热量为2Q ,则应由 ( )A .211Q Q ,W W = <2B .211Q Q ,W W == 2C .211Q Q ,W W < <2D .211Q Q ,W W <2= 3.如图2所示,小球A 和B 质量相同,球B 置于光滑水平面上,当球A 从高为h 处由静止摆下,到达最低点恰好与B 球相撞,并粘合在一起继续摆动,它们能上升的最大高度是 ( ) A .hB .h 21 C .h 41D .h 814.质量为m 的小球A ,沿光滑水平面以速度0v 与质量为m 2的静止小球B 发生正碰,碰撞后,A 球的动能变为原来的91,那么小球B 的速度可能是 ( )A .031v B .032vC .094vD .095v图1图25 5.半圆形光滑圆轨道固定在水平地面上,并使其轨道平面与地面垂直,物体1m 、2m 同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高点上升到轨道的M 点,如图3所示,已知OM 与竖直方向的夹角为︒60,则物体的质量比为 ( ) A .)()(1212-+: B .)()(1212+-: C .1:2D .21:6.质量为kg 30的小孩和质量为kg 70的小车分别静止在光滑的水平冰面上,如果小孩用力推小车,使小车相对冰面以s m .30的速度向前滑行,则推车过程中小孩所做的功为 ( )A .10.5JB .4.5JC .3.15JD .0.95J7.利用传感器可以测量快速变化的力,如图4所示是利用这种办法获得弹性绳中拉力随时间的变化图线.实验时,把小球举高到绳子悬点O 处,然后让小球自由下落.从此图线所提供的信息,下列判断正确的是( )A .2t 时刻绳子最长B .1t 时刻小球的速度最大C .3t 时刻小球的动能最大D .3t 和4t 时刻小球的动量相同 8.如图5所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小.先让物块从A 由静止开始滑到B .然后,将A 着地,抬高B ,使木板的倾角与前一过程相同,再让物块从B 由静止开始滑到A .上述两过程相比较,下列说法正确的是 ( )A .物块经过P 点的动能,前一过程较小B .物块从顶端滑到P 点的过程中因摩擦产生的热量,前一过程较少C .物块滑到底端时的速度,前一过程较大D .物块从顶端滑到底端的时间,前一过程较长选择题答题卡二、计算题(本大题共4小题,共52分)2m m 图3 图49.(12分)如图6所示,在一光滑的水平面上有两块相同的木板B 和C ,重物A (视为质点)位于B 的右端,A 、B 、C 的质量相等.现在A 和B 以同一速度滑向静止的C ,B 和C 发生正碰.碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间有摩擦力.已知A 滑到C 右端而未掉下.试问:从B 、C 发生正碰到A 滑到C 右端期间,C 所走过的距离是C 板长的多少倍.10.(12分)如图7所示,abc 是光滑的轨道,其中ab 是水平的,bc 是与ab 相切的位于竖直平面内的半圆轨道,半径.3m R 0=,质量.2kg m 0=的小球A 静止在轨道上,另一质量为.6kg M 0=、速度s m .5v 50=的小球B 与小球A 正碰.已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为R L 24=处(210s m g =),求: (1)相碰后,小球A 和B 的速度大小(2)试论证小球B 是否能沿半圆轨道到达c 点.图6c图711.(14分)如图8所示,水平放置的轻弹簧,左端固定,右端与小物块P接触而不连接,当P 到A 点时,弹簧为原长,现在用水平推力向左将P 缓缓地从A 推到B 点,需做功6 J ,此时在B 点撤去推力后,P 从静止开始沿着水平桌面滑到停放在水平光滑地面上的小车Q 上(小车与桌面等高),已知P 的质量kg m 1=,Q 质量kg M 4=,AB 距离5cm ,AC 距离90cm ,P 与桌面和Q 表面间的动摩擦因数为40.=μ,求: (1)使P 不会从Q 的右端滑出,则小车至少多长?(2)从推力作用于P 到P 与Q 一起运动的全过程中产生的热量.12.(14分)如图9所示,倾角37=θ的固定斜面AB 长m L 18=,质量为kg M 1=的木块由斜面中点C 从静止开始下滑,s .50后被一颗质量为g m 20=的子弹以s m v 6000=沿斜面向上的速度正对木块射入并穿出,穿出速度s m u 100=,以后每隔s .51就有一颗子弹射入木块,设子弹射穿木块的时间极短,且每次射入木块对子弹的阻力相同.已知木块与斜面间的动摩擦因数250.=μ,g 取8003760037102.cos ,.sin ,s m == ,求:(1)在被第二颗子弹击中前,木块沿斜面向上运动离A 点的最大距离? (2)木块在斜面上最多能被多少颗子弹击中?(3)在木块从C 点开始运动到最终离开斜面的过程中,子弹、木块和斜面的系统所产生的热量是多少?