2018届河北省唐山一中高三12月月考理科数学试题及答案 (3)
- 格式:doc
- 大小:958.02 KB
- 文档页数:10
河北省唐山市2018届高三第一次模拟考试数学试题(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2(1-i)=i() A .-2+2i B .2+2i C .-2-2iD .2-2i2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则() A .M N ØB .N M ØC .M N =D .R M N =3.已知1tan 2α=-,且(0,π)α∈,则sin 2α=() A .45B .45-C .35D .35-4.两个单位向量a ,b 的夹角为120,则2a b +=()A .2B .3C D5.用两个1,一个2,一个0,可组成不同四位数的个数是()A .18B .16C .12D .9 6.已知233a -=,432b -=,ln3c =,则()A .a c b <<B .a b c <<C .b c a <<D .b a c << 7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A .求135...(21)n ++++-B .求135...(21)n +++++C .求2222123n +++⋅⋅⋅+ D .求2222123(1)n +++⋅⋅⋅++8.为了得到函数5πsin 6y x ⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象() A .向左平移π6个单位长度 B .向右平移π3个单位长度 C .向右平移π6个单位长度D .向左平移π3个单位长度9. 某几何体的三视图如图所示,则该几何体的表面积是()A .5+.9C .6+.5310.已知F 为双曲线C :22221x y a b-=(0,0)a b >>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若OF FB =,则C 的离心率是()A .2B .3C D .2 11. 已知函数2()2cos f x x x x =-,则下列关于()f x 的表述正确的是() A .()f x 的图象关于y 轴对称 B .0R x ∃∈,()f x 的最小值为1- C .()f x 有4个零点 D .()f x 有无数个极值点12.已知P ,A ,B ,C 是半径为2的球面上的点,2PA PB PC ===,90ABC ∠=,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值是()A BC .12D 二、填空题:本题共4小题,每小题5分,共20分.13. 设x ,y 满足约束条件0230210x y x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则23z x y =+的最小值是.14.6(21)x -的展开式中,二项式系数最大的项的系数是.(用数字作答)15. 已知P 为抛物线2y x =上异于原点O 的点,PQ x ⊥轴,垂足为Q ,过PQ 的中点作x 轴的平行线交抛物线于点M ,直线QM 交y 轴于点N ,则PQNO=. 16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,AB 边上的高为h ,若2c h =,则a bb a+的取值范围是. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知数列{}n a 为单调递增数列,n S 为其前n 项和,22n n S a n =+.(1)求{}n a 的通项公式; (2)若2112n n n n n a b a a +++=⋅⋅,n T 为数列{}n b 的前n 项和,证明:12nT <.18.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值. (i )求日需求量X 的分布列;(ii )该经销商计划每日进货300公斤或400公斤,以每日利润Y 的数学期望值为决策依据,他应该选择每日进货300公斤还是400公斤?19.如图,在三棱柱111ABC A B C -中,平面11A B C ⊥平面11AAC C ,90BAC ∠=.(1)证明:1AC CA ⊥;(2)若11A B C ∆是正三角形,22AB AC ==,求二面角1A AB C --的大小.20.已知椭圆Γ:22221x y a b+=(0)a b >>的左焦点为F ,上顶点为A ,长轴长为,B为直线l :3x =-上的动点,(,0)M m ,AM BM ⊥.当AB l ⊥时,M 与F 重合. (1)若椭圆Γ的方程;(2)若直线BM 交椭圆Γ于P ,Q 两点,若AP AQ ⊥,求m 的值.21.已知函数1()ex f x -=,()ln g x x a =+.(1)设()()F x xf x =,求()F x 的最小值;(2)证明:当1a <时,总存在两条直线与曲线()y f x =与()y g x =都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆1C :22(1)1x y -+=,圆2C :22(3)9x y -+=.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)设曲线3C :cos sin x t y t αα=⎧⎨=⎩(t 为参数且0t ≠),3C 与圆1C ,2C 分别交于A ,B ,求2ABC S ∆的最大值.23.选修4-5:不等式选讲设函数()1f x x x =+-的最大值为m . (1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.【参考答案】一.选择题: 1-5:DCBDA 6-10:DCCAB11-12:DB二.填空题: 13.-514.-16015.3216.[2,22]三.解答题:17.解:(Ⅰ)当n =1时,2S 1=2a 1=a 21+1,所以(a 1-1)2=0,即a 1=1,又{a n }为单调递增数列,所以a n ≥1.由2S n =a 2n +n 得2S n +1=a 2 n +1+n +1,所以2S n +1-2S n =a 2 n +1-a 2n +1,整理得2a n +1=a 2 n +1-a 2n +1,所以a 2n =(a n +1-1)2.所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n . (Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)]=121·1-12n +1·(n +1)<12.18.解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. (Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1;P (X =200)=0.0020×10=0.2; P (X =300)=0.0030×10=0.3;P (X =400)=0.0025×10=0.25; P (X =500)=0.0015×10=0.15; 所以X 的分布列为:(ⅱ)当每日进货1此时Y 1的分布列为:此时利润的期望值E (Y 1)180; 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000, 此时Y 2的分布列为:此时利润的期望值E (Y 20.4=1200; 因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤. 19.解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C ,得B 1O ⊥平面AA 1C 1C , 又AC ⊂平面AA 1C 1C ,得B 1O ⊥AC .由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C .又CA 1⊂平面A 1B 1C ,得AC ⊥CA 1.(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz . 由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). 设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0.可取n =(23,3,1).设m =(x ,y ,z )是平面ABC 的法向量,则⎩⎨⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0.可取m =(0,3,1). 则cos <n ,m >=n ·m |n ||m |=12.又因为二面角A 1-AB -C 为锐二面角,所以二面角A 1-AB -C 的大小为π3.20.解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ),由AF ⊥BF 得k AF ·k BF =b c · b -3+c=-1,又b 2+c 2=6.解得c =2,b =2. 所以,椭圆Γ的方程为x 26+y 22=1.(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m, 又AM ⊥BM ,所以k BM =m 2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m 2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m 2.|PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)·|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m 2,|AM |2=2+m 2,由AP ⊥AQ 得,|AM |2=|PM |·|QM |,所以|m 2-6|2+3m 2=1,解得m =±1.21.解:(Ⅰ)F (x )=(x +1)e x -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F(x )>0,F (x )单调递增,故x =-1时,F (x )取得最小值F (-1)=-1e 2.(Ⅱ)因为f (x )=e x -1,所以f (x )=e x-1在点(t ,e t -1)处的切线为y =e t -1x +(1-t )e t -1;因为g (x )=1x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1,由题意可得⎩⎪⎨⎪⎧e t -1=1m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.令h (t )=(t -1)e t -1-t +a ,则ht )=t e t -1-1由(Ⅰ)得t <-1时,h t )单调递减,且h t )<0;当t >-1时,ht )单调递增,又h =0,t <1时,ht )<0,所以,当t <1时,h t )<0,h (t )单调递减;当t >1时,ht )>0,h (t )单调递增.由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0,又h (3-a )=(2-a )e 2-a +2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0,h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点, 故当a <1时,存在两条直线与曲线f (x )与g (x )都相切. 22.解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-π2<α<π2,C 2(3,0)到直线AB 的距离d =3|sin α|, 所以S △ABC 2=12×d ×|AB |=3|sin 2α|,故当α=±4时,S △ABC 2取得最大值3.23.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13.。
河北省唐山一中2018届高三教学质量监测数学(理)试卷说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟卷Ⅰ(选择题 共60分)一.选择题(共12小题,每小题5分,计60分。
