人教版八年级上册数学 期末复习 整式的乘法与因式分解 专项训练
- 格式:docx
- 大小:129.10 KB
- 文档页数:3
人教版八年级上册数学第14章整式的乘法与因式分解专项复习题一.选择题1. 设M=(x﹣1)(x﹣2),N=(2x﹣3)(x﹣2),则M与N的大小关系为()A.M<N B.M≥N C.M=N D.M≤N2.下如果一个正方形的周长为(2a+b)(其中a>0,b>0),则该正方形的面积为()A. B. C.4a2+b2 D.3. 已知a+b=2,求代数式a2﹣b2+4b的值为()A.0 B.4 C.5 D.﹣74. 列多项式中,与﹣3x+y相乘的结果是﹣3x2+10xy﹣3y2的多项式是()A.x+3y B.x﹣3y C.3x+y D.3x﹣y5. 计算()=8a,正确的结果是()A.16a2b2B.4ab2C.(4ab)2D.(2ab)26. 已知a m=2,a n=3,a p=5,则a2m+n﹣p的值是()A.B.C.1 D.27. 下列计算中,能用平方差公式计算的是()A.(x﹣2)(2﹣x) B.(3x+2)(2x﹣3) C.(a2+b)(a2﹣b) D.(﹣1﹣3x)(1+3x)8. 下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣2x+1 D.x2﹣2x﹣19. 如图,设k=(a>b>0),则k的值可以为()A.B.1 C.D.210.将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)二.填空题11. 若x2+2mx+16是一个完全平方式,那么m应为.12. 已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.13. 如果(x﹣2)(x+m)=x2+x+n,那么m=,n=.14.已知代数式x2+x+6的值是7,则代数式x3+2x2+17的值是.15.某小区为了便民购物,计划在小区外一块长方形空地上建一座超市,已知长方形空地的面积为(6xy2+y)平方米,宽为y米,则这块空地的长为.三.解答题16. 分解因式:(1)﹣3a3m+6a2m﹣3am (2)(x2+4)2﹣16x217. 甲、乙两人共同计算一道整式:(x+a)(2x+b),由于甲抄错了a的符号,得到的结果是2x2﹣7x+3,乙漏抄了第二个多项式中x的系数,得到的结果是x2+2x﹣3.求(a﹣b)(﹣2a﹣b)的值.18.阅读下列材料:已知a2+a﹣3=0,求a2(a+4)的值.解:∵a2=3﹣a,∴a2(a+4)=(3﹣a)(a+4)=3a+12﹣a2﹣4a=﹣a2﹣a+12,∵a2+a=3,∴﹣(a2+a)+12=﹣3+12=9∴a2(a+4)=9.根据上述材料的做法,完成下列各小题:(1)已知a2﹣a﹣10=0,求2(a+4)(a﹣5)的值;(2)已知x2﹣x﹣1=0,求x3﹣2x+1的值;(3)已知x2+4x﹣1=0,求代数值2x4+8x3﹣4x2﹣8x+1的值.19.阅读下列材料:一般地,n个相同的因数a相乘a•a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.20.某校“数学社团”活动中,研究发现常用的分解因式的方法有提取公因式法、公式法﹒但还有很多的多项式只用上述方法无法分解,如:“m2﹣mn+2m﹣2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别分解因式后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了.过程为:m2﹣mn+2m﹣2n=(m2﹣mn)+(2m﹣2n)=m(m﹣n)+2(m﹣n)=(m﹣n)(m+2).“社团”将此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:(1)分解因式:a3﹣3a2﹣6a+18;(2)分解因式:x2+y2﹣2xy﹣9;(3)已知:m+n=5,m﹣n=1.求:m2﹣n2﹣2n+2m的值;(4)△ABC的三边a,b,c满足a2+ab+c2﹣bc=2ac,判断△ABC的形状并说明理由.。
八年级数学上册第十四章《整式的乘法与因式分解》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b) D.x2﹣16+3x=(x+4)(x﹣4)+3x 2.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列计算中,结果正确的是()A.2a﹣a=2 B.t2+t3=t5C.(﹣x2)3=﹣x6D.x6÷x3=x2 4.若3x=15,3y=5,则3x-y等于( ).A.5 B.3 C.15 D.105.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.已知x2﹣8x+a(a为常数)可以写成一个完全平方式,则a的值为()A.16 B.﹣16 C.64 D.﹣648.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2 B.﹣7、2 C.﹣7、﹣2 D.7、﹣29.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5 B.﹣10 C.﹣5 D.1010.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k 个完全平方数的和,那么k的最小值为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知若a+b=﹣3,ab=2,则(a﹣b)2═.12.因式分解:m2﹣n2﹣2m+1=.13.