图8图99、解:设A 、B 、C 质量均为,碰前A 、B 的共同速度为0,碰后B 、C的共同速度为1v ,对B 、C 由动量守恒定律有:102mv mv =设A 滑至C 右端时A 、B 、C 三者共速为2v ,由动量定理2032mv mv = 设A 、C 间动摩擦因数为μ,从发生碰撞到A 滑至C 右端时C 的位移为s ,对B 、C 由动能定理有:()()2122221221v m v m mgs -=μ 设C 的长度为l ,对A 由动能定理有()22202121mv mv l s mg -=+μ联立上述各式解得:37=l s10、(1)s m 6v A =,s m 3.5v B = (2)不能解:(1)设碰后A 的速度为1v ,B 的速度为2v ;A 在圆轨道最高点速度为1v ',则有: R t v 241=' R gt 2212= ()212121212mv v m R mg ='+ 210Mv mv Mv +=联立上述各式解得:s m v 61=,s m .v 532=(2)假设B 球能沿圆轨道上升到c 点,c v 、b v 表示它在c 、b 点的速度,由牛顿定律和机械能守恒定律有:Rv M Mg c 2=()2221221b c Mv R Mg Mv =+ 解得s m .v b 93=,由于b v v <2,所以小球B 不能到达半圆轨道的最高点. 11、(1)m .40 (2)J .65解:(1)设P 滑到C 点时的速度为0v ,根据功能关系有:()2021mv BC AB mg W ++=μ P 、Q 系统动量守恒,设P 、Q 作用后的共同速度为v ,有:()v M m mv +=0设小车Q 的最小长度为L ,根据能量守恒有:()2202121v M m mv mgL +-=μ 联立上述各式解得:m .L 40=(2)根据能量守恒定律,有A →B →C 过程产生的热量为:()J BC AB mg Q 14=+=μP 、Q 相互作用过程产生热量为J .mgL Q 612==μ 则J .Q Q Q 2165=+=总12、(1)m .512 (2)3颗 (3)J 10434解:(1)木块下滑过程:1Ma cos Mg sin Mg =-θμθ,得214s m a =下滑位移:m .t a s 50212211==末速度:s m t a v 2111==第一颗子弹穿过木块:110v M mu Mv mv '+=-,得s m v 81='木块上滑过程:2Ma cos Mg sin Mg =--θμθ,得228s m a -=上滑时间:s a v t 10212='-= 上滑位移:m t v s 42212='=s .t 512< ,所以第二颗子弹击中木块前,木块上升到最高点1P 后又会下滑.故木块到A 点的最大距离为:m .s s Ld 512221=+-=(2)木块从1P 再次下滑s .50后被第二颗子弹击中,这一过程与第一颗子弹击中后过程相同,故再次上滑的位移仍为4m ,到达的最高点2P 在1P 的上方m ..d 53504=-=∆.2P 到B 点的距离为:.5m m d d L d B 32<=--=∆可知,第三颗子弹击中木块后,木块将滑出斜面。
功和功率功能关系专题定位 1.掌握功、功率相关的分析与计算方法;2.深刻理解功能关系;3.综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;4.掌握动量定理和动量守恒定律;5.综合应用动量和能量观点解决复杂问题.第4讲功和功率功能关系[相关知识链接]1.功的计算(1)单个恒力的功W=Fl cosα(2)合力为恒力的功①先求合力,再求W=F合l cosα②W=W1+W2+…2.功率的计算(1)P=Wt,适用于计算平均功率;(2)P=Fv,若v为瞬时速度,P为瞬时功率,若v为平均速度,P为平均功率.注意:力F与速度v方向不在同一直线上时功率为Fv cosθ.(3)机车启动问题以恒定功率启动以恒定加速度启动P-t图象与v-t图象运动规律OA段:做加速度逐渐减小的变加速直线运动;AB段:做速度为v m的匀速直线运动OA段:以加速度a做匀加速直线运动;AB段:做加速度逐渐减小的变加速直线运动;BC段:做速度为v m的匀速直线运动过程分析OA段:v↑⇒F=P额v↓⇒a=F-F阻m↓;AB段:F=F阻⇒a=0⇒P额=FOA段:a=F-F阻m不变⇒F不变⇒v↑⇒P=F·v↑,直到P=P额=F·v1;AB段:v↑⇒F=P额v↓⇒a=F-F阻m↓;阻·v mBC段:F=F阻⇒a=0⇒v达到最大值,v m=P额F阻[规律方法提炼]变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算(2)力的方向不变,大小随位移线性变化可用W=F l cosα计算(3)已知F-l图象,功的大小等于“面积”(4)一般变力只能用动能定理求解例1(2019·嘉、丽3月联考)如图所示,篮球运动员平筐扣篮,起跳后头顶与篮筐齐平.若图中篮筐距地高度2.9m,球员竖直起跳,则其平筐扣篮过程中克服重力所做的功及离地时重力瞬时功率约为( )A.900J,-2000W B.900J,-4000WC.500J,-1000W D.2000J,-4000W答案 B解析篮球运动员的身高约为1.8m,则跳起的高度h=2.9m-1.8m=1.1m篮球运动员的体重约为mg=800N,则起跳过程中克服重力做的功W=mgh=880J≈900J起跳时的速度为v,则根据位移速度关系可得:v2=2gh,解得v=2gh≈4.7m/s离地时重力瞬时功率约为P=-mgv=-3760W≈-4000W,故B正确,A、C、D错误.拓展训练1(2019·山东烟台市第一学期期末)把两个相同的小球从离地面相同高度处,以相同大小的初速度v分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )A.