在每小题给出的四个选项中,有且仅有一个正确的)1-10 17 181、已知复数121,1z i z i =-=+,则12z z i等于 .A 2i .B 2i - .C 2i + .D 2i -+2、设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q ,那么Q P -等于{}{}{}{}32211010<≤<≤<<≤<x x D.x x C.x x B.x x A. 3、下列命题是真命题的是.A 若sin cos x y =,则2x y π+=.B 1,20x x R -∀∈> .C 若向量,//+=0a b a b a b满足,则 .D 若x y <,则 22x y <4、 已知向量为单位向量,且21-=⋅b a ,向量与+的最小值为...A B C D 131245、若函数)12(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是2211-==-== D. x C. x B. xA. x 6、设等比数列{}n a 的公比为q ,则“10<<q ”是“{}n a 是递减数列”的.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件7、已知函数x x g x x f lg )(,)(2==,若有)()(b g a f =,则b 的取值范围是.A [0,+∞) .B (0,+∞) .C [1,+∞) .D (1,+∞)8、如图,在扇形OAB 中,︒=∠60AOB ,C 为弧.AB 上且与BA ,不重合...的一个动点,且y x +=,若(0)u x y λλ=+>存在最大值,则λ的取值范围为.A )3,1( .B )3,31( .C )1,21( .D )2,21(9、定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2x f x x=6π个单位,以下是所得函数图象的一个对称中心是 .A ,04π⎛⎫⎪⎝⎭ .B ,02π⎛⎫ ⎪⎝⎭ .C ,03π⎛⎫ ⎪⎝⎭ .D ,012π⎛⎫⎪⎝⎭10、已知数列{}n a 满足:*)(2,111N n a a a a n n n ∈+==+,若,),11)((11λλ-=+-=+b a n b nn 且数列{}n b 是单调递增数列,则实数λ的取值范围是3232<<>>λλλλ D. C. B. A. 11、已知函数()cos xf x x πλ=,存在()f x 的零点)0(,00≠x x ,满足[]222200'()()f x x πλ<-,则λ的取值范围是A.( B.(C.(,)-∞+∞ D.(,)-∞+∞ 12、已知定义在]8,1[上的函数348||,122()1(),2822x x f x x f x ⎧--≤≤⎪⎪=⎨⎪<≤⎪⎩则下列结论中,错误..的是 A .1)6(=f B .函数)(x f 的值域为]4,0[C .将函数)(x f 的极值由大到小排列得到数列*},{N n a n ∈,则}{n a 为等比数列D .对任意的]8,1[∈x ,不等式6)(≤x xf 恒成立卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,计20分)13、 已知向量b为单位向量,向量(1,1)a = ,且||a = ,则向量,a b 的夹角为 .14、若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 .15、已知函数23)(nx mx x f +=的图象在点)2,1(-处的切线恰好与直线03=+y x 平行,若)(x f 在区间]1,[+t t 上单调递减,则实数t 的取值范围是________.16、已知定义在R 上的函数()f x 满足:()[)[)()()222,0,1,22,1,0,x x f x f x f x x x ⎧+∈⎪=+=⎨-∈-⎪⎩且, ()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为 .三.解答题(共6小题,计70分)17、(本题12分)已知B A ,是直线0y =与函数2()2coscos()1(0)23xf x x ωπωω=++->图像的两个相邻交点,且.2||π=AB(Ⅰ)求ω的值;(Ⅱ)在锐角ABC ∆中,c b a ,,分别是角A ,B ,C 的对边,若ABC c A f ∆=-=,3,23)( 的面积为33,求a 的值.18、(本题12分)已知数列}{},{n n b a 分别是等差数列与等比数列,满足11=a ,公差0>d ,且22b a =,36b a =,422b a =. (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设数列}{n c 对任意正整数n 均有12211+=+⋅⋅⋅++n nn a b c b c b c 成立,设}{n c 的前n项和为n S ,求证:20172017e S ≥(e 是自然对数的底).19、(本题12分) 如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,60BAD ∠= ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,3BF =,G 和H 分别是CE 和CF 的中点.(Ⅰ)求证:平面//BDGH 平面AEF ; (Ⅱ)求二面角H BD C --的大小.20、(本题12分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.21、(本题12分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分.22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点. (Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.河北省唐山一中2018届高三教学质量监测数学(理)答案一.选择题(共12小题,每小题5分,计60分。
2018届高三12月调研考试理科数学试卷(满分:150分,测试时间:120分钟)第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N = ( )A .1[0,)2B .1(,1]2- C .1[1,)2- D .1(,0]2-2.复数5)z i i i -+(i 为虚数单位),则复数z 的共轭复数为( )A .2i -B .2i +C .4i -D .4i +3.设向量11(1,0),(,)22a b == ,则下列结论中正确的是( )A .||||a b =B .2a b = C .//a b D .()a b b -⊥4.下列关于命题的说法错误的是( )A .命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x ,则0232≠+-x x ”;B .“2a =”是“函数()log a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题p :,21000n n N ∃∈>,则p ⌝:,21000n n N ∀∈≤;D .命题“(,0),23x x x ∃∈-∞< ”是真命题.5.右图是一容量为100则由图可估计样本的重量的中位数为( ) A .11 B .11.5 C .12 D .12.56.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2x y x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④③②B .①④②③C .④①②③D .③④②①7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ== 则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα8.点)2,4(-P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )xA .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-= 9.已知函数00x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A .()0,-∞B .()()001,,-∞C .()01,D .()()011,,+∞ 10.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π2511.已知b 为如图所示的程序框图输出的结果,则二项式6的展开式中的常数项是( ) A .-20 B .20 C .-540 D .54012.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .74,63ππ⎛⎫⎪⎝⎭B .43,32ππ⎛⎫⎪⎝⎭C .74,63ππ⎡⎤⎢⎥⎣⎦D .43,32ππ⎡⎤⎢⎥⎣⎦第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
2018届河北省唐山市度高三第三次模拟考试数学(理)试题一、单选题1.已知集合,则集合()A. B. C. D.【答案】C【解析】分析:求出或,,可得.详解:,或,,,故选C.点睛:本题主要考查集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.复数满足(为虚数单位),则()A. B. C. D.【答案】A【解析】分析:先利用复数模的公式求得,然后两边同乘以,利用复数运算的乘法法则化简,即可得结果详解:,,,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知,则()A. B. C. D.【答案】D【解析】分析:利用“拆角”技巧可得,利用两角差的正切公式可得结果.详解:,,故选D.点睛:三角函数求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.4.已知命题在中,若,则;命题,.则下列命题为真命题的是()A. B. C. D.【答案】B【解析】分析:命题在中,,根据正弦函数的性质可判断命题为真命题;时,结论不成立,故为假命题,逐一判断四个选项中的命题即可.详解:命题在中,,若,则,故为真命题;命题,当时,不成立,故为假命题,故选B.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的正弦函数的性质以及不等式恒成立问题,属于中档题. 解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.5.已知双曲线的两条渐近线分别为,若的一个焦点关于的对称点在上,则的离心率为()A. B. 2 C. D.【答案】B【解析】分析:求得,可得的斜率为,化简后,结合,从而可得结果.详解:分别为双曲线的两条渐近线,不妨设为为,由右焦点关于的对称点在上,设焦点关于的对称点为,右焦点坐标为,中点坐标为,可得,解得,即有,可得的斜率为,即有,可得,即,则,可得,故选B.点睛:本题主要考查双曲线的简单性质及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.6.某几何体的三视图如图所示,则该几何体的体积为()A. 6B. 7C.D.【答案】B【解析】分析:由三视图可知,该几何体为五棱柱,其底面为正视图,根据三视图中数据,利用柱体体积公式求解即可.详解:由三视图可知,该几何体为五棱柱底面为正视图,底面面积为,,高为,体积为,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.已知函数的图象与轴相切,则()A. B. C. D.【答案】B【解析】分析:由函数的图象与轴相切,可得的最大值为,求出,得出的解析式,再计算.详解:,且的图象与轴相切,所以最大值,,即,,,故选B.点睛:本题主要考查由三角函数的性质求解析式,以及特殊角的三角函数,属于简单题. 8.已知是抛物线上任意一点,是圆上任意一点,则的最小值为()A. B. 3 C. D.【答案】D【解析】分析:可设点的坐标为,由圆方程得圆心坐标,求出的最小值,根据圆的几何性质即可得到的最小值.详解:设点的坐标为,由圆的方程可得圆心坐标,,,是圆上任意一点,的最小值为,故选D.点睛:解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.9.利用随机模拟的方法可以估计圆周率的值,为此设计如图所示的程序框图,其中表示产生区间上的均匀随机数(实数),若输出的结果为786,则由此可估计的近似值为()A. 3.134B. 3.141C. 3.144D. 3.147 【答案】C【解析】分析:由模拟试验可得所取的点在圆内的概率为,则由几何概型概率公式,可得所取的点在圆内的概率为圆的面积比正方形的面积,由二者相等列方程可估计的值.详解:由程序框图可知, 共产生了对内的随机数,其中的共有对,即在以边长为的正方形中随机取点次,所取之点在以正方形中心为圆心,为半径的圆中的次数为次,设事件是在以边长为的正方形中随机取点, 所取之点在以正方形中心为圆心, 为半径的圆中,则,又由试验结果可得,,,故选C.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.10.在中,点满足.若存在点,使得,且,则()A. 2B.C. 1D.【答案】D【解析】分析:由,可得,求得,解得,从而可得结果.详解:,,,可得,,故选D.点睛:本题主要考查向量的几何运算及平面向量基本定理的应用,属于难题.向量的几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).11.若异面直线所成的角是,则以下三个命题:①存在直线,满足与的夹角都是;②存在平面,满足,与所成角为;③存在平面,满足,与所成锐二面角为.