多项式y2+2y+m因式分解后有一个因式(y﹣1),则m=.14.9992﹣998×1002=.15.因式分解:x3-2x2y+xy2=________.16.已知3a=5,9b=10,则3a+2b的值为________.17.已知A=2x+y,B=2x-y,计算A2-B2=________.18.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为.三.解答题(共46分,19题6分,20 ---24题8分)19.计算:(1)计算:12﹣38+|3﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).20.分解因式:(1)m3n-9mn; (2)(x2+4)2-16x2; (3)x2-4y2-x+2y;(4)4x3y+4x2y2+xy3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2, 对于方案一,小明是这样验证的: a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2请你根据方案二、方案三,写出公式的验证过程. 方案二: 方案三:23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积S 1的差(即S ﹣S 1)是一个常数,求出这个常数.24.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2+3x﹣9)(x2+3x+1)+25进行因式分解的过程.解:设x2+3x=y原式=(y﹣9)(y+1)+25(第一步)=y2﹣8y+16(第二步)=(y﹣4)2(第三步)=(x2+3x﹣4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4进行因式分解.参考答案一、题号 1 2 3 4 5 6 7 8 9 10 答案 C A C B B B A B C D二、11.解:∵a+b=﹣3,ab=2,∴(a﹣b)2═(a+b)2﹣4ab=(﹣3)2﹣4×2=9﹣8=1.故答案为:1.12.解:原式=m2﹣2m+1﹣n2=(m﹣1)2﹣n2=(m﹣1+n)(m﹣1﹣n).故答案为(m﹣1+n)(m﹣1﹣n).13.解:∵多项式y2+2y+m因式分解后有一个因式为(y﹣1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=﹣3.故答案为:﹣3.14.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.15.x(x-y)216.5017.8xy18.解:依题意得剩余部分为(2m+3)2﹣(m+3)2=4m2+12m+9﹣m2﹣6m﹣9=3m2+6m,而拼成的矩形一边长为m,∴另一边长是(3m2+6m)÷m=3m+6.故答案为:3m+6. 三、19. 解:(1)原式=23﹣2+2﹣3=3;(2)原式=a 2﹣2a+3a ﹣6﹣a 2+a =2a ﹣6.20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:由题意可得,方案二:a 2+ab+(a+b )b=a 2+ab+ab+b 2=a 2+2ab+b 2=(a+b )2, 方案三:.23.如图,甲长方形的两边长分别为m +1,m +7;乙长方形的两边长分别为m +2,m +4.(其中m 为正整数)(1)图中的甲长方形的面积S 1,乙长方形的面积S 2,比较:S 1 > S 2(填“<”、“=”或“>”),并说明理由;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.解:(1)>.理由:S1=(m+1)(m+7)=m2+8m+7,S=(m+2)(m+4)=m2+6m+8,2∴S1﹣S2=(m2+8m+7)﹣(m2+6m+8)=2m﹣1,∵m为正整数,∴2m﹣1>0,∴S1>S2.(2)图中甲的长方形周长为2(m+7+m+1)=4m+16,∴该正方形边长为m+4,∴S﹣S1=(m+4)2﹣(m2+8m+7)=9,∴这个常数为9.24.解:(1)由y2﹣8y+16=(y﹣4)2可知,小涵运用了因式分解的完全平方公式法故选:C;(2)(x2+3x﹣9)(x2+3x+1)+25,解:设x2+3x=y原式=(y﹣9)(y+1)+25=y2﹣8y+16=(y﹣4)2=(x2+3x﹣4)2=(x﹣1)2(x+4)2;故答案为:(x﹣1)2(x+4)2;(3)(9x2﹣6x+3)(9x2﹣6x﹣1)+4设9x2﹣6x=y,原式=(y+3)(y﹣1)+4,=y2+2y+1,=(y+1)2,=(9x2﹣6x+1)2,=(3x﹣1)4.。
人教版八年级数学上册经典题型同步汇编第十四章整式的乘法与因式分解题型1:逆用同底数幂的乘法法则解决问题【例1】已知x a=5,x b=7,求x a+b的值.题型2:底数为多项式的同底数幂相乘【例2】计算:(1)(a+b)3(a+b)4;(2)(m-n)2(n-m)3.题型3:逆用幂的乘方法则解决问题【例3】(1)若=a9,求n;(2)已知5m=8,求25m.题型4:幂的乘方与同底数幂相乘的混合运算【例4】计算:(1)y··;(2)2m3·m5-(m2)4.题型5:逆用积的乘方巧解题【例5】计算:(1) 0.125299×(-8)299;(2)×.题型6;有关乘方的混合运算【例6】计算:(1)-(2ax2)4;(2)-a3·a4·a+(a2)4+(-2a4)2.题型7:单项式乘单项式的计算【例7】计算:(1)10x2yz3·;(2)·;(3)3ab2··2abc;(4)(- 2x n+1y n)·(-3xy)·.题型8:单项式乘多项式的计算【例8】计算:(1)2xy(5xy2+3xy-1);(2)(a2-2bc)·(-2ab)2.