两小球落地时速度相同B.两小球落地时,重力的瞬时功率相同C.从小球抛出到落地,重力对两小球做的功相等D.从小球抛出到落地,重力对两小球做功的平均功率相等答案 C拓展训练2 (2019·浙南名校联盟高三期末)袋鼠跳是一项很有趣的运动.如图所示,一位质量m =60kg 的老师参加袋鼠跳游戏,全程10m ,假设该老师从起点到终点用了相同的10跳,每一次跳起后,重心上升最大高度为h =0.2m .忽略空气阻力,下列说法正确的是( )A .该老师起跳时,地面对该老师做正功B .该老师每跳跃一次克服重力做功的功率约为300WC .该老师从起点到终点的时间可能是7sD .该老师从起点到终点的时间可能是4s 答案 C例2 (多选)发动机额定功率为P 0的汽车在水平路面上从静止开始先匀加速启动,最后达到最大速度并做匀速直线运动,已知汽车所受路面阻力恒为F f ,汽车刚开始启动时的牵引力和加速度分别为F 0和a 0,如图所示描绘的是汽车在这一过程中速度随时间以及加速度、牵引力和功率随速度变化的图象,其中正确的是( )答案 AC解析 汽车由静止开始匀加速启动时,a 一定,根据v =at 知v 增大,由F =ma +F f 知F 一定,根据P =Fv 知v 均匀增大,功率P 也均匀增大,达到P 额后,功率保持不变,v 继续增大,所以F =Pv 减小,a =F -F f m 减小,当F =F f 时,a =0,v m =PF f,此后汽车做匀速运动,故A 、C 正确.[相关知识链接]1.表达式:W 总=E k2-E k1.2.五点说明(1)W 总为物体在运动过程中所受各力做功的代数和.(2)动能增量E k2-E k1一定是物体在末、初两状态的动能之差. (3)动能定理既适用于直线运动,也适用于曲线运动. (4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用. [规律方法提炼] 1.基本思路(1)确定研究对象和物理过程;(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式. 2.“两点一过程”(1)“两点”:指初、末状态及对应的动能E k1、E k2.(2)“一过程”:指从初状态到末状态的运动过程及合力做的功W 合. 3.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应. 例3 如图所示为一滑梯的实物图,滑梯的斜面段长度L =5.0m ,高度h =3.0m ,为保证小朋友的安全,在水平地面上铺设了安全地垫.水平段与斜面段平滑连接,小朋友在连接处速度大小不变.某小朋友从滑梯顶端由静止开始滑下,经斜面底端后水平滑行一段距离,停在水平地垫上.已知小朋友质量为m =20kg ,小朋友在斜面上受到的平均阻力F f1=88N ,在水平段受到的平均阻力F f2=100N .不计空气阻力,取重力加速度g =10m/s 2.求:(1)小朋友在斜面顶端滑下的过程中克服摩擦力做的功; (2)小朋友滑到斜面底端时的速度v 的大小;(3)为使小朋友不滑出水平地垫,地垫的长度x 至少多长. 答案 (1)440J (2)4m/s (3)1.6m解析 (1)小朋友在斜面滑下的过程中克服摩擦力做的功为:W f1=F f1L =88×5J=440J (2)小朋友在斜面上运动,由动能定理得mgh -W f1=12mv 2代入数据解得:v =4m/s(3)小朋友在水平地垫上运动的过程,由动能定理得: -F f2x =0-12mv 2解得:x =1.6m.拓展训练3 (多选)(2019·宁夏银川市质检)如图所示为一滑草场.某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8).则( )A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 对整段过程,由动能定理知mg ·2h -μmg cos45°·h sin45°-μmg cos37°·hsin37°=0解得μ=67,载人滑草车克服摩擦力做功为mg ·2h ,故A 正确,C 错误;滑草车在下段滑道时,对其受力分析如图: 沿斜面方向:F 合=mg sin37°-μF N 垂直斜面方向:F N =mg cos37°联立知F 合=-335mg ,负号表示合力方向沿斜面向上知滑草车在下段滑道做匀减速直线运动 加速度大小为a =|F 合|m =335g ,故D 错误.由以上分析知滑草车到达两段滑道交接处时速度最大,由动能定理知:mgh -μmg cos45°hsin45°=12mv m 2解得v m =2gh7,故B 正确. 拓展训练4 在赛车场上,为了安全起见,车道外围都固定上废旧轮胎作为围栏,当车碰撞围栏时起缓冲器作用.为了检验废旧轮胎的缓冲效果,在一次模拟实验中用轻弹簧来代替废旧轮胎,实验情景如图所示,水平放置的轻弹簧左侧固定于墙上,处于自然状态,开始赛车在A 处且处于静止状态,距弹簧自由端的距离L 1=1m .当赛车启动时,产生水平向左的恒为F =24N 的牵引力使赛车向左匀加速前进,当赛车接触轻弹簧的瞬间立即关闭发动机,赛车继续压缩轻弹簧,最后被弹回到B 处停下.已知赛车的质量m =2kg ,A 、B 之间的距离L 2=3m ,赛车被弹回的过程中离开弹簧时的速度大小v =4m/s ,方向水平向右.取g =10 m/s 2.求:(1)赛车和地面间的动摩擦因数; (2)弹簧被压缩的最大距离. 