其中正确命题的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】分析:在①中,在上任取一点,过作,与的夹角均为;在②中,在上取一点,过作;在③中,在上取一点,过作,确定一个平面平面即可.详解:异面直线所成的角是,在①中,由异面直线所成的角是,在上任取一点,过作,在空间中过点能作出直线,使得与的夹角均为,存在直线,满足与的夹角都是,故①正确;在②中,在上取一点,过作,则以确定的平面,满足与所成的角是,故②正确;在③中,在上取一点,过作,确定一个平面平面,过能作出一个平面,满足与所成锐二面角为,故③正确,故选D点睛:本题主要通过对多个命题真假的判断,主要综合考查空间线性角、线面角、面面角的定义与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.12.已知,若的最小值为,则()A. B. C. D.【答案】A【解析】分析:求出导函数,设导函数的零点,即原函数的极值点为,可得,结合的最小值为列方程组,求得,则值可求.详解:由,得,令,则,则在上为增函数,又,存在,使,即,,①函数在上为减函数,在上为增函数,则的最小值为,即,②联立①②可得,把代入①,可得,故选A.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题. 求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.二、填空题13.设变量满足约束条件则的最大值为__________.【答案】4.【解析】分析:画出可行域,平移直线,由图可知,当直线过点时,有最大值,从而可得结果.详解:画出表示的可行域,如图,,化为,平移直线,由图可知,当直线过点时,有最大值,由,到,此时,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.某种袋装大米的质量(单位:)服从正态分布,任意选一袋这种大米,质量在的概率为__________.()【答案】0.8185.【解析】分析:先求出,再求得,从而可得结果.详解:因为(单位:)服从正态分布,所以,,根据正态分布的对称性,可得,,,故答案为.点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.15.设函数则使得成立的得取值范围是__________.【答案】.【解析】分析:分两种情况讨论,分别解不等式组,然后求并集即可.详解:由,得或,得或,即得取值范围是,故答案为.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.16.的内角的对边分别为,角的内角平分线交于点,若,则的取值范围是__________.【答案】.【解析】分析:先由根据基本不等式可得,再根据角平分线的定理和角平分线公式,换元后结合函数的单调性即的结果.详解:,,,当且仅当时取等号,角的内角平分线交于,设,则,,由角平分线公式可得,设,易知函数单调递增,,,当且仅当时取等号,故答案为.点睛:本题主要考查角平分线定理基本不等式的应用以及利用单调性求范围,属于难题.求范围问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,利用函数的单调性求范围,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的取值范围即可.三、解答题17.已知数列是等差数列,是等比数列,,.(1)求和的通项公式;(2)若,求数列的前项和.【答案】(1) a n=2n-1,b n=2n.(2).【解析】分析:(1)根据,列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列与的通项公式;(2)由(1)可得根据分组求和,结合等差数列的求和公式以及等比数列求和公式可得结果.详解:(1)设数列{a n}的公差为d,数列{b n}的公比为q,依题意有,解得d=2,q=2,故a n=2n-1,b n=2n,(2)由已知c2n-1=a2n-1=4n-3,c2n=b2n=4n,所以数列{c n}的前2n项和为S2n=(a1+a3+…a2n-1)+(b2+b4+…b2n)=+=2n2-n+ (4n-1).点睛:本题主要考查等差数列的定义及等比数列的通项和利用“分组求和法”求数列前项和,属于中档题. 利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.18.某球迷为了解两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);记事件“球队的攻击能力等级高于球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.【答案】(1)茎叶图见解析,,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)0.31.【解析】分析:(1)通过茎叶图可以看出,球队所得分数的平均值高于球队所得分数的平均值;球队所得分数比较集中,球队所得分数比较分散;(2)由古典概型概率公式,利用互斥事件概率公式,独立事件的概率公式可求得事件的概率.通过茎叶图可以看出,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)记C A1表示事件:“A球队攻击能力等级为较强”,C A2表示事件:“A球队攻击能力等级为很强”;C B1表示事件:“B球队攻击能力等级为较弱”,C B2表示事件:“B球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C=(C A1C B1)∪(C A2C B2).P(C)=P(C A1C B1)+ P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为,,,,故P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,P(C)=×+×=0.31.点睛:本题主要考查互斥事件、对立事件及必然事件的概率及分段函数的解析式,属于难题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.19.如图,四棱锥的底面是平行四边形,.(1)求证:平面平面;(2)若,为的中点,为棱上的点,平面,求二面角的余弦值.【答案】(1)见解析.(2).【解析】分析:(1)由平面,可得,由,可得,利用线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结果;(2)以所在直线分别为轴,轴,轴建立空间直角坐标系,利用向量垂直数量积为零,列方程组分别求出平面与平面的一个法向量,利用空间向量夹角余弦公式求解即可.详解:(1)∵AB∥CD,PC⊥CD,∴AB⊥PC,∵AB⊥AC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥PA,又∵PA⊥AD,AB∩AD=A,∴PA⊥平面ABCD,PA平面PAB,∴平面PAB⊥平面ABCD.(2)连接BD交AE于点O,连接OF,∵E为BC的中点,BC∥AD,∴==,∵PD∥平面AEF,PD平面PBD,平面AEF∩平面PBD=OF,∴PD∥OF,∴==,以AB,AC,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系A-xyz,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),P(0,0,3),E(,,0),F(2,0,1),设平面ADF的法向量m=(x1,y1,z1),∵=(2,0,1),=(-3,3,0),由·m=0,·m=0得取m=(1,1,-2).设平面DEF的法向量n=(x2,y2,z2),∵=(,-,0),=(,-,1),由·n=0,·n=0得取n=(1,3,4).cos〈m,n〉==-,∵二面角A-DF-E为钝二面角,∴二面角A-DF-E的余弦值为-.点睛:本题主要考查利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20.已知点,点,点,动圆与轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点(均不同于点),且与交于点,设点的轨迹为曲线.(1)证明:为定值,并求的方程;(2)设直线与的另一个交点为,直线与交于两点,当三点共线时,求四边形的面积.【答案】(1)证明见解析,方程为.(2) .【解析】分析:(1)根据圆的切线性质可得,,从而根据椭圆的可得结果;(2)直线与曲线联立,利用韦达定理、弦长公式以及三角形面积公式可得四边形的面积为.详解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|,所以|PB|+|PC|=|PD|+|DB|+|PC|=|PE|+|PC|+|AB|=|CE|+|AB|=|AC|+|AB|=4>|BC|所以点P的轨迹Γ是以B,C为焦点的椭圆(去掉与x轴的交点),可求Γ的方程为+=1(y≠0).(2)由O',D,C三点共线及圆的几何性质,可知PB⊥CD,又由直线CE,CA为圆O'的切线,可知CE=CA,O'A=O'E,所以△O'AC≌△O'EC,进而有∠ACO'=∠ECO',所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2,所以△PBC为等边三角形,即点P在y轴上,点P的坐标为(0,±)(i)当点P的坐标为(0,)时,∠PBC=60︒,∠BCD=30︒,此时直线l1的方程为y= (x+1),直线CD的方程为y=- (x-1),由整理得5x2+8x=0,得Q(-,-),所以|PQ|=,由整理得13x2-8x-32=0,设M(x1,y1),N(x2,y2),x1+x2=,x1x2=-,|MN|=|x1-x2|=,所以四边形MPNQ的面积S=|PQ|·|MN|=.(ii)当点P的坐标为(0,-)时,由椭圆的对称性,四边形MPNQ的面积为.综上,四边形MPNQ的面积为.点睛:求椭圆标准方程的方法一般为定义法与待定系数法,定义法是若题设给条件符合椭圆的定义,直接写出方程;也可以根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.已知,函数.(1)记,求的最小值;(2)若有三个不同的零点,求的取值范围.【答案】(1) g(a)的最小值为g(1)=0.(2) 0<a<1.【解析】分析:(1)先求出,再求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得的最小值;(2),因为有三个不同的零点,所以至少有三个单调区间,而方程至多有两个不同正根,所以,有解得,,然后再证明在内各有一个零点,可得的范围是.详解:(1)g(a)=lna2+-2=2(lna+-1),g'(a)=2(-)=,所以0<a<1时,g'(a)<0,g(a)单调递减;a>1时,g'(a)>0,g(a)单调递增,所以g(a)的最小值为g(1)=0.(2)f'(x)=-=,x>0.因为y=f(x)有三个不同的零点,所以f(x)至少有三个单调区间,而方程x2+(2a2-4a)x+a4=0至多有两个不同正根,所以,有解得,0<a<1.由(1)得,当x≠1时,g(x)>0,即lnx+-1>0,所以lnx>-,则x>e- (x>0),令x=,得>e-.因为f(e-)<-+-2=-<0,f(a2)>0,f(1)=-2=<0,f(e2)=>0,所以y=f(x)在(e-,a2),(a2,1),(1,e2)内各有一个零点,故所求a的范围是0<a<1.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22.选修4-4:坐标系与参数方程已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.(1)求椭圆和直线的极坐标方程;(2)证明::中,斜边上的高为定值,并求该定值.【答案】(1),.(2) h为定值,且h=.【解析】分析:(1)直接利用即可得椭圆和直线的极坐标方程;(2)由(1)得,代入,化简即可得结果.详解:(1)由x=ρcosθ,y=ρsinθ得椭圆C极坐标方程为ρ2(cos2θ+2sin2θ)=4,即ρ2=;直线l的极坐标方程为ρsinθ=2,即ρ=.(2)证明:设A(ρA,θ),B(ρB,θ+),-<θ<.由(1)得|OA|2=ρ=,|OB|2=ρ==,由S△OAB=×|OA|×|OB|=×|AB|×h可得,h2===2.故h为定值,且h=.点睛:本题主要考查直接坐标方程化为极坐标方程,以及坐标方程的应用,属于中档题.利用即可实现直接坐标方程化为极坐标方程的互化. 23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)设,求的最大值.【答案】(1).(2) 故x=±时,g(x)取得最大值-3.【解析】分析:(1)不等式等价于,两边平方后利用一元二次不等式的解法求解即可;(2)将,写成分段函数形式,利用函数的单调性,可得当时,取得最大值.详解:(1)由题意得|x-1|≥|2x-3|,所以|x-1|2≥|2x-3|2整理可得3x2-10x+8≤0,解得≤x≤2,故原不等式的解集为{x|≤x≤2}.(2)显然g(x)=f(x)+f(-x)为偶函数,所以只研究x≥0时g(x)的最大值.g(x)=f(x)+f(-x)=|x-1|-|2x-3|+|x+1|-|2x+3|,所以x≥0时,g(x)=|x-1|-|2x-3|-x-2=所以当x=时,g(x)取得最大值-3,故x=±时,g(x)取得最大值-3.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想;④不等式两边都含绝对值,可以两边平方后再求解,体现了转化与划归思想.。