题型9:多项式与多项式相乘的计算【例9】计算:(1)(3x-2y)(2a+3b);(2)(x-y)(x2+xy+y2).题型10:整式乘法的实际应用【例10】为应对国际金融危机,2009年我国出台了一系列刺激住房消费的优惠政策.李小雨家刚刚买了一套房子,房子的结构如图所示(单位:m),他家打算在房子里铺满地砖.(1)他家至少需要购买多少平方米的地砖?(2)如果铺设的这种地砖的价格是每平方米3n元,请你帮他家算一算至少需要花多少钱?题型11:同底数幂的除法法则的灵活应用【例11】已知3m=6,9n=2,求32m-4n+1的值.题型12:整式除法的计算【例12】计算:(1)(25x2+15x3y-20x4)÷(-5x2);(2)[2(m+n)5-3(m+n)4+(-m-n)3]÷[2(m+n)3].题型13:整式除法的实际应用【例13】某高分子聚合材料的性质优于铝合金材料,且密度为9×102kg/m3,已知铝的密度为2.7×103kg/m3.铝的密度是这种材料密度的多少倍?题型14:利用平方差公式计算【例14】计算:(1)100.5×99.5;(2)(a+3)(a-3)-(a+2)(a-5);(3)(x2+yz)(x2-yz).题型15:利用完全平方公式化简求值【例15】已知x2-5x=14,求-+1的值.题型16:完全平方公式的应用【例16】如图,长方形ABCD的周长是20 cm,以AB,AD为边分别向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为68 cm2,那么长方形ABCD的面积是( )A.21 cm2B.16 cm2C.24 cm2D.9 cm2题型17:提公因式法分解因式【例17】把下列各式因式分解:(1)2a2bc+8a3b;(2)-a2x m+2+abx m+1-acx m-ax m+3;(3)6q(p+q)-4p(p+q);(4)a(a-b)3+2a2(b-a)2-2ab(b-a).题型18:提公因式法的简便应用【例18】计算123×+268×+456×+521×.题型19:利用平方差公式因式分解【例19】分解因式:(1)(x+p)2-(x+q)2;(2)16(a-b)2-9(a+b)2.题型20:利用平方差公式因式分解解决问题【例20】用因式分解法证明499-714能被2400整除.题型21:利用完全平方公式法因式分解【例21】分解因式:(1)4x2-20x+25;(2) +ab+a2b2;(3)16(a+b)2+40(a2-b2)+25(a-b)2.题型22:因式分解的综合题【例22】把多项式x3-2x2+x分解因式结果正确的是( )A.x(x2-2x)B.x2(x-2)C.x(x+1)(x-1)D.x(x-1)2人教版八年级数学上册经典题型同步汇编第十四章整式的乘法与因式分解题型1:逆用同底数幂的乘法法则解决问题【例1】已知x a=5,x b=7,求x a+b的值.解:x a+b=x a·x b=5×7=35.点拨:因为a m·a n=a m+n,所以a m+n=a m·a n,本题逆用同底数幂的乘法法则求解.题型2:底数为多项式的同底数幂相乘【例2】计算:(1)(a+b)3(a+b)4;(2)(m-n)2(n-m)3.解:(1)(a+b)3(a+b)4=(a+b)7.(2)(m-n)2(n-m)3=(n-m)2(n-m)3=(n-m)5.点拨:当底数为多项式时,我们可将其看作一个整体,利用同底数幂的乘法法则求解. 题型3:逆用幂的乘方法则解决问题【例3】(1)若=a9,求n;(2)已知5m=8,求25m.解:(1)因为(a n)3=a3n,所以由3n=9得n=3;(2)25m=(52)m=(5m)2=82=64.点拨:对于“5的几次方等于8”的问题,我们将在高中阶段学习,本题利用数学中的整体思想,将5m看作整体进行代换.题型4:幂的乘方与同底数幂相乘的混合运算【例4】计算:(1)y··;(2)2m3·m5-(m2)4.解:(1)y··=y·y6·y6=y13;(2)2m3·m5-=2m8-m8=m8.点拨:本题运算顺序是先乘方,再乘法,最后加减.题型5:逆用积的乘方巧解题【例5】计算:(1) 0.125299×(-8)299;(2)×.解:(1)0.125299×(-8)299=[0.125×(-8)]299=(-1)299=-1;(2)×=××=×=.点拨:因为本题两算式中的数据是互为倒数的形式,所以可逆用积的乘方法则,先进行乘法运算,再进行乘方运算,这是一种较为简便的运算方法.题型6;有关乘方的混合运算【例6】计算:(1)-(2ax2)4;(2)-a3·a4·a+(a2)4+(-2a4)2.解:(1)-(2ax2)4=a4x8-16a4x8=-a4x8;(2)-a3·a4·a+(a2)4+(-2a4)2=-a8+a8+4a8=4a8.点拨:本题的运算顺序是先乘方,再乘法,最后加减.题型7:单项式乘单项式的计算【例7】计算:(1)10x2yz3·;(2)·;(3)3ab2··2abc;(4)(- 2x n+1y n)·(-3xy)·.解:(1)10x2yz3·=(x2·x)(y·y4)z3=-5x3y5z3;(2)·=(a·a2)(b2·b)=-a3b3;(3)3ab2··2abc=(a·a2·a)(b2·b·b)c=-2a4b4c;(4)(-2x n+1y n)·(-3xy)·=(x n+1·x·x2)(y n·y)z=-3x n+4y n+1z.点拨:(1)系数参与运算时,正确理解系数是参与乘方运算还是乘法运算.(2)凡是单项式中出现过的字母,在结果中也要再出现,不能遗漏.题型8:单项式乘多项式的计算【例8】计算:(1)2xy(5xy2+3xy-1);(2)(a2-2bc)·(-2ab)2.点拨:(1)中单项式为2xy,多项式含有三项,分别为5xy2,3xy,-1,乘积仍为三项;(2)中应先算(-2ab)2.