答案 (1)0.2 (2)0.5m解析 (1)从赛车离开弹簧到B 处停下, 由动能定理得-μmg (L 1+L 2)=0-12mv 2解得μ=0.2(2)设轻弹簧被压缩的最大距离为L ,从赛车加速到离开弹簧,由动能定理得FL 1-μmg (L 1+2L )=12mv 2-0解得L =0.5m.1.功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现. (2)功是能量转化的量度.①重力做功是重力势能改变的量度,W G =-ΔE p . ②弹簧弹力做功是弹性势能改变的量度,W 弹=-ΔE p . ③电场力做功是电势能改变的量度,W =-ΔE p . ④合外力做功是动能改变的量度.⑤除重力或弹簧弹力外的其他力做功是物体机械能改变的量度.⑥一对滑动摩擦力做功是系统内能改变的量度. 2.功能关系的应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化 (2)根据自己习惯用动能定理或能量守恒定律理解或计算例4 (2017·全国卷Ⅲ·16)如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )A.19mglB.16mglC.13mglD.12mgl 答案 A解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.拓展训练5 (2019·超级全能生2月联考)“竹蜻蜓”是一种儿童玩具,双手用力搓柄可使“竹蜻蜓”向上升,某次实验,“竹蜻蜓”离手后沿直线上升到最高点,在该过程中( )A .空气对“竹蜻蜓”的作用力大于“竹蜻蜓”对空气的作用力B .“竹蜻蜓”的动能一直增加C .“竹蜻蜓”的重力势能一直增加D .“竹蜻蜓”的机械能守恒 答案 C解析 根据牛顿第三定律可知,空气对“竹蜻蜓”的力一定等于“竹蜻蜓”对空气的力,A 错误;“竹蜻蜓”离手后沿直线上升到最高点,从运动描述可知它是先加速后减速,所以动能先增加后减少,高度升高,重力势能一直增加,B 错误,C 正确;空气对“竹蜻蜓”做功,故“竹蜻蜓”的机械能不守恒,D 错误.拓展训练6 (2019·福建龙岩市3月质量检查)如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一根轻质弹性橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直且处于原长h,让圆环沿杆从静止开始下滑,滑到杆的底端时速度为零.则在圆环下滑过程中(整个过程中橡皮绳的形变始终处于弹性限度内),下列说法中正确的是( )A.圆环的机械能守恒B.圆环的机械能先增大后减小C.圆环滑到杆的底端时机械能减少了mghD.橡皮绳再次恰好伸直时圆环动能最大答案 C解析圆环沿光滑杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,因为橡皮绳的弹性势能先不变再增大,所以圆环的机械能先不变后减小,故A、B错误;圆环的机械能减少了mgh,故C正确;在圆环下滑过程中从开始下滑到橡皮绳再次到达原长时,动能一直增大,但不是最大,沿杆方向合力为零的时刻,圆环的速度最大,故D错误.1.做好两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握运动各阶段的运动性质,各连接点、临界点的力学特征、运动特征和能量特征.2.做好四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻进行分析时选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合解题.例5(2019·浙南名校联盟高三期末)儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手配合能力.某弹珠游戏可简化成如图所示的竖直平面内OABCD透明玻璃管道,管道的半径较小.为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y =59x2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切.A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m .已知,弹珠质量m =100g ,直径略小于管道内径.E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g 取10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度v 0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度v 0的范围. 