河北唐山市2018届高三数学一模试卷(理科有答案)唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A.B.C.D.2.设集合,,则()A.B.C.D.3.已知,且,则()A.B.C.D.4.两个单位向量,的夹角为,则()A.B.C.D.5.用两个,一个,一个,可组成不同四位数的个数是()A.B.C.D.6.已知,,,则()A.B.C.D.7.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A.求B.求C.求D.求8.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度9.某几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.10.已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A.B.C.D.11.已知函数,则下列关于的表述正确的是()A.的图象关于轴对称B.,的最小值为C.有个零点D.有无数个极值点12.已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.设,满足约束条件,则的最小值是.14.的展开式中,二项式系数最大的项的系数是.(用数字作答)15.已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则.16.在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.18.某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?19.如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.20.已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.21.已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切. (二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.23.选修4-5:不等式选讲设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A卷:DCBDADCCABDBB卷:ACBDDDCAABDB二.填空题:(13)-5(14)-160(15)32(16)[2,22]三.解答题:(17)解:(Ⅰ)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又为单调递增数列,所以a n≥1.…2分由2Sn=a2n+n得2Sn+1=a2n+1+n+1,所以2Sn+1-2Sn=a2n+1-a2n+1,整理得2an+1=a2n+1-a2n+1,所以a2n=(an+1-1)2.所以an=an+1-1,即an+1-an=1,所以是以1为首项,1为公差的等差数列,所以an=n.…6分(Ⅱ)bn=an+22n+1anan+1=n+22n+1n(n+1)=12nn-12n+1(n+1)…9分所以Tn=(1211-1222)+(1222-1233)+…+[12nn-12n+1(n+1)]=1211-12n+1(n+1)<12.…12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P=0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192.…3分(Ⅱ)(ⅰ)X可取100,200,300,400,500,P(X=100)=0.0010×10=0.1;P(X=200)=0.0020×10=0.2;P(X=300)=0.0030×10=0.3;P(X=400)=0.0025×10=0.25;P(X=500)=0.0015×10=0.15;所以X的分布列为:X100200300400500P0.10.20.30.250.15…6分(ⅱ)当每日进货300公斤时,利润Y1可取-100,700,1500,此时Y1的分布列为:Y1-1007001500P0.10.20.7此时利润的期望值E(Y1)=-100×0.1+700×0.2+1500×0.7=1180;…8分当每日进货400公斤时,利润Y2可取-400,400,1200,2000,此时Y2的分布列为:Y2-40040012002000P0.10.20.30.4此时利润的期望值E(Y2)=-400×0.1+400×0.2+1200×0.3+2000×0.4=1200;…10分因为E(Y1)<E(Y2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C =A1C,得B1O⊥平面AA1C1C,又AC平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1平面A1B1C,得AC⊥CA1.…4分(Ⅱ)以C为坐标原点,CA→的方向为x轴正方向,|CA→|为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,3).所以CA→=(1,0,0),AA1→=(-1,2,0),AB→=A1B1→=(0,-1,3).…6分设n=(x,y,z)是平面A1AB的法向量,则nAA1→=0,nAB→=0,即-x+2y=0,-y+3z=0.可取n=(23,3,1).…8分设m=(x,y,z)是平面ABC的法向量,则mAB→=0,mCA→=0,即-y+3z=0,x=0.可取m=(0,3,1).…10分则cosn,m=nm|n||m|=12.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为3.…12分(20)解:(Ⅰ)依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),由AF⊥BF得kAFkBF=bcb-3+c=-1,又b2+c2=6. 解得c=2,b=2.所以,椭圆Γ的方程为x26+y22=1.…4分(Ⅱ)由(Ⅰ)得A(0,2),依题意,显然m≠0,所以kAM=-2m,又AM⊥BM,所以kBM=m2,所以直线BM的方程为y=m2(x-m),设P(x1,y1),Q(x2,y2).y=m2(x-m)与x26+y22=1联立得(2+3m2)x2-6m3x+3m4-12=0,x1+x2=6m32+3m2,x1x2=3m4-122+3m2.…7分|PM||QM|=(1+m22)|(x1-m)(x2-m)|=(1+m22)|x1x2-m(x1+x2)+m2|=(1+m22)|2m2-12|2+3m2=(2+m2)|m2-6|2+3m2,|AM|2=2+m2,…9分由AP⊥AQ得,|AM|2=|PM||QM|,所以|m2-6|2+3m2=1,解得m=±1.…12分(21)解:(Ⅰ)F(x)=(x+1)ex-1,当x<-1时,F(x)<0,F(x)单调递减;当x>-1时,F(x)>0,F(x)单调递增,故x=-1时,F(x)取得最小值F(-1)=-1e2.…4分(Ⅱ)因为f(x)=ex-1,所以f(x)=ex-1在点(t,et-1)处的切线为y=et-1x +(1-t)et-1;…5分因为g(x)=1x,所以g(x)=lnx+a在点(m,lnm+a)处的切线为y=1mx +lnm+a-1,…6分由题意可得et-1=1m,(1-t)et-1=lnm+a-1,则(t-1)et-1-t+a=0.…7分令h(t)=(t-1)et-1-t+a,则h(t)=tet-1-1由(Ⅰ)得t<-1时,h(t)单调递减,且h(t)<0;当t>-1时,h(t)单调递增,又h(1)=0,t<1时,h(t)<0,所以,当t<1时,h(t)<0,h(t)单调递减;当t>1时,h(t)>0,h(t)单调递增.…9分由(Ⅰ)得h(a-1)=(a-2)ea-2+1≥-1e+1>0,…10分又h(3-a)=(2-a)e2-a+2a-3>(2-a)(3-a)+2a -3=(a-32)2+34>0,…11分h(1)=a-1<0,所以函数y=h(t)在(a-1,1)和(1,3-a)内各有一个零点,故当a<1时,存在两条直线与曲线f(x)与g(x)都相切.…12分(22)解:(Ⅰ)由x=ρcosθ,y=ρsinθ可得,C1:ρ2cos2θ+ρ2sin2θ-2ρcosθ+1=1,所以ρ=2cosθ;C2:ρ2cos2θ+ρ2sin2θ-6ρcosθ+9=9,所以ρ=6cosθ.…4分(Ⅱ)依题意得|AB|=6cosα-2cosα=4cosα,-2<α<2,C2(3,0)到直线AB的距离d=3|sinα|,所以S△ABC2=12×d×|AB|=3|sin2α|,故当α=±4时,S△ABC2取得最大值3. (10)分(23)解:(Ⅰ)f(x)=|x+1|-|x|=-1,x≤-1,2x+1,-1<x<1,1,x≥1,由f(x)的单调性可知,当x≥1时,f(x)有最大值1.所以m=1.…4分(Ⅱ)由(Ⅰ)可知,a+b=1,a2b+1+b2a+1=13(a2b+1+b2a+1)[(b+1)+(a+1)] =13[a2+b2+a2(a+1)b+1+b2(b+1)a+1]≥13(a2+b2+2a2(a+1)b+1b2(b+1)a+1)=13(a+b)2=13.当且仅当a=b=12时取等号.即a2b+1+b2a+1的最小值为13.…10分。
唐山一中2017-2018学年度第一学期第二次月考高一数学试卷 命题人:赵璐 朱崇伦说明:1.本试卷分卷Ⅰ和卷Ⅱ两部分,卷Ⅰ为选择题,卷Ⅱ为非选择题,考试时间为120分钟,满分为150分.2.将卷Ⅰ答案用2B 铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在答题卡上.卷Ⅰ(选择题,共60分)一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,在平行四边形ABCD 中,下列结论中错误的是( )A. AB DC =B. AD AB AC +=C. AB AD BD -=D. 0AD CB +=2.=( ) A.B.C. D.3.下列函数中,既是偶函数又存在零点的是 ( ) A .ln y x = B .21y x=+ C .sin y x = D .cos y x =4. 24cos coscos 999πππ⋅⋅= ( ) A.B.C.D.5.函数()cos lg f x x x =-的零点个数为 ( ) A.1 B.2 C.3 D.46.若函数()cos 23f x x x a =+-+有零点,则a 的取值范围是 ( )A.1522a ≤≤ B .12a ≤ C .52a > D .5122a -≤≤- 7.函数2sin 26y x π⎛⎫=- ⎪⎝⎭的一个增区间为 ( )A .(,)63ππ-B .7(,1212ππ)C .5,36ππ()D .54,63ππ()8.如果函数()3cos 2y x ϕ=+的图像关于点(43π,0)成中心对称,那么|ϕ|的最小值为( )A.6π B. 4π C. 3π D. 2π 9. 已知函数2()1+cos x)(1cos )()2xf x x R =⋅-∈(,则()f x 是 ( ) A.最小正周期为2π的奇函数 B. 最小正周期为2π的偶函数 C. 最小正周期为π的奇函数 D. 最小正周期为π的偶函数10.为了得到函数y x 的图像,只需将函数sin3cos3y x x =+的图像( )A .向右平移4π个单位 B .向左平移4π个单位 C .向右平移12π个单位 D .向左平移12π个单位11.已知,αβ都是锐角,1tan 7α=,sin 10β=,则2αβ+的大小为 ( )A. 4πB. 54πC. 4π或54πD. 34π或54π12.若函数()sin()(0)4f x x πωω=+>在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]卷Ⅱ(非选择题,共70分)二.填空题:本大题共4小题,每小题5分,共20分.13. 已知()1tan 2tan 7ααβ=-+=,,则tan β的值为_______.14.若sin )2410x π+=(,则sin x 的值为___________. 15. 若1sin2a =、23b =、2tan 3c =,则a b c 、、的大小关系为___________. 16.给出命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若1sin cos (0)5αααπ<<+=-,则3tan 4α=-或43-; ④函数22()sin ()cos ()144f x x x ππ=++--是周期为π的奇函数. 则其中正确命题的序号为______________.三.解答题:本大题共6小题,共70分;解答应写出文字说明,证明过程或演算步骤.17.