解:(1)原式=2xy·5xy2+2xy·3xy+2x y·(-1)=10x2y3+6x2y2-2xy;(2)原式=(a2-2bc)·4a2b2=4a2b2·a2+4a2b2·(-2bc)=4a4b2-8a2b3c.题型9:多项式与多项式相乘的计算【例9】计算:(1)(3x-2y)(2a+3b);(2)(x-y)(x2+xy+y2).解:(1)原式=3x·2a+3x·3b+(-2y)·2a+(-2y)·3b=6ax+9bx-4ay-6by;(2)原式=x·x2+x·xy+x·y2+(-y)·x2+(-y)·xy+(-y)·y2=x3+x2y+xy2-x2y-xy2-y3=x3-y3.点拨:(1)中先用3x分别与2a,3b相乘,再用-2y分别与2a,3b相乘,然后把所得的积相加;(2)中可先用二项式(x-y)中的x分别与三项式中的各项相乘,再用-y分别与三项式中的各项相乘,然后把所得的积相加.题型10:整式乘法的实际应用【例10】为应对国际金融危机,2009年我国出台了一系列刺激住房消费的优惠政策.李小雨家刚刚买了一套房子,房子的结构如图所示(单位:m),他家打算在房子里铺满地砖.(1)他家至少需要购买多少平方米的地砖?(2)如果铺设的这种地砖的价格是每平方米3n元,请你帮他家算一算至少需要花多少钱?解:(1)4a·2b+(2a+a)(4b-2b)+b(4a-2a-a)=8ab+3a·2b+b·a=8ab+6ab+ab=15ab(m2);(2)3n·15ab=45abn(元).点拨:此种解法是把整个图形分成若干个小长方形,分别计算它们的面积,再把结果相加.分割的方法不同,所列的整式也就不同.题型11:同底数幂的除法法则的灵活应用【例11】已知3m=6,9n=2,求32m-4n+1的值.解: 32m-4n+1=32m×3÷34n=3 ÷,∵3m=6,9n=2,∴32m-4n+1=3×62÷22=27.点拨:欲求32m-4n+1的值,应逆用同底数幂的乘除法法则,将其转化为关于3m和9n的表达式后,利用整体代换的数学思想求.题型12:整式除法的计算【例12】计算:(1)(25x2+15x3y-20x4)÷(-5x2);(2)[2(m+n)5-3(m+n)4+(-m-n)3]÷[2(m+n)3].解:(1)原式=25x2÷(-5x2)+15x3y÷(-5x2)-20x4÷(-5x2)=-5-3xy+4x2;(2)原式=2(m+n)5÷2(m+n)3-3(m+n)4÷2(m+n)3-(m+n)3÷2(m+n)3=(m+n)2-(m+n)-=m2+2mn+n2-m-n-.点拨:(1)先写成单项式除以单项式和的形式,再按单项式和单项式除法法则计算;(2)注意运算顺序.题型13:整式除法的实际应用【例13】某高分子聚合材料的性质优于铝合金材料,且密度为9×102kg/m3,已知铝的密度为2.7×103kg/m3.铝的密度是这种材料密度的多少倍?解:(2.7×103)÷(9×102)=(2.7÷9)×(103÷102)=0.3×10=3.点拨:应用单项式除法法则进行化简计算.题型14:利用平方差公式计算【例14】计算:(1)100.5×99.5;(2)(a+3)(a-3)-(a+2)(a-5);(3)(x2+yz)(x2-yz).解:(1)100.5×99.5=(100+0.5)(100-0.5)=1002-0.52=9999.75;(2)(a+3)(a-3)-(a+2)(a-5)=a2-32-(a2-3a-10)=a2-9-a2+3a+10=3a+1;(3)(x2+yz)(x2-yz)=(x2)2-(yz)2=x4-y2z2.点拨:(1)可以变形为(100+0.5)(100-0.5)后用平方差公式;(2)中前面一算式可以用平方差,后一算式用多项式乘法展开后合并同类项;(3)中分别把x2,yz看作公式中的a,b,然后套用公式.题型15:利用完全平方公式化简求值【例15】已知x2-5x=14,求-+1的值.解:-+1=2x2-x-2x+1-(x2+2x+1)+1=2x2-x-2x+1-x2-2x-1+1=x2-5x+1,当x2-5x=14时,原式=(x2-5x)+1=14+1=15.点拨:本题利用公式化简后,再用整体代换的数学思想求值,不必将已知等式中的x值求出.题型16:完全平方公式的应用【例16】如图,长方形ABCD的周长是20 cm,以AB,AD为边分别向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为68 cm2,那么长方形ABCD的面积是( )A.21 cm2B.16 cm2C.24 cm2D.9 cm2答案:B点拨:设AB=x cm,AD=y cm,由题意得x2+y2=68,x+y=10,所以(x+y)2=100,即x2+y2+2xy=100,所以2xy=32,xy=16,所以长方形ABCD的面积是16 cm2,选B.此题是一道几何计算问题,运用方程的方法可转化为整式的运算问题.题型17:提公因式法分解因式【例17】把下列各式因式分解:(1)2a2bc+8a3b;(2)-a2x m+2+abx m+1-acx m-ax m+3;(3)6q(p+q)-4p(p+q);(4)a(a-b)3+2a2(b-a)2-2ab(b-a).解:(1)2a2bc+8a3b=2a2b·c+2a2b·4a=2a2b(c+4a);(2)-a2x m+2+abx m+1-acx m-ax m+3=-ax m·ax2+ax m·bx-ax m·c-ax m·x3=-ax m(x3+ax2-bx+c);(3)6q(p+q)-4p(p+q)=2(p+q)·3q-2(p+q)·2p=2(p+q)(3q-2p);(4)a(a-b)3+2a2(b-a)2-2ab(b-a)=a(a-b)3+2a2(a-b)2+2ab(a-b)=a(a-b)[(a-b)2+2a(a-b)+2b]=a(a-b)(3a2-4ab+b2+2b).点拨:根据提公因式法的一般步骤,先确定各题的公因式,再提取即可.