答案 见解析解析 (1)由y =59x 2得:A 点坐标(1.20m,0.80m)由平抛运动规律:x A =v 0t ,y A =12gt 2,v Ay =gt ,v A =v 02+v Ay 代入数据,求得t =0.4s ,v 0=3m/s ,v Ay =4 m/s ,v A =5m/s ;(2)由平抛运动速度关系,可得θ=53°,求得AB 、BC 圆弧的半径R =0.5m对E 点:3mg +mg =m v E 2R,求得:v E =25m/s对弹球由O 点到E 点的过程由动能定理得:mgy A -mgR (1-cos53°)=12mv E 2-12mv 02求得:v 0=22m/s ;(3)sin α=2.65-2.00-0.400.5=0.5,α=30°,CD 与水平面的夹角也为α=30°(可不求)设3次通过E 点的速度最小值为v 1,有:mgy A -mgR (1-cos53°)-2μmgL CD cos30°=0-12mv 12,求得:v 1=23m/s设3次通过E 点的速度最大值为v 2,有:mgy A -mgR (1-cos53°)-4μmgL CD cos30°=0-12mv 22,求得:v 2=6m/s考虑2次经过E 后不从O 点离开,有:-2μmgL CD cos30°=0-12mv 32,求得:v 3=26m/s因v 2>v 3,所以23m/s<v 0<26m/s拓展训练7 (2019·宁波市3月模拟)如图所示,竖直面内用光滑钢管弯成的“9”字形固定轨道与水平桌面的右端相接,“9”字全高H =0.8m ,“9”字上半部分四分之三圆弧半径为R =0.2m ,钢管的内径大小忽略不计.桌面左端固定轻质弹簧,开始弹簧处于锁定状态,其右端处于A 位置,此时弹簧具有的弹性势能为E p =2.16J ,将质量m =0.1kg 的可看作质点的小球放在A 位置与弹簧相接触,解除弹簧锁定后,小球从A 被弹出后经过B 点进入“9”字形轨道最后从D 点水平抛出,AB 间水平距离为L =1.2m ,小球与桌面间的动摩擦因数为μ=0.3,重力加速度g 取10m/s 2,不计空气阻力,假设水平地面足够长,试求:(1)弹簧解除锁定后,小球到B 点时的速度大小; (2)小球运动到轨道最高点C 时对轨道的作用力;(3)若小球从“9”字形轨道D 点水平抛出后,第一次与地面碰撞前速度方向与水平地面倾角θ=45°,每一次与地面碰撞过程中小球水平速度分量保持不变,小球弹起来的竖直速度分量减小为碰撞前的一半,直到最后沿着水平地面滚动,求小球开始沿地面滚动的位置与D 点的水平距离以及碰撞过程中小球损失的机械能. 答案 (1)6m/s (2)9N ,方向竖直向上 (3)8.4m 1.4J解析 (1)设小球到B 点时的速度为v 0,弹簧解除锁定后,由动能定理得E p -μmgL =12mv 02 v 0=6m/s(2)对小球由B 到C 运动,由动能定理得: -mgH =12mv C 2-12mv 02在C 点:F N +mg =m v C 2R解得:F N =9N由牛顿第三定律得:小球对轨道的作用力大小为9N ,方向竖直向上(3)小球由B 到D 运动:-mg (H -2R )=12mv D 2-12mv 02解得:v D =28m/s 第1次到达地面时:v y =v Dtan45°,v y =v D =28m/s竖直方向有:2gh =v y 2,解得:h =1.4m.小球离开D 点直到最后在水平地面做直线运动,在竖直方向运动的总时间:t 总=v y g +2×[12×v y g +(12)2×v y g +(12)3×v yg+…]代入:t 总≈2810s +2×2810×121-12s =357s小球离开D 点直到最后在水平地面做直线运动,在水平方向运动的位移大小:x =v D t 总=8.4m损失的机械能为:ΔE =mgh ΔE =mgh =1.4J.专题强化练基础题组1.(多选)(2019·温州市联考)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关 答案 ABC解析 运动员到达最低点前重力始终做正功,重力势能始终减小,故A 正确;蹦极绳张紧后的下落过程中,弹力方向与位移方向始终相反,弹力做负功,弹性势能增加,故B 正确;以运动员、地球和蹦极绳所组成的系统,只有重力和弹力做功,系统的机械能守恒,故C 正确;重力势能的改变与重力做功有关,取决于初末位置的高度差,与重力势能零点的选取无关,故D 错误.2.(2019·诸暨市期末)人们用一块弹性毯子将小孩竖直抛起,再保持弹性毯子水平,接住小孩,这是阿拉斯加当地人的一种娱乐方式.若不计空气阻力,下列说法中正确的是( ) A.用毯子将小孩上抛,毯子对小孩做正功,小孩机械能增加B.小孩在空中上升时处于超重状态,下落过程处于失重状态C.小孩由最高点下落,一接触到弹性毯子就立刻做减速运动D.小孩由最高点下落至速度为零的过程中,小孩机械能守恒答案 A3.(2019·金华十校高三期末)“反向蹦极”是蹦极运动的一种类型,如图所示,将弹性绳拉长后固定在运动员身上,并通过其他力作用使运动员停留在地面上,当撤去其他力后,运动员从A点被“发射”出去冲向高空,当上升到B点时弹性绳恢复原长,运动员继续上升到最高点C,若运动员始终沿竖直方向运动并视为质点,忽略弹性绳质量与空气阻力.下列说法正确的是( )A.运动员在A点时弹性绳的弹性势能最小B.运动员在B点时的动能最大C.运动员在C点时的加速度大小为0D.运动员从A点运动到B点的过程,弹性绳的弹性势能减小量大于运动员重力势能的增加量答案 D4.(2019·广东深圳市第一次调研)在水平地面上方某处,把质量相同的P、Q两小球以相同速率沿竖直方向抛出,P向上,Q向下,不计空气阻力,两球从抛出到落地的过程中( ) A.P球重力做功较多B.两球重力的平均功率相等C.落地前瞬间,P球重力的瞬时功率较大D.