(本题满分10分)(1)求函数()lg f x =(2)若1sin sin a θθ+=,1cos cos b θθ+=,求222233()()a b ab +的值.18.(本题满分12分)(1)已知02απ≤≤,若α角的终边过点A ()cos3,sin3-,求α角的弧度数;(2)若sin +cos 12sin cos αααα=-, 求tan(3)5sin()cos()3sin(+)cos()22παπαπαππαα-+-+-+的值.19.(本题满分12分)设函数()sin()(000f x A x A ωϕωπϕ=+>><<,,-)的部分图像如图所示; (1)求()f x 的解析式;(2)若函数()=()x f x m ϕ-在5[03π,)上有两个零点αβ、,求cos()αβ+的值.20. (本题满分12分)设函数2()cos sin())34f x x x x x R π=⋅+-+∈; (1)求f (x )的最小正周期; (2)求f (x )的单调递减区间.21. (本题满分12分)设函数()sin cos sin 2()f x x x x x R =++∈,(1)设())4()1sin cos f x x g x x xπ+=++,求()g x 的值域; (2)若3())042f x x m π-+⋅+≥对02x π≤≤恒成立,求m 的取值范围.22.(本题满分12分)如图,正方形ABCD 的边长为1,P 、Q 点分别为边CB 、CD 上的点,令 PAQ=θ, BAP= , DAQ= ,△CPQ 的周长为2;(1)用角 表示线段BP 长度,用角 表示线段DQ 的长度; (2)求角θ的大小;(3)求△APQ 面积S 的最小值.唐山一中2017-2018学年度第一学期第二次月考高一数学答案一.选择题:1-4:CBDA,5-8:CACA,9-12:DDAA 二、填空题:13、3: 14、2425-: 15、a<b<c ; 16、①②④ 三、解答题17. (1)定义域为75[4,)(,)666πππ--------------------------------------5分 (2)21cos sin sin sin a θθθθ=-= 21sin cos cos cos b θθθθ=-= ∴所求2242243322cos sin cos sin sin cos sin cos θθθθθθθθ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()()223333cos sin 1θθ=+=------10分 18.解:(1)A 点在第一象限,且()tan tan3tan -3α=-=,而-3在第三象限且02απ≤≤, 33αππ∴=-+=------------------------------------5分(2)由已知得:tan 2α=,-----------------------------------------------7分∴原式()()()()tan tan 5sin cos =5sin cos cos sin cos sin αααααααααα-=+---+⋅--⋅ ------------------------------------------------------------------------9分2sin cos 5αα=,∴原式3=-------------------------------------------12分 19.解:(1)由图象知:52,4463A T πππ⎛⎫==+= ⎪⎝⎭,265T πω∴== 6πωϕπ⎛⎫⋅-+=- ⎪⎝⎭ 45πϕ∴=- 64()2sin 55f x x π⎛⎫∴=- ⎪⎝⎭--------------6分 (2) ()x ϕ在50,3π⎡⎫⎪⎢⎣⎭上有两个零点,αβ AD CQ PBθαβ⇔()f x m =在50,3π⎡⎫⎪⎢⎣⎭内有两个实根,αβ⇔24αβπ+=或1242T αβπ+=+ ⇔2παβ+=或136παβ+=⇔()cos 0αβ+=或()cos αβ+=分 注:求出一个值的,扣3分. 20.解:(1)由已知得:21()cos sin 224f x x x x x ⎛⎫=⋅+-+ ⎪ ⎪⎝⎭21sin cos 2x x x =+)1sin 21cos 2444x x =-++1sin 2244x x =-1sin 223x π⎛⎫=- ⎪⎝⎭------4分 所以()f x 的最小正周期为22T ππ==.-------------------------------------6分 (2)由32+22232k x k πππππ<-<+,得:5111212k x k ππππ+<<+∴减区间为()511,1212k k k Z ππππ⎛⎫++∈ ⎪⎝⎭-----------------------------------12分21.解:(1)∵2sin cos ()1sin cos x xg x x x=++,令sin cos x x t +=()1t t ≤≤≠-则()()11g t t t t =-≤≠-{}()y |11,2g x y y ∴≤≤≠-的值域为----------------------------6分注:没有2y ≠-扣2分 (2)由题知:()3sin cos 2sin cos sin cos 02x x x x x x m ++-+⋅+≥对02x π≤≤恒成立①令sin cos x x t +=(1t ≤≤,-----------------------------------------8分则①⇔2102t t t m ++-⋅≥对1t ≤≤⇔()121m t t t ϕ≤++=对1t ≤≤()t ϕ 在1,2⎡⎢⎣⎦上减,在2⎣上增,()min 12t ϕϕ⎛⎫∴== ⎪ ⎪⎝⎭1m ∴≤ (-1m ⎤∴∞⎦的取值范围为-------------------------------------------12分22.解:(1)则在中,tan BP α=(0)4πα<<,在中,(0)4πβ<<.--------------------------------4分(2)由题知:()tan tan 1tan =11tan tan αβαβαβ+=⇔+-.-----------------------------------7分,.------------------------------------------8分(3)1111tan tan (1tan )(1tan )222ABP ADQ CPQ S S S S S αβαβ∆∆∆=---=-----正 11tan tan 22αβ=-⋅----------------------------------------------------10分11sin sin 22cos cos αβαβ⋅=-⋅⋅cos cossin sinπαβαβαβ+=∴⋅-⋅= ,,sin sin cos cos αβαβ∴⋅=⋅,分。
河北省唐山市2018—2018学年度高三年级模拟考试数 学 试 卷(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(C U A )∪(C U B )= ( ) A .{1,2,3,4,5} B .{3} C .{1,2,4,5} D .{1,5} 2.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|= ( )A .2B .22C .2D .4 3.已知|a |=1,|b |=2,a =λb (λ∈R ),则|a -b |=( ) A .1 B .3 C .1或3D .|λ| 4.设a 、b 表示直线,α、β表示平面,α//β的充分条件是( )A .a //b ,βα⊥⊥b a ,B .b a b a //,,βα⊂⊂C .αββα//,//,,b a b a ⊂⊂D .αβ⊥⊥⊥b a b a ,,5.设x ,y 满足约束条件:y x z y y x y x y +=⎪⎩⎪⎨⎧≤+≥+≤则2,2,1的最大值与最小值分别为 ( )A .27,3 B .5,27 C .5,3 D .4,3 6.函数),(,cos sin ππ-∈+=x x x x y 的单调增区间是( )A .)2,0()2,(πππ和-- B .(-2π,0)和(0,2π)C .),2()2,(ππππ和-- D .(-2π,0)和(2π,π)7.关于函数)2|sin(|)(π+=x x f 有下列判断:①是偶函数;②是奇函数;③是周期函数;④不是周期函数,其中正确的是 ( )A .①与④B .①与③C .②与④D .②与③8.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有 ( ) A .140种 B .80种 C .70种 D .35种 9.过坐标原点且与点(1,3)的距离都等于1的两条直线的夹角为 ( )A .90°B .45°C .30°D .60°10.已知函数)(x f 是区间[-1,+∞]上的连续函数,当1111)(,03-+-+=≠x x x f x 时,则f (0)=( )A .23B .1C .32 D .0 11.设y x y x y x +≥-->>则且,2)1)(1(0,0的取值范围是( )A .),222[+∞+B .]12,0(+C .)12,0(+D .),222(+∞+12.若]),[(||b a x e y x ∈=的值域为[1,e 2],则点(a ,b )的轨迹是图中的( ) A .线段AB 和OA B .线段AB 和BC C .线段AB 和DCD .点A 和点C第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.62)(a x xa -展开式的第三项为14.在正三棱锥S —ABC 中,侧棱SC ⊥侧面SAB ,侧棱SC=32,则此正三棱锥的外接球的表面积为15.双曲线122=-by ax 的离心率为5,则a :b=16.定义运算bc ad d c b a-=,若复数x 满足==x x ixi 则,22322三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 求函数)2cos 2sin 1)(tan 1()(x x x x f ++-=的定义域,值域和最小正周期.18.(本小题满分12分)如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 是BC 的中点,平面B 1ED 交A 1D 1于F.(Ⅰ)指出F 在A 1D 1上的位置,并说明理由; (Ⅱ)求直线A 1C 与DE 所成的角;(Ⅲ)设P 为侧面BCC 1B 1上的动点,且,332 AP 试指出动点P 的轨迹,并求出其轨迹所表示曲线的长度.19.(本小题满分12分)甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次为ξ;乙用这次枚硬币掷2次,记正面朝上的次为η.(Ⅰ)分别求ξ和η的期望;(Ⅱ)规定;若ξ>η,则甲获胜,若ξ<η,则乙获胜,分别求出甲和乙获胜的概率.20.(本小题满分12分)过椭圆1422=+y x 的右焦点F 作直线l 交椭圆于M 、N 两点,设.23||= (Ⅰ)求直线l 的斜率k ;(Ⅱ)设M 、N 在椭圆右准线上的射影分别为M 1、N 1,求11N M ⋅的值.21.(本小题满分12分)已知数列}{n a 的前n 项和为S n ,且)3(21n n S n a +=对一切正整数n 恒成立. (Ⅰ)证明数列}3{n a +是等比数列;(Ⅱ)数列}{n a 中是否存在成等差数列的四项?若存在,请求出一组;若不存在,请说明理由.22.(本小题满分14分)函数1)(23+--=x x x x f 的图象上有两点A (0,1)和B (1,0)(Ⅰ)在区间(0,1)内,求实数a 使得函数)(x f 的图象在x =a 处的切线平行于直线AB ;(Ⅱ)设m>0,记M (m ,)(m f ),求证在区间(0,m )内至少有一实数b ,使得函数图象在x =b 处的切线平行于直线AM.高三数学参考答案及评分标准(理科)一、每小题5分,共60分.CBCAC ABDCA AB 二、每小题4分,共16分. 13.x 15 14.π36 15.4或4116. i 22±- 三、解答题 17.解:)sin )(cos sin (cos 2)cos 2cos sin 2)(cos sin 1()(2x x x x x x x xxx f +-=+-= x x x 2cos 2)sin (cos 222=-= ………………6分函数的定义域为},2,|{Z R ∈+≠∈k k x x x ππ 22cos 222-≠⇔+≠x k x ππ∴函数)(x f 的值域为]2,2(- …………10分 ∴函数)(x f 的最小正周期ππ==22T …………12分 18.解:(Ⅰ)F 为A 1D 1的中点证明:由正方体ABCD —A 1B 1C 1D 1 面ABCD//面A 1B 1C 1D 1 面B 1EDF ∩面ABCD=DE 面B 1EDF ∩面A 1B 1C 1D 1=B 1F ∴B 1F//DE ,同理:B 1E//DF ∴四边形DEB 1F 为平行四边形 ∴B 1F=DE ,又A 1B 1=CD Rt △A 1B 1F ≌Rt △CDE∴A 1F=CE=112121D A =∴F 为A 1D 1的中点 …………4分(Ⅱ)过点C 作CH//DE 交AD 的延长线于H ,连结A 1H则A 1C 与DE 所成的角就等于A 1C 与CH 所成的锐角即∠A 1CH (或其补角) 由于正方体的棱长为1,E 为BC 中点 ∴可求得A 1C=25,213,31==CH H A 在△A 1CH 中,由余弦定理得: 151525324134532cos 1212211=⋅-+=⋅⋅-+=∠CH C A H A CH C A CH A ∴1515arccos1=∠CH A ,即直线A 1C 与DE 所成的角为1515arccos …………8分 (Ⅲ)由于点A 到侧面BCC 1B 1的距离等于AB=1∴A 、P 、B 构成直角三角形的三个顶点 ∴B AB AP BP ,3322=-=为定点 ∴点P 的轨迹是以B 为圆心,33为半径的四分之一的圆 ∴它的长度等于:ππ6333241=⋅ …………12分 19.