在第(2)题中,因多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号;在第(4)题中,将因式经过符号变换或将字母重新排列后可化为含有公因式,如:当n为正整数时,(a-b)2n=(b-a)2n;(a-b)2n-1=-(b-a)2n-1.题型18:提公因式法的简便应用【例18】计算123×+268×+456×+521×.解:原式=×(123+268+456+521)=×1 368=987.点拨:算式中每一项都含有,可以把它看成公因式提取出来,再算出结果.题型19:利用平方差公式因式分解【例19】分解因式:(1)(x+p)2-(x+q)2;(2)16(a-b)2-9(a+b)2.解:(1)原式=(x+p+x+q)(x+p-x-q)=(2x+p+q)(p-q);(2)原式=[4(a-b)]2-[3(a+b)]2=[4(a-b)+3(a+b)][4(a-b)-3(a+b)]= (4a-4b-3a-3b)=(7a-b)(a-7b).点拨:(1)把(x+p)看作a,(x+q)看成b;(2)先把式子化成[4(a-b)]2-[3(a+b)]2后,再用平方差公式分解.题型20:利用平方差公式因式分解解决问题【例20】用因式分解法证明499-714能被2400整除.解:499-714=(72)9-714=718-714=714(74-1)=714×2400,∴499-714被2400整除得714.点拨:首先把底数化成相同的,然后再提公因式.题型21:利用完全平方公式法因式分解【例21】分解因式:(1)4x2-20x+25;(2) +ab+a2b2;(3)16(a+b)2+40(a2-b2)+25(a-b)2.点拨:(1)式中2x,5分别为公式中的a,b;(2)中ab,分别为公式中的a,b;(3)中将4(a+b)与5(a-b)看作公式中的a,b.解:(1)原式=(2x)2-2×2x×5+52=(2x-5)2;(2)原式=+2××ab+(ab)2=;(3)原式=[4(a+b)+5(a-b)]2=(4a+4b+5a-5b)2=(9a-b)2.题型22:因式分解的综合题【例22】把多项式x3-2x2+x分解因式结果正确的是( )A.x(x2-2x)B.x2(x-2)C.x(x+1)(x-1)D.x(x-1)2答案:D点拨:x3-2x2+x=x(x2-2x+1)=x(x-1)2,故选D.本题要进行多步因式分解,首先提取公因式,然后再用公式.。
人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
整式乘法与因式分解复习练习一、知识回顾1.单项式乘以单项式法则: 2.单项式乘多项式法则: 3.多项式乘多项式法则: 4.乘法公式 完全平方公式: 平方差公式 : 二、典型例题 例1.计算:(1)223)5(4ab b a - (2 ))53(22-x x (3) 2(2)(1)(2)x x x +---(4)221(2a b )2- (5)22)3()3(b a b a +- (6))523)(523(-++-b m b m例2.先化简,在求值:)2)(2())(2(2)2(2b a b a b a b a b a ----+--+,其中1=a ,2-=b .例3.已知5=-b a ,4=ab . 求:⑴2233b a +的值⑵2)(b a +的值例4.在计算(x +y )(x -2y )-my (nx -y )(m 、n 均为常数)的值时,把x 、y 的值代入计算,粗心的小晨和小红把y 的值看错了,但结果都等于9.细心的小敏把正确的x 、y 的值代入计算,结果恰好也是9.为了探个究竟,她又把y 的值随机地换成了2006,结果竟然还是9.根据以上情况,请你求出m 、n 和x 的值.例5.观察:2325331⨯=⨯+⨯2426442⨯=⨯+⨯填空:=⨯+⨯7553___________ =⨯+⨯8664___________ ...用含有n 的代数式表示你的猜想:___________________________请说明猜想的正确性:三、反馈练习1. 如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A .22(25)cm a a +;B .2(315)cm a +;C .2(69)cm a + ;D .2(615)cm a +2.下列运算正确的是 ( ) A. 22222)(n mn m n m ++=-- B. 12)1(422++=+a a a C.()2222b ab a b a ++=+-D.221200420032005-=⨯3.下列各式能用平方差公式计算的是 ( )A. )5)(5(+--x xB. )2)(2(b a b a -+C. )1)(1(m m ---D. 2)1(-x 4.若))(3(152n x x mx x ++=-+,则m = .5.如果)5)(1(2a ax x x +-+的乘积中不含2x 项,则a 为 . 6.已知2249x mxy y -+是关于,x y 的完全平方式,则m = . 7.若m 2+n 2-6n +4m +13=0,则m 2-n 2=_________.8.若3,2a b ab +=-=,则22a b += ,()2a b -= .9. 已知a 2-3a +1=0.求a a 1+= ,221a a += ,21⎪⎭⎫ ⎝⎛-a a = .10.计算(1)27.52-55×12.5+12.52 (2)()()3232x x --- (3)()()22x y 3x y ---11.先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--,其中220120x x --=12.对于任意自然数n ,(n +11)2-n 2是否能 被11整除,为什么? 13.