落地前瞬间,两球重力的瞬时功率相等答案 D解析根据W=mgh可知两球重力做功相同,选项A错误;上抛的物体运动时间长,根据P=W t 可知两球重力的平均功率不相等,选项B错误;根据机械能守恒定律可知12mv2=mgh+12mv02,两球落地的速度相同,根据P=mgv可知落地前瞬间,两球重力的瞬时功率相等,选项C错误,D正确.5.(2019·绍兴市3月选考)一高度为d 的仓库起火,现需要利用仓库前方固定在地面上的消防水炮给它灭火.如图所示,水炮与仓库的距离为d ,出水口的横截面积为S ,喷水方向可自由调节、功率也可以变化.火势最猛的那层楼窗户上、下边缘离地高度分别为0.75d 和0.25d ,(要使灭火效果最好)要求水喷入时的方向与窗户面垂直.已知水炮的效率为η,水的密度为ρ,重力加速度为g ,不计空气阻力,忽略水炮离地高度.下列说法正确的是( )A .若水从窗户下边缘进入,则进入时的速度大小为gdB .若水从窗户上边缘进入,则进入时的速度大小为2gdC .若水从窗户的正中间进入,则此时的水炮功率最小D .满足水从窗户进入的水炮功率最小值为12ρS (gd )32答案 C解析 将水的运动逆向看作是平抛运动,上边缘进入,由d =v 1t,0.75d =12gt 2,得v 1=32gd . 下边缘进入d =v 2t,0.25d =12gt 2,得v 2=2gd ,故A 、B 错误.设从h 处进入,由h =12gt2及d =v x t ,v y 2=2gh .则初速度v 02=v x 2+v y 2=gd 22h +2gh ,当gd 22h =2gh ,即h =d2时v 0有最小值v 0=gd ,功率最小;由F ·Δt =ρv 0S Δtv 0,得F =ρSv 02,功率P =Fv 0=ρSv 03=ρS (gd )32,故C 正确,D 错误.6.(2019·绍兴诸暨市期末) 某三层书架放在1m 高的桌面上,书架的层高均为30cm ,隔板厚度不计.假设每本书质量为1kg ,高度为20cm ,每层书架可竖直摆放10本书,一开始所有书全部都平铺在水平地面上.现将书搬到书架上并竖直放满书架,需要做的功为(g 取10m/s 2) ( )A .435JB .420JC .120JD .390J 答案 B解析 放满书的三层书架,三层书的重心分别上升1.1m ,1.4m,1.7m ,由W =mg (h 1+h 2+h 3)=420J.7.放置于水平地面上的物体在水平恒力F 作用下,以不同的速度沿着力F 的方向匀速运动了距离L .第一次的速度为v 1,恒力F 做的功为W 1,功率为P 1;第二次的速度为v 2,恒力F 做的功为W 2,功率为P 2.已知v 1>v 2,则下列判断正确的是( ) A .W 1>W 2,P 1=P 2 B .W 1>W 2,P 1>P 2 C .W 1=W 2,P 1=P 2 D .W 1=W 2,P 1>P 2答案 D解析 根据W =FL 可知,两次做功相同则W 1=W 2;由于v 1>v 2,所以第一次做功时间短,根据P =Wt可得P 1>P 2,选项D 正确. 8.(2019·天津市和平区上学期期末)如图所示,两个半径不同、内壁光滑的半圆轨道,固定于地面,两轨道的球心O 、O ′在同一水平高度上,一小球先后从与轨道球心在同一高度上的A 、B 两点从静止开始滑下,以轨道球心所在位置为零势能面,通过最低点时,下列说法中不正确的是( )A .小球对轨道的压力是相同的B .小球的速度相同C .小球向心加速度是相同的D .小球的机械能相同 答案 B解析 设小球通过最低点的速度大小为v ,半圆的半径为R .在落到最低点的过程中.根据动能定理得mgR =12mv 2-0,解得v =2gR ,可知R 越大v 越大,故B 错误;在最低点,竖直方向上的合力提供向心力,由牛顿第二定律有F N -mg =m v 2R,联立解得F N =3mg ,可知轨道对小球的支持力与半圆轨道的半径无关,由牛顿第三定律可知小球对两轨道的压力大小圴为重力的3倍,方向均竖直向下,故A 正确;在最低点,a =F N -mgm=2g ,方向竖直向上,故C 正确;两球下滑都只有重力做功,满足机械能守恒,故D 正确.9.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv = 100W ,故B 正确. 能力题组10.(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR答案 C解析 小球从a 运动到c ,根据动能定理,得F ·3R -mgR =12mv 12,又F =mg ,故v 1=2gR ,小球离开c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动.且水平方向与竖直方向的加速度大小相等,都为g ,故小球从c 点到最高点所用的时间t =v 1g=2R g ,水平位移x =12gt 2=2R , 根据功能关系,小球从a 点到轨迹最高点机械能的增量为力F 做的功,即ΔE =F ·(2R +R +x )=5mgR .11.(2019·宁波市“十校联考”)如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘半径R =0.2m ,圆盘边缘有一质量m =1kg 的小滑块.当圆盘转动的角速度达到某一数值时,滑块恰从圆盘边缘A 沿过渡圆管滑落,进入轨道ABC ,AB 粗糙,BCD 光滑,CD 面足够长且离地面高为h ′=0.4m ,经C 点后突然给滑块施加水平向右的恒力F =1033N .