解:(Ⅰ)依题意ζ~B (3,0.5),η~B (2,0.5),所以E ζ=3×0.5=1.5, E η=2×0.5=1 ………………4分(Ⅱ)P (ζ=0)=83)21()1(,81)21(331303====C P C ζ81)21()3(,83)21()2(333323======C P C P ζζ21)21()1(,41)21()0(212202======C P C P ηη41)21()2(222===C P η …………7分甲获胜有以下情形:ζ=1,η=0,ζ=2,η=0,1;ζ=3,η=0,1,2 则甲获胜的概率为 21)412141(81)2141(8341831=++⨯++⨯+⨯=P乙获胜有以下情形:η=1,ζ=0,η=2,ζ=0,1则乙获胜的概率为 163)8381(4181212=+⨯+⨯=P …………12分 20.解:(Ⅰ)F (0,3) l :)3(-=x k y …………2分 由041238)41(,)3(44222222=-+-+⎪⎩⎪⎨⎧-==+k x k x k x k y y x 得 …………4分 设M 222122114138),,(),,(kk x x y x N y x +=+则 ① 222141412k k x x +-=⋅ ② 2122122124)(1||1||23x x x x k x x k -++=-+== ③ 把①②代入③,并整理,得2241)1(423kk ++= 解得 25±=k …………6分 (Ⅱ)设11N M 与的夹角为20,πθθ<< 则由(Ⅰ)知52tan 25)2tan(=∴=-θθπ∴35cos =θ ∴4595)23(cos ||cos ||||2221111=⨯===⋅θθMN N M MN N M MN ……12分 21.解:(Ⅰ)由已知,得)(32+∈-=N n n a S n n ∴)1(3211+-=++n a S n n 两式相减得 32211--=++n n n a a a∴321+=+n n a a ………………2分 即)3(231+=++n n a a ∴2331=+++n n a a 又32111-==a S a ∴63311=+=a a故数列}3{+n a 是首项为6,公比为2的等比数列 …………5分(Ⅱ)由(Ⅰ)1263-⋅=+n n a ∴3233261-⋅=-⋅=-n n n a假设}{n a 中存在四项依次为)(,,,,43214321m m m m a a a a m m m m <<<,它们可以构成等差数列,则)323()323()323()323(3241-⋅+-⋅=-⋅+-⋅m m m m 即32412222m m m m +=+⋅ ………………9分上式两边同除以12m ,得1+131214222m m m m m m ---+= ①∵m 1,m 2,m 3,m 4∈N +,且m 1<m 2<m 3<m 4∴①式的左边是奇数,右边是偶数 ∴①式不能成立∴数列}{n a 中不存在构成等差数列的四项 …………12分22.(Ⅰ)解:直线AB 斜率k AB =-1 123)(2--='x x x f令1123)10(1)(2-=--<<-='a a a a f 即 解得 32=a …………………………4分 (Ⅱ)证明:直线AM 斜率 101)1(223--=--+--=m m m m m m k AM 考察关于b 的方程1)(2--='m m b f即3b 2-2b -m 2+m=0 ………………7分在区间(0,m )内的根的情况令g(b)= 3b 2-2b -m 2+m ,则此二次函数图象的对称轴为31=b 而0121)21(31)31(22<---=-+-=m m m g g(0)=-m 2+m=m(1-m)g(m)=2m 2-m -m(2m -1) ………………10分∴(1)当),0(0)(,0)(,0)0(,210m b g m g g m 在区间方程时=<><<内有一实根 (2)当)31,0(0)(,0)31(,0)0(,121在区间方程时=<><≤b g g g m 内有一实根 (3)当),31(0)(,0)(,0)31(,1m b g m g g m 在区间方程时=><≥内有一实根综上,方程g(b)=0在区间(0,m)内至少有一实根,故在区间(0,m)内至少有一实数b,使得函数图象在x=b处的切线平行于直线AM…………14分。
唐山一中2017-2018学年度第一学期期中考试高三年级理科数学试卷说明:1.考试时间120分钟,满分150分。
2.将卷Ⅰ答案用2B 铅笔涂在答题卡上,将卷Ⅱ的答案用黑色签字笔写在答题卡上。
3.本次考试需填涂的是准考证号(8位),不要误涂成座位号(5位),座位号只需在相应位置填写。
卷Ⅰ(选择题 共60分)一 选择题(本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的.请把正确答案涂在答题卡上.)1. 若全集U=R,集合M =错误!未找到引用源。
,N =错误!未找到引用源。
,则错误!未找到引用源。
等于 ( )A .错误!未找到引用源。
B .错误!未找到引用源。
C . 错误!未找到引用源。
D .错误!未找到引用源。
2.若复数z 满足1zi i =-,则z 的共轭复数是 ( ) A .1i -- B .1i -C .1i -+D .1i +3. 若直线60x ay ++=与直线(2)320a x y a -++=平行,则a = ( ) A .1a =- B . 13a a =-=或 C .3a = D. 13a a =-=且 4.已知 “命题2:()3()p x m x m ->-”是“命题2:340q x x +-<”成立的必要不充分条件,则实数m 的取值范围为 ( ) A .17m m ><-或 B .17m m ≥≤-或 C .71m -<< D .71m -≤≤ 5.右图是函数()2f x x ax b =++的部分图像,则函数()()ln g x x f x '=+的零点所在的区间是 ( )A. 1142(,)B. (1,2)C. 12(,1)D. (2,3)6.已知错误!未找到引用源。
,若直线错误!未找到引用源。
与线段错误!未找到引用源。
有一个公共点,则错误!未找到引用源。
( )A .最小值为错误!未找到引用源。
唐山一中2017—2018学年度第一学期期中考试高三年级数学试卷(理)一、选择题:(本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合A ={x |y =x -2}, B ={y |y =x -2},则A ∩B = ( )A .∅B .RC .(-∞,2]D .[0,2]2.“a =2”是“1(0,),18x ax x∀∈+∞+≥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知i 是虚数单位,(1+2i )z 1=-1+3i ,z 2=1+10)1(i +,z 1、z2在复平面上对应的点分别为A 、B ,O 为坐标原点,则⋅= ( )A .33B .-33C .32D .-324. 已知实数[]1,9x ∈,执行如右图所示的流程图,则输出的x 不小于55的概率为( ) A.58 B.38 C.23 D.135.在各项均为正数的等比数列}{n a ,若112(2)m m m a a a m +-⋅=≥,数列}{n a 的前n 项积为n T ,若21512m T -=,则m 的值为A .4B .5C .6D .76.已知点P 是△ABC 的内心(三个内角平分线交点)、外心(三条边的中垂线交点)、重心(三条中线交点)、垂心(三个高的交点)之一,且满足2AP ·22BC AC AB =-,则点P 一定是△ABC 的( )A .内心B .外心C .重心D .垂心 7.对于函数f (x )=x 3cos3(x +6π),下列说法正确的是( )A .f (x )是奇函数且在(6π6π,-)上递减 B . f (x )是奇函数且在(6π6π,-)上递增 C . f (x )是偶函数且在(6π0,)上递减 D .f (x )是偶函数且在(6π0,)上递增 8.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图(如图所示),则余下部分的几何体的表面积为A .532323++ππ+1B .523323++ππ+1C .53233++ππ D .52333++ππ 9.若直线1+=kx y 与圆0422=-+++my kx y x 交于N M ,两点,且NM ,316a >-63516a -<<-65a >-63516a -≤≤-关于直线0=-y x 对称,动点P ()b a ,在不等式组200-+≥⎧⎪-≤⎨⎪≥⎩kx y kx my y 表示的平面区域内部及边界上运动,则21b w a -=-的取值范围是( ) A .),2[+∞ B .]2,(--∞ C .]2,2[- D .),2[]2,(+∞⋃--∞10.已知P是抛物线24x y =上的一个动点,则点P到直线1:4370l x y --=和2:20l y +=的距离之和的最小值是( )A.1 B.2 C.3 D.411.函数的1222131)(23++-+=a ax ax ax x f 图像经过四个象限,则实数a 的取值范围是( )A. B. C.D.12.已知a b <,若函数()(),f x g x 满足()()b ba a f x dx g x dx =⎰⎰,则称()(),f x g x 为区间[],ab 上的一组“等积分”函数,给出四组函数:①()()2,1f x x g x x ==+; ②()()sin ,cos f x x g x x ==; ③()()234f xg x x π==; ④函数()(),f x g x 分别是定义在[]1,1-上的奇函数且积分值存在.其中为区间[]1,1-上的“等积分”函数的组数是( )A .1B .2C .3D .4二、填空题:(本大题共4小题,每小题5分,共20分).13. 已知7270127()x m a a x a x a x -=++++的展开式中4x 的系数是-35,则1237a a a a ++++= . 14. 已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的表面积为 .15. 已知21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左右焦点,P 为双曲线左支上的一点,若a PF PF 8122=,则双曲线的离心率的取值范围是 . 16. 已知函数),()(R b a xb ax x f ∈+=,有下列五个命题 ①不论,a b 为什么值,函数)(x f y =的图象关于原点对称; ②若0a b =≠,函数)(x f 的极小值是2a ,极大值是2a -; ③若0ab ≠,则函数)(x f y =的图象上任意一点的切线都不可能经过原点; ④当0ab ≠时,函数)(x f y =图象上任意一点的切线与直线y ax =及y 轴所围成的三角形的面积是定值.其中正确的命题是 _________ (填上你认为正确的所有命题的序号)三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤).17.(本小题满分12分)在数列}{n a 中,已知*111,21,n n a a a n n N +=-=-+∈.(1)求证: }{n a n -是等比数列;(2)令n n nn S a b ,2=为数列}{n b 的前n 项和,求n S 的表达式.18.(本题满分12分)某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问,,,A B C D 四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的50名学生中,从来自,A C 两所中学的学生当中随机抽取两名学生,用ξ表示抽得A 中学的学生人数,求ξ的分布列.19. (本题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,060ABC ∠=,22AB CB ==.在梯形ACEF 中,EF ∥AC ,且=2AC EF ,EC ⊥平面ABCD .(1)求证:BC AF ⊥;(2)若二面角D AF C --为045,求CE 的长.20. (本小题满分12分)已知圆C :(x -1)2+(y -1)2=2经过椭圆Γ∶)0(12222>>=+b a b y a x (a>b>0)的右焦点F 和上顶点B.(1)求椭圆Γ的方程;(2)如图,过原点O 的射线l 与椭圆Γ在第一象限的交点为Q ,与圆C 的交点为P ,M 为OP 的中点, 求⋅的最大值.21. (本小题满分12分)已知函数()()2x f x ax x e =+其中e 是自然数的底数,a R ∈.