说明331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+⎪⎪⎝⎭⎝⎭的值与n 无关.14. 计算:⑴)312)(312(b a b a +- ⑵221⎪⎭⎫⎝⎛--ax y⑶)31)(31(m n n m +-- ⑷()()n m n m 3232---(5)22)21()12(a a --+(6))32)(32()2(2y x y x y x -+-+(7)(1+x -y )(x +y -1)(8)1982 (9)10.5×9.5 (10) 20122-4024×2011+2011215.先化简,再求值:(1)(x+5)2-(x -5)2-5(2x+1)(2x- 1)+ x ·(2x)2, 其中x=-1(2)求代数式)(5)3()2(22n m m n m n m -+--+的值,其中51,101==n m .16.把一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后拼成一个正方形(如图)(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n 的代数式表示)方法1: ;方法2: .(2)根据(1)中结论,请你写出下列三个代数式()()22, , m n m n mn +-间的等量 关系; .(3)根据(2)题中的等量关系,解决如下问题:已知实数,a b 满足:3,1a b ab +==, 求2()a b -的值.图1 图2【参考答案】 典型例题:例1.(1)54100a b ,(2)32610x x -,(3)72x +,(4)2241424a ab b -+,(5)42248118a a b b -+,(6)22942025m b b -+-。
人教版八年级上册数学 整式的乘法与因式分解单元复习练习(Word版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y ),将其当成整体提出,进而得到答案.2.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.3.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.4.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.5.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .6.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.7.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.8.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.9.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 【答案】A【解析】【分析】先把a ,b ,c 化成以3为底数的幂的形式,再比较大小.【详解】解:3112412361122a 813b 3c 93a b c.,,,=====>>故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .1【答案】A【解析】【分析】【详解】解:∵左边=-3xy (4y-2x-1)=-12xy 2+6x 2y+3xy右边=-12xy 2+6x 2y+□,∴□内上应填写3xy故选:A .二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.12.计算(-3x 2y)•(13xy 2)=_____________. 【答案】33x y -【解析】【分析】根据单项式乘以单项式的法则计算即可.【详解】 原式=(-3)×13x 2+1y 1+2= -x 3y 3 故答案为-x 3y 3【点睛】 本题主要考查单项式乘以单项式的法则.要准确把握法则是解答此题的关键.13.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】 根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.14.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.15.因式分解:3222x x y xy +=﹣__________. 【答案】()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16.计算:))201820192的结果是_____.2【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2=,【点睛】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.17.因式分解:=______. 【答案】2(x +3)(x ﹣3). 【解析】 试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.18.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.19.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.20.若m+n=3,则2m 2+4mn+2n 2-6的值为________.【答案】12【解析】原式=2(m 2+2mn +n 2)-6,=2(m +n )2-6,=2×9-6,=12.。
人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。