已知AB 段斜面倾角为60°,BC 段斜面倾角为30°,小滑块与圆盘的动摩擦因数μ=0.5,A 点离B 点所在水平面的高度h =1.2m ,运动到B 点时的速度为3m/s ,滑块从A 至C 运动过程中始终未脱离轨道,不计在过渡圆管处和B 点的机械能损失,最大静摩擦力近似等于滑动摩擦力,重力加速度g 取10 m/s 2,求:(1)滑出A 点时,圆盘转动的角速度ω;(2)小滑块在从A 到B 时,摩擦力做的功; (3)小滑块在CD 面上的落点距C 点的水平距离. 答案 (1)5rad/s (2)-8J (3)315m 解析 (1)滑块在圆盘上做圆周运动时,静摩擦力充当向心力, 根据牛顿第二定律得:μmg =mω2R , 代入数据解得:ω=5rad/s (2)v A =ωR =5×0.2m/s=1 m/s ,从A 到B 的运动过程由动能定理:mgh +W f =12mv B 2-12mv A 2,解得W f =-8J(3)-mgh ′=12mv C 2-12mv B 2解得v C =1m/s对小滑块经C 点后受力分析可知,F 合=2033N ,则合加速度大小为a =2033m/s 2,方向与C点速度方向垂直v y =v C sin30°,小滑块经C 点到落地的过程,用时t =2v yg,小滑块在C 点时,水平方向的速度v x =v C cos30°,水平方向加速度a =F m ,小滑块在CD 面上的落点距C 点的水平距离x =v x t +12at 2,联立解得x=315m. 12.(2019·诸暨市期末)如图所示是滑块翻越碰撞游戏的示意图.弹射装置将滑块以一定初速度从A 点弹出,滑块沿粗糙桌面运动,从B 点进入竖直光滑圆轨道,沿圆轨道运动一周后离开轨道,向桌面边缘的C 点运动.滑块在C 点水平抛出,恰好在D 点沿DE 方向进入光滑倾斜轨道.固定在轨道底端的弹性板EF 与轨道垂直,滑块与弹性板碰撞后反弹,碰撞过程中有能量损失.已知可视为质点的滑块质量m =0.1kg ,滑块与桌面间的动摩擦因数μ=0.2,桌面AB 和桌面BC 长度分别为x 1=2.25m 与x 2=1.0m ,C 、D 两点高度差h =0.2m ,轨道的倾角θ为30°,DE 长度L =0.9m ,每次滑块与弹性板碰撞后速度大小变为碰前的0.6倍,重力加速度g 取10m/s 2.(1)求滑块从C 点运动到D 点的时间; (2)求滑块在A 点的动能大小; (3)求竖直圆轨道的最大半径;。
专题二动量与能量①灵活性强,难度较大,能力要求高,内容极丰富,多次出现在两个守恒定律网络交汇的综合计算中;②题型全,年年有,不回避重复考查,平均每年有3—6道题,是区别考生能力的重要内容;③两个守恒定律不论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占份量相当大.从考题逐渐趋于稳定的特点来看,我们认为:对两个守恒定律的考查重点仍放在分析问题和解决问题的能力上.因此在第二轮复习中,还是应在熟练掌握基本概念和规律的同时,注重分析综合能力的培养,训练从能量、动量守恒的角度分析问题的思维方法.【典型例题】【例1】(理科综合)下列是一些说法:①一质点受到两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同;②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一时间内做的功或者都为零,或者大小相等符号相反;③在同样时间内,作用力力和反作用力的功大小不一定相等,但正负符号一定相反;④在同样的时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反.以上说法正确的是()A.①②B.①③C.②③D.②④【例2】(石家庄)为了缩短航空母舰上飞机起飞前行驶的距离,通常用弹簧弹出飞机,使飞机获得一定的初速度,进入跑道加速起飞.某飞机采用该方法获得的初速度为v0,之后,在水平跑道上以恒定功率P沿直线加速,经过时间t,离开航空母舰且恰好达到最大速度v m.设飞机的质量为m,飞机在跑道上加速时所受阻力大小恒定.求:(1)飞机在跑道上加速时所受阻力f的大小;(2)航空母舰上飞机跑道的最小长度s.【例3】如下图所示,质量为m=2kg的物体,在水平力F=8N的作用下,由静止开始沿水平面向右运动.已知物体与水平面间的动摩擦因数μ=0.2.若F作用t1=6s后撤去,撤去F后又经t2=2s物体与竖直墙壁相碰,若物体与墙壁作用时间t3=0.1s,碰墙后反向弹回的速度v'=6m/s,求墙壁对物体的平均作用力(g 取10m/s2).【例4】有一光滑水平板,板的中央有一小孔,孔内穿入一根光滑轻线,轻线的上端系一质量为M的小球,轻线的下端系着质量分别为m1和m2的两个物体,当小球在光滑水平板上沿半径为R的轨道做匀速圆周运动时,轻线下端的两个物体都处于静止状态(如下图).若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?【例5】 如图所示,水平传送带AB 长l =8.3m ,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动至最左端A 点时,一颗质量为m =20g 的子弹以0v -=300m/s 水平向右的速度正对射入木块并穿出,穿出速度u =50m/s ,以后每隔1s 就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10m/s .