(1)当0a <时,解不等式()0f x >;(2)若()[]11f x -在,上是单调增函数,求a 的取值范围;(3)当0=a ,求使方程()[]2,1f x x k k =++在上有解的所有整数k 的值.22. (本小题满分10分) 在直角坐标系xoy 中,直线l 经过点()1,0P -,其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系,设曲线C 的极坐标方程为26cos 50ρρθ-+=.(1)若直线l 与曲线C 有公共点,求a 的取值范围:(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围.答案及解析:1-5 DAABB 6-10 BCADC 11-12 DC 13.1 14.π8 15.]3,1( 16. ①③④17.解:(Ⅰ)证明:由*111,21,n n a a a n n N +=-=-+∈可得11(1)2(),120n n a n a n a +-+=--=-≠所以数列{}n a n -以是-2为首项,以2为公比的等比数列(Ⅱ) 由(Ⅰ)得:1222n n n an --=-⨯=-,所以2n n a n =-,12n n n b =- 所以12221212(1)(1)(1)()222222n n n n n n S b b b n =+++=-+-++-=+++- 令212222n n nT =+++,则2311122222n n nT +=+++, 两式相减得231111*********2222n n n n n n n T ++=+++-=--, 所以222n n n T +=-,即222n n n S n +=--18.解:(1)由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为.∴应从四所中学抽取的学生人数分别为. …………… 4分(2)设“从50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从50名学生中随机抽取两名学生的取法共有2501225C =种,… 5分来自同一所中学的取法共有22221520105350C C C C +++=. (6)分 ∴3502()12257P M ==.答:从50名学生中随机抽取两名学生来自同一所中学的概率为27. … 7分 (3)由(1)知,50名学生中,来自,A C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, (8)分 2102253(0)20C P C ξ===,1115102251(1)2C C P C ξ===,2152257(2)20C P C ξ===. (11)分∴ξ的分布列为: … 12分19.20.所以,整数k 的所有值为{-3,1}.22.解析: (I)将曲线C 的极坐标方程26cos 50ρρθ-+=化为直角坐标方程为22650x y x +-+=直线l 的参数方程为()1cos sin x t t y t θθ=-+⎧⎨=⎩为参数将1cos sin x t y t θθ=-+⎧⎨=⎩代入22650x y x +-+=整理得28cos 120t t θ-+=直线l 与曲线C 有公共点,3[0,)θπ∴(II)曲线C 的方程22650x y x +-+=可化为()2234x y -+=其参数方程为()()32cos M ,2sin x x y y θθθ=+⎧⎨=⎩为参数为曲线上任意一点,。
2017-2018学年河北省唐山市开滦二中高三(上)12月月考数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.)1.已知集合A={x|log2x<1},B={x|x2+x﹣2<0},则A∪B()A.C.2.若复数z满足,则z的共轭复数的虚部是()A.B.C.D.3.已知p:m﹣1<x<m+1,q:(x﹣2)(x﹣6)<0,且q是p的必要不充分条件,则m 的取值范围是()A.3<m<5 B.3≤m≤5 C.m>5或m<3 D.m≥5或m≤34.执行如图所示的程序框图,若输出的结果是8,则输入的数是()A.2或2B.2或﹣2C.﹣2或﹣2D.2或﹣25.设变量x,y满足约束条件则z=3x﹣2y的最大值为()A.0 B.2 C.4 D.36.曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为()A.2 B.﹣2 C.D.﹣7.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A.36种B.30种C.24种D.20种8.为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.610.一个正三棱柱的主(正)视图是长为,宽为2的矩形,则它的外接球的表面积等于()A.16π B.12π C.8π D.4π11.已知A是双曲线﹣=1(a>0,b>0)的左顶点,F1、F2分别为双曲线的左、右焦点,P为双曲线上一点,G是△PF1F2的重心,若=λ,则双曲线的离心率为()A.3 B.2C.4 D.与λ的取值有关12.已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3)f(log3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.a>c>b二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题纸上.)13.设sin (+θ)=,则sin2θ= .14.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则cos ∠MPF= .15.已知函数f (x )=,若f (x )﹣kx 有三个零点,则k 的取值范围为 .16.在△ABC 中,A=30°,BC=2,D 是AB 边上的一点,CD=2,△BCD 的面积为4,则AC 的长为 .三、解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设数列{}a n 的前n 项和为s n ,a 1=1,a n >0,4s n =(a n +1)2,n ∈N +. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和s n .18.由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.19.如图,已知四棱锥P ﹣ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC=60°,E ,F 分别是BC ,PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为,求二面角E ﹣AF﹣C 的余弦值.20.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足+=t(O为坐标原点),当|﹣|<时,求实数t取值范围.21.已知函数f(x)=x2﹣ax+(a﹣1)lnx,a>1.(1)讨论函数f(x)的单调性;(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1;几何证明选讲]22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A 点作AD⊥CD于D,交半圆于点E,DE=1(1)证明:AC平分∠BAD;(2)求BC的长.[选修4-4;坐标系与参数方程]23.在直角坐标系中,直线l的参数方程为t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C所截得的弦长.[选修4-5;不等式选讲]24.(2014长春四模)已知a>0,b>0,且a2+b2=,若a+b≤m恒成立,(Ⅰ)求m的最小值;(Ⅱ)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.2017-2018学年河北省唐山市开滦二中高三(上)12月月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.)1.已知集合A={x|log2x<1},B={x|x2+x﹣2<0},则A∪B()A.C.【分析】分别求解对数不等式及一元二次不等式化简A,B,再由并集运算得答案.【解答】解:∵A={x|log2x<1}={x|0<x<2},B={x|x2+x﹣2<0}={x|﹣2<x<1},∴A∪B={x|0<x<2}∪{x|﹣2<x<1}=(﹣2,2).故选:C.【点评】本题考查并集及其运算,考查了对数不等式及一元二次不等式的解法,是基础题.2.若复数z满足,则z的共轭复数的虚部是()A.B.C.D.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:满足,∴﹣i(﹣i),∴z=,∴=i.则z的共轭复数的虚部是.故选:C.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了计算能力,属于基础题.3.已知p:m﹣1<x<m+1,q:(x﹣2)(x﹣6)<0,且q是p的必要不充分条件,则m 的取值范围是()A.3<m<5 B.3≤m≤5 C.m>5或m<3 D.m≥5或m≤3【分析】先解(x﹣2)(x﹣6)<0得2<x<6,而根据q是p的必要不充分条件便得到,解该不等式组即得m的取值范围.【解答】解:p:m﹣1<x<m+1,q:2<x<6;∵q是p的必要不充分条件;即由p能得到q,而q得不到p;∴,∴3≤m≤5;∴m的取值范围是[3,5].故选B.【点评】考查解一元二次不等式,以及必要条件,充分条件,必要不充分条件的概念.4.执行如图所示的程序框图,若输出的结果是8,则输入的数是()A.2或2B.2或﹣2C.﹣2或﹣2D.2或﹣2【分析】分x2=8和x3=8时两种情况加以讨论,解方程并比较x2与x3的大小,最后综合即可得到本题的答案.【解答】解:根据程序框图中的算法,得输出的结果可能是x2或x3,①当输出的8是x2时,x可能等于±2∵x2≥x3,∴x≤0,此时x=﹣2;②当输出的8是x3时,x可能等于±2∵x2<x3,∴x>0,此时x=2综上所述,得输入的x=2或﹣2故选:D【点评】本题以程序框图为载体,求方程的解x值,着重考查了算法语句与方程、不等式解法等知识,属于基础题.5.设变量x,y满足约束条件则z=3x﹣2y的最大值为()A.0 B.2 C.4 D.3【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=3x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:不等式组表示的平面区域如图所示,当直线z=3x﹣2y过点D时,在y轴上截距最小,z最大由D(0,﹣2)知z max=4.故选C.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.6.曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为()A.2 B.﹣2 C.D.﹣【分析】先求出已知函数y在点(e,e)处的斜率,再利用两条直线互相垂直,斜率之间的关系求出未知数a.【解答】解:y′=1+lnx,令x=e解得在点(e,e)处的切线的斜率为2∵切线与直线x+ay=1垂直∴2×(﹣)=﹣1,解得a=2故选A.【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及导数的几何意义:在切点处的导数值为切线的斜率,两直线垂直斜率乘积为﹣1,属于基础题.7.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A.36种B.30种C.24种D.20种【分析】根据题意中甲要求不到A馆,分析可得对甲有2种不同的分配方法,进而对剩余的三人分情况讨论,,①其中有一个人与甲在同一个场馆,②没有人与甲在同一个场馆,易得其情况数目,最后由分步计数原理计算可得答案.【解答】解:根据题意,首先分配甲,有2种方法,再分配其余的三人:分两种情况,①其中有一个人与甲在同一个场馆,有A33=6种情况,②没有人与甲在同一个场馆,则有C32A22=6种情况;则若甲要求不到A馆,则不同的分配方案有2×(6+6)=24种;故选C.【点评】本题考查排列、组合的综合运用,注意题意中“每个展馆至少分配一人”这一条件,再分配甲之后,需要对其余的三人分情况讨论.8.为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】利用y=sin2x=cos(2x﹣)及函数y=Asin(ωx+φ)的图象变换即可选得答案.【解答】解:∵y=sin2x=f(x)=cos(2x﹣),∴f(x+)=cos[2(x+)﹣]=cos(2x+),∴为得到函数y=cos(2x+),的图象,只需将函数y=sin2x的图象向左平移个长度单位;故选C.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,考查诱导公式的应用,属于中档题.9.设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6【分析】根据图形得出=+=,==,=()=2﹣,结合向量结合向量的数量积求解即可.