人教版八年级数学《整式乘法和因式分解》计算题专项练习1.计算:(x+7)(x﹣6)﹣(x﹣2)(x+1)2.计算:(﹣2x2)3+(﹣3x3)2+(x2)2•x23.计算:(﹣ax4y3)÷(﹣ax2y2)﹣x2y4.化简:(﹣x)2•(6x2)﹣2x•(﹣3x)35.计算:2x(3﹣2x)﹣(2x+3)(3x﹣4).6.计算:(2x3y)3•(﹣3xy2)÷6xy7.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5).8.计算:(x﹣2)2﹣(x+3)(x﹣3)9.计算:(x﹣3)2﹣(x﹣2)(x+2)10.计算(x+2)•(x﹣2)•(x2+4)11.计算:9(a﹣1)2﹣(3a+2)(3a﹣2).12.(2a+3b)(2a﹣3b)﹣(a﹣3b)2.13.计算:(2x﹣1)(2x+1)﹣(3﹣2x)2.14.计算:(2y﹣x)(2y+x)﹣2(y﹣x)2.15.计算:(3x+4y)2﹣(4y﹣3x)(3x+4y)16.化简:(m﹣n)(m+n)﹣(m+n)2﹣mn 17.化简:4x•x﹣(2x﹣y)(y+2x)18.计算:(2x﹣3y)2﹣(y+3x)(3x﹣y)19.因式分解:m3n﹣4m2n+4mn20.分解因式:2x2﹣8.21.因式分解:ab2﹣2ab+a.22.分解因式:x4﹣8x2y2+16y4.23.因式分解:x4﹣81x2y2.24.因式分解:x2y﹣2xy2+y3.25.分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.26.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y327.因式分解:(1)a3﹣16a;(2)﹣x2+x﹣人教版八年级数学《整式乘法和因式分解》计算题专项练习参考答案与试题解析【解答】解:(x+7)(x﹣6)﹣(x﹣2)(x+1)=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.2.计算:(﹣2x2)3+(﹣3x3)2+(x2)2•x2【解答】解:原式=﹣8x6+9x6+x6=2x6.3.计算:(﹣ax4y3)÷(﹣ax2y2)﹣x2y 【解答】解:原式=x2y﹣x2y=x2y4.化简:(﹣x)2•(6x2)﹣2x•(﹣3x)3【解答】解:原式=x2•6x2﹣2x•(﹣27x3)=6x4+54x4=60x4.5.计算:2x(3﹣2x)﹣(2x+3)(3x﹣4).【解答】解:原式=6x﹣4x2﹣(6x2﹣8x+9x﹣12)=6x﹣4x2﹣6x2+8x﹣9x+12=﹣10x2+5x+12.6.计算:(2x3y)3•(﹣3xy2)÷6xy【解答】解:原式=8x9y3•(﹣3xy2)÷6xy=﹣24x10y5÷6xy=﹣4x9y4.7.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5).【解答】解:原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1,8.计算:(x﹣2)2﹣(x+3)(x﹣3)【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.9.计算:(x﹣3)2﹣(x﹣2)(x+2)【解答】解:原式=x2﹣6x+9﹣x2+4=﹣6x+13.【解答】解:原式=(x2﹣4)(x2+4)=x4﹣16.11.计算:9(a﹣1)2﹣(3a+2)(3a﹣2).【解答】解:9(a﹣1)2﹣(3a+2)(3a﹣2).=9a2﹣18a+9﹣9a2+4=﹣18a+13.12.(2a+3b)(2a﹣3b)﹣(a﹣3b)2.【解答】解:原式=4a2﹣9b2﹣a2+6ab﹣9b2=3a2+6ab﹣18b2.13.计算:(2x﹣1)(2x+1)﹣(3﹣2x)2.【解答】解:原式=4x2﹣1﹣(9﹣12x+4x2)=4x2﹣1﹣9+12x﹣4x2=12x﹣10.14.计算:(2y﹣x)(2y+x)﹣2(y﹣x)2.【解答】解:原式=4y2﹣x2﹣2(y2﹣2xy+x2)=4y2﹣x2﹣2y2+4xy﹣2x2=2y2+4xy﹣3x2.15.计算:(3x+4y)2﹣(4y﹣3x)(3x+4y)【解答】解:原式=9x2+24xy+16y2﹣(16y2﹣9x2)=18x2+24xy.16.化简:(m﹣n)(m+n)﹣(m+n)2﹣mn【解答】解:原式=m2﹣n2﹣(m2+2mn+n2)﹣mn=m2﹣n2﹣m2﹣2mn﹣n2﹣mn=﹣2n2﹣3mn17.化简:4x•x﹣(2x﹣y)(y+2x)【解答】解:4x•x﹣(2x﹣y)(y+2x)=4x2﹣(4x2﹣y2)=y2.18.计算:(2x﹣3y)2﹣(y+3x)(3x﹣y)【解答】解:原式=(4x2﹣12xy+9y2)﹣(9x2﹣y2)=﹣5x2﹣12xy+10y219.因式分解:m3n﹣4m2n+4mn【解答】解:原式=mn(m2﹣4m+4)=mn(m﹣2)2.20.分解因式:2x2﹣8.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).21.因式分解:ab2﹣2ab+a.【解答】解:ab2﹣2ab+a=a(b2﹣2b+1)=a(b﹣1)2.22.分解因式:x4﹣8x2y2+16y4.【解答】解:原式=(x2﹣4y2)=(x+2y)(x﹣2y)(x2+2y2).23.因式分解:x4﹣81x2y2.【解答】解:原式=x2(x2﹣81y2)=x2(x+9y)(x﹣9y)24.因式分解:x2y﹣2xy2+y3.【解答】解:x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2.25.分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.【解答】解:(Ⅰ)原式=3m(x﹣2y);(Ⅱ)原式=y(y2+6y+9)=y(y+3)2.26.分解因式(1)2x2﹣8(2)3x2y﹣6xy2+3y3【解答】解:(1)2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2);(2)3x2y﹣6xy2+3y3=3y(x2﹣2xy+y2)=3y(x﹣y)2.27.因式分解:(1)a3﹣16a;(2)﹣x2+x﹣【解答】解:(1)a3﹣16a=a(a2﹣16)=a(a+4)(a﹣4);(2)﹣x2+x﹣=﹣(x2﹣x+)=﹣(x﹣)2.。