求:(1)在被第二颗子弹击中前,木块向右运动离A 点的最大距离? (2)木块在传达带上最多能被多少颗子弹击中?(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统产生的热能是多少?(g 取10m/s )【例6】 质量为M 的小车静止在光滑的水平面上,小车的上表面是一光滑的曲面,末端是水平的,如下图所示,小车被挡板P 挡住,质量为m 的物体从距地面高H 处自由下落,然后沿光滑的曲面继续下滑,物体落地点与小车右端距离s 0,若撤去挡板P ,物体仍从原处自由落下,求物体落地时落地点与小车右端距离是多少?【例7】 如下图所示,一辆质量是m =2kg 的平板车左端放有质量M =3kg 的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v 0=2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g =10m/s 2)求:v 0 m ABM(1)平板车每一次与墙壁碰撞后向左运动的最大距离. (2)平板车第二次与墙壁碰撞前瞬间的速度v .(3)为使滑块始终不会滑到平板车右端,平板车至少多长?【例8】 如图所示,光滑水平面上有一小车B ,右端固定一个砂箱,砂箱左侧连着一水平轻弹簧,小车和砂箱的总质量为M ,车上放有一物块A ,质量也是M ,物块A 随小车以速度v 0向右匀速运动.物块A 与左侧的车面的动摩擦因数为 ,与右侧车面摩擦不计.车匀速运动时,距砂面H 高处有一质量为m 的泥球自由下落,恰好落在砂箱中,求:(1)小车在前进中,弹簧弹性势能的最大值.(2)为使物体A 不从小车上滑下,车面粗糙部分应多长?专题二 《动量与能量》专题训练和高考预测1.如图所示,半径为R ,内表面光滑的半球形容器放在光滑的水平面上,容器左侧靠在竖直墙壁.一个质量为m 的小物块,从容器顶端A 无初速释放,小物块能沿球面上升的最大高度距球面底部B 的距离为Mmv 0mHABv 034R .求: (1)竖直墙作用于容器的最大冲量; (2)容器的质量M .2.离子发动机是一种新型空间发动机,它能给卫星轨道纠偏或调整姿态提供动力,其中有一种离子发动机是让电极发射的电子撞击氙原子,使之电离,产生的氙离子经加速电场加速后从尾喷管喷出,从而使卫星获得反冲力,这种发动机通过改变单位时间内喷出离子的数目和速率,能准确获得所需的纠偏动力.假设卫星(连同离子发动机)总质量为M ,每个氙离子的质量为m ,电量为q ,加速电压为U ,设卫星原处于静止状态,若要使卫星在离子发动机起动的初始阶段能获得大小为F 的动力,则发动机单位时间内应喷出多少个氙离子?此时发动机动发射离子的功率为多大?3.如图所示,粗糙的斜面AB 下端与光滑的圆弧轨道BCD 相切于B ,整个装置竖直放置,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =0.5m ,斜面长L =2m ,现有一个质量m =0.1kg 的小物体P 从斜面AB 上端A 点无初速下滑,物体P 与斜面AB 之间的动摩擦因数为 =0.25.求: (1)物体P 第一次通过C 点时的速度大小和对C 点处轨道的压力各为多大?(2)物体P 第一次离开D 点后在空中做竖直上抛运动,不计空气阻力,则最高点E 和D 点之间的高度差为多大?(3)物体P 从空中又返回到圆轨道和斜面,多次反复,在整个运动过程中,物体P 对C 点处轨道的最小压力为多大?4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点衔接,导轨半径为R .一个质量为m 的静止物块在A 处压缩弹簧,在弹力的作用下获一向右的速度,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点.求: (1)弹簧对物块的弹力做的功.(2)物块从B至C克服阻力做的功.(3)物块离开C点后落回水平面时其动能的大小.5.如图所示,质量M=0.45kg的带有小孔的塑料块沿斜面滑到最高点C时速度恰为零,此时与从A点水平射出的弹丸相碰,弹丸沿着斜面方向进入塑料块中,并立即与塑料块有相同的速度.已知A点和C点距地面的高度分别为:H=1.95m,h=0.15m,弹丸的质量m=0.050kg,水平初速度v0=8m/s,取g=10m/s2.求:(1)斜面与水平地面的夹角θ.(可用反三角函数表示)(2)若在斜面下端与地面交接处设一个垂直于斜面的弹性挡板,塑料块与它相碰后的速率等于碰前的速率,要使塑料块能够反弹回到C点,斜面与塑料块间的动摩擦因数可为多少?6.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为l2,重力加速度为g.求A从P点出发时的初速度v 0.7.如下图所示,A 、B 是静止在水平地面上完全相同的两块长木板.A 的左端和B 的右面端相接触.两板的质量皆为M =2.0kg ,长度皆为l =1.0m .C 是一质量为m =1.0kg 的小物块.现给它一初速度v 0=2.0m/s ,使它从B 板的左端开始向右滑动,已知地面是光滑的,而C 与A 、B 之间的动摩擦因数为 =0.10.求最后A 、B 、C 各以多大的速度做匀速运动.(取重力加速度g =10m/s 2)BAv 0 C。