人教版八年级上册数学
期末复习 整式的乘法与因式分解 专项训练
1. ()211n n n x x x +-⋅÷的结果是( )
A.1-
B.1
C.0
D.1±
2. 已知x 2-8x+k 2可以用完全平方公式进行因式分解,则k 的值为( )
A .±4
B .±16
C .4
D .16
3. 下列运算正确的是( )
A .22(3)9a a -=-
B .248a a a •= C
3=± D
2=-
4. 下列式子中,正确的是( )
A.3x+5y=8xy
B.3y 2-y 2=3
C.15ab-15ab=0
D.29x 3-28x 3=x
5.当a=-1时,代数式(a+1)2+ a(a+3)的值等于( )
A.-4
B.4
C.-2
D.2 6. 若-4x 2y 和-2x m y n 是同类项,则m ,n 的值分别是( )
A.m=2,n=1
B.m=2,n=0
C.m=4,n=0
D.m=4,n=1 7.下列分解因式错误的是( )
A .1-16a 2=(1+4a )(1-4a )
B .m 2-0.01=(m +0.1)(m -0.1)
C .a 2-b 2c 2=(a +bc )(a -bc )
D .x 3-x =x (x 2-1) 8. 若则等于( ) A .9 B .24 C .27 D .11
9.化简(-x)3·(-x)2的结果正确的是( )
A.-x 6
B.x 6
C.x 5
D.-x 5
10.若2×4m ×8m =231,则m 的值为( )
A .3
B .4
C .5
D .6
11.化简(-x)3·(-x)2的结果正确的是( )
A.-x 6
B.x 6
C.x 5
D.-x 5 12.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )
A.3
B.-5
C.7.
D.7或-1
,,823==n m a ()n
m a
13.计算2017201820192
()( 1.5)(1)3⨯-⨯-的结果是( )
A .23
B .32
C .23-
D .32
- 14. 若n 满足(n-2011)2+(2012-n )2=1,则(2012-n )(n-2011)等于( )
A .-1
B .0
C .12
D .1 15. 若2()(3)x a x x x n +-=+-,则( )
A.4,12a n =-=
B. 4,12a n ==-
C. 4,12a n =-=-
D.4,12a n ==
16. 若x 2
+2(m-3)x+16是完全平方式,则m 的值等于( )
A.3
B.-5
C.7.
D.7或-1 17. 在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A .()()22a b a b a b -=+-
B .()2222a b a ab b +=++
C .()2
222a b a ab b -=-+ D .()2a ab a a b -=- 18. 把多项式
分解因式正确的是( ) A . B .
C .
D . 19. 若多项式251712x x +-可因式分解成()()x a bx c ++,其中a 、b 、c 均为整数,则a c +之值为何?( )
A .1
B .7
C .11
D .13
20. 下列计算正确的是( )
A .222248x y x y x y -=-
B .()()432268234m m m m m -÷-=--
C .()32311221x y x y x y xy ----==
D .()2
221441a a a --=++
2(2)(2)m a m a -+-2(2)()a m m -+(2)(1)m a m -+(2)(1)m a m --2(2)()a m m -+
21. 下列各式从左到右的变形中,是因式分解的为(
). A 、; B 、; C 、; D 、.
22.使(x 2+px+8)(x 2﹣3x+q )乘积中不含x 2和x 3项的p ,q 的值分别是( )
A .p=3,q=1
B .p=﹣3,q=﹣9
C .p=0,q=0
D .p=﹣3,q=1 23. 已知实数x 、y 、z 满足x 2+y 2+z 2=4,则(2x ﹣y )2+(2y ﹣z )2+(2z ﹣x )2的最大值是( )
A .12
B .20
C .28
D .36
24. 下面是某同学在一次作业中的计算摘录:
①; ②; ③;
④; ⑤; ⑥
其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
25. 已知a >b >c >d ,x=(a+b )(c+d ),y=(a+c )(b+d ),则x 与y 的大小关系是(
) A .x >y B .x <y C .x=y D .以上皆有可能
2222)1(xy y x x xy -=-)3)(3(92
-+=-x x x 222)1)(1(1y x x y x ++-=+-c b a x c bx ax ++=++)(ab b a 523=+n m mn n m 33354-=-5236)2(4x x x -=-⋅a b a b a 2)2(423-=-÷523)(a a =23)()(a a a -=-÷-。