【解答】解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C【点评】本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示.10.一个正三棱柱的主(正)视图是长为,宽为2的矩形,则它的外接球的表面积等于()A.16π B.12π C.8π D.4π【分析】连接上下底面中心,连接它的中点和棱柱的顶点,就是球的半径,求出球的表面积即可.【解答】解:正三棱柱的底面边长是,高为2,球心在两个底面中心连线的中点O,球的半径是OA,则AD=OD=1,OA=外接球的表面积是:4πR2=8π故选C.【点评】本题考查球的内接体问题,求出球心和半径,考查空间想象能力,逻辑思维能力,是中档题.11.已知A是双曲线﹣=1(a>0,b>0)的左顶点,F1、F2分别为双曲线的左、右焦点,P为双曲线上一点,G是△PF1F2的重心,若=λ,则双曲线的离心率为()A.3 B.2C.4 D.与λ的取值有关【分析】由题意,PG=2GO,GA∥PF1,可得2OA=AF1,即可求出双曲线的离心率.【解答】解:由题意,PG=2GO,GA∥PF1,∴2OA=AF1,∴2a=c﹣a,∴c=3a,∴e==3.故选:A.【点评】本题考查双曲线的离心率,考查学生的计算能力,比较基础.12.已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3)f(log3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.a>c>b【分析】由函数y=f(x﹣1)的图象关于点(1,0)对称,知f(x)为奇函数,当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立,所以xf(x)为减函数,由此能判断a,b,c的大小关系.【解答】解:∵当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立,即:(xf(x))′<0,∴xf(x)在(﹣∞,0)上是减函数.又∵函数y=f(x﹣1)的图象关于点(1,0)对称,∴函数y=f(x)的图象关于点(0,0)对称,∴函数y=f(x)是定义在R上的奇函数∴xf(x)是定义在R上的偶函数∴xf(x)在(0,+∞)上是增函数.又∵30.3>1>log23>0>=﹣2,2=﹣,∴(﹣)f(﹣)>30.3f(30.3)>(logπ3)f(logπ3),即()f()>30.3f(30.3)>(logπ3)f(logπ3)即:c>a>b故选B.【点评】本题考查函数的奇偶性和单调性的应用,解题时要认真审题,仔细解答,注意对数函数性质的合理运用.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题纸上.)13.设sin(+θ)=,则sin2θ=﹣.【分析】利用两角和的正弦公式可得+=,平方可得+sin2θ=,由此解得sin2θ的值.【解答】解:∵sin(+θ)=,即+=,平方可得+sin2θ=,解得sin2θ=﹣,故答案为﹣.【点评】本题主要考查两角和的正弦公式、二倍角的正弦的应用,属于基础题.14.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则cos∠MPF=.【分析】根据抛物线y2=4x,确定焦点坐标与准线方程,利用抛物线的定义,求出P的坐标,利用向量求解cos∠MPF.【解答】解:抛物线y2=4x的焦点坐标为F(1,0),准线方程为x=﹣1根据抛物线的定义,∵|PM|=5,∴不妨设P(4,4)∴,∴cos∠MPF===故答案为:【点评】本题考查抛物线的标准方程,考查向量知识的运用,确定点P的坐标是关键.15.已知函数f(x)=,若f(x)﹣kx有三个零点,则k的取值范围为.【分析】由题意画出图象,利用导数对x分x=0、x<0、x>0三种情况各有一个零点时的k 的取值范围求出来,再求交集即可.【解答】解:由题意画出图象:(1)当x=0时,f(0)=ln1=0,k×0=0,0是函数f(x)﹣kx的一个零点;(2)由函数的图象和单调性可以看出,当x>0和x<0时,分别有一个零点.①.当x<0时,由,化为<0,解得;②当x>0时,只考虑即可,令g(x)=ln(x+1)﹣kx,则,A.当k≥1时,则g′(x)<0,即g(x)在(0,+∞)上单调递减,∴g(x)<g(0)=0,g(x)无零点,应舍去;B.当时,,g′(x)=,令g′(x)=0,解得,列表如下:由表格可知:当时,g(x)取得极大值,也是最大值,当且仅当时,g(x)才有零点,==k﹣lnk﹣1.下面证明h(k)=k﹣lnk﹣1>0,.∵=,∴h(k)在上单调递减,∴=h(k)>h(1)=1﹣ln1﹣1=0,因此0在时成立.综上可知:当且仅当时,函数f(x)﹣kx有三个零点.【点评】熟练掌握利用导数研究函数的单调性、极值和最值的方法及数形结合、分类讨论的思想方法是解题的关键.16.在△ABC中,A=30°,BC=2,D是AB边上的一点,CD=2,△BCD的面积为4,则AC的长为或2.【分析】由△BCD的面积为4,求得sin∠BCD 的值,进而求得cos∠BCD 的值,△BCD 中,由余弦定理可得BD 的值,△BCD中,由正弦定理求得sinB 的值.再在△ABC中,由正弦定理求得AC的长.【解答】解:由题意可得CBCDsin ∠BCD=4,即×2×2 sin ∠BCD=4,解得sin ∠BCD=.①当∠BCD 为锐角时,cos ∠BCD=.△BCD 中,由余弦定理可得 BD==4.△BCD 中,由正弦定理可得,即,故 sinB=.在△ABC 中,由正弦定理可得,即,解得 AC=4.②当∠BCD 为钝角时,cos ∠BCD=﹣.△BCD中,由余弦定理可得 BD==4.△BCD 中,由正弦定理可得,即,故 sinB=.在△ABC 中,由正弦定理可得,即,解得 AC=2.综上可得 AC=4或2,故答案为 4或2. 【点评】本题主要考查正弦定理、余弦定理的应用,判断三角形的形状的方法,体现了分类讨论的数学思想,讨论∠BCD 为锐角和钝角两种情况,是解题的易错点,是一个中档题目.三、解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.设数列{}a n 的前n 项和为s n ,a 1=1,a n >0,4s n =(a n +1)2,n ∈N +. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和s n .【分析】(I )由题意利用a n =s n ﹣s n ﹣1可建立a n 与a n ﹣1之间的递推关系,然后结合等差数列的通项公式可求a n ,(II )由(I )可求a n ,结合数列的项的特点,考虑利用错位相减求和可求【解答】解:(Ⅰ)当n=1时,a1=s1=,解a1=1,与已知相符.当n≥2时,a n=s n﹣s n﹣1=整理得:即(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0因为a n>0,所以a n﹣a n﹣1=2所以数列{a n}是以1为首项,2为公差的等差数列所以a n=2n﹣1(Ⅱ)由(Ⅰ)得=所以=两式相减得:===所以【点评】本题主要考查了利用数列的递推公式求解数列的通项公式及数列的错位相减求和方法的应用.18.由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.【分析】(1)由题意知本题是一个古典概型,至多有1人是“好视力”包括有一个人是好视力和有零个人是好视力,根据古典概型公式得到结果(2)由于从该校任选3人,记ξ表示抽到“好视力”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望【解答】解:(1)设A i表示所取的3人中有i个人是“好视力”,设事件A:至多有一个人是“好视力”则P(A)=P(A0)+P(A1)=(2)每个人是“好视力”的概率为ξ的可能取值为0、1、2、3∴ξ的分布列为期望为Eξ=【点评】本题考查茎叶图和离散型随机变量的概率.要求会读茎叶图,掌握互斥事件的概率加法公式和n次独立实验的概率求法.确定变量的取值,正确求概率是关键.属简单题19.如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E﹣AF ﹣C的余弦值.【分析】(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.(2)由EH与平面PAD所成最大角的正切值为,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,然后我们解三角形ASO,即可求出二面角E﹣AF﹣C的余弦值.【解答】证明:(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,所以AE⊥平面PAD.又PD⊂平面PAD,所以AE⊥PD.解:(Ⅱ)设AB=2,H为PD上任意一点,连接AH,EH.由(Ⅰ)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,,所以当AH最短时,∠EHA最大,即当AH⊥PD时,∠EHA最大.此时,因此.又AD=2,所以∠ADH=45°,所以PA=2.因为PA⊥平面ABCD,PA⊂平面PAC,所以平面PAC⊥平面ABCD.过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E﹣AF﹣C的平面角,在Rt△AOE中,,,又F是PC的中点,在Rt△ASO中,,又,在Rt△ESO中,,即所求二面角的余弦值为.【点评】求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠ESO为二面角E﹣AF﹣C的平面角,通过解∠AOC所在的三角形求得∠ESO.其解题过程为:作∠ESO→证∠ESO是二面角的平面角→计算∠ESO,简记为“作、证、算”.20.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足+=t(O为坐标原点),当|﹣|<时,求实数t取值范围.【分析】(Ⅰ)由题意知,所以.由此能求出椭圆C的方程.(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2﹣8k2x+8k2﹣2=0再由根的判别式和嘏达定理进行求解.【解答】解:(Ⅰ)由题意知,所以.即a2=2b2.(2分)又因为,所以a2=2,故椭圆C的方程为.(4分)(Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x﹣2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2﹣8k2x+8k2﹣2=0.△=64k4﹣4(2k2+1)(8k2﹣2)>0,.(6分),∵∴(x1+x2,y1+y2)=t(x,y),∴,∵点P在椭圆上,∴,∴16k2=t2(1+2k2).(8分)∵<,∴,∴∴,∴(4k2﹣1)(14k2+13)>0,∴.(10分)∴,∵16k2=t2(1+2k2),∴,∴或,∴实数t取值范围为.(12分)【点评】本题考查椭圆方程的求法和求实数t取值范围.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用根的判别式和韦达定理进行解题.21.已知函数f(x)=x2﹣ax+(a﹣1)lnx,a>1.(1)讨论函数f(x)的单调性;(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有.【分析】(1)根据对数函数定义可知定义域为大于0的数,求出f′(x)讨论当a﹣1=1时导函数大于0,函数单调递增;当a﹣1<1时分类讨论函数的增减性;当a﹣1>1时讨论函数的增减性.(2)构造函数g(x)=f(x)+x,求出导函数,根据a的取值范围得到导函数一定大于0,则g(x)为单调递增函数,则利用当x1>x2>0时有g(x1)﹣g(x2)>0即可得证.【解答】解:(1)f(x)的定义域为(0,+∞).(i)若a﹣1=1即a=2,则故f(x)在(0,+∞)单调增.(ii)若a﹣1<1,而a>1,故1<a<2,则当x∈(a﹣1,1)时,f′(x)<0;当x∈(0,a﹣1)及x∈(1,+∞)时,f′(x)>0故f(x)在(a﹣1,1)单调减,在(0,a﹣1),(1,+∞)单调增.(iii)若a﹣1>1,即a>2,同理可得f(x)在(1,a﹣1)单调减,在(0,1),(a﹣1,+∞)单调增.(2)考虑函数g(x)=f(x)+x=则由于1<a<5,故g'(x)>0,即g(x)在(0,+∞)单调增加,从而当x1>x2>0时有g(x1)﹣g(x2)>0,即f(x1)﹣f(x2)+x1﹣x2>0,故,当0<x1<x2时,有【点评】考查学生利用导数研究函数单调性的能力,以及基本不等式证明的能力.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1;几何证明选讲]22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A 点作AD⊥CD于D,交半圆于点E,DE=1(1)证明:AC平分∠BAD;(2)求BC的长.【分析】(1)推导出∠OAC=∠OCA,OC⊥CD,从而AD∥OC,由此能证明AC平分∠BAD.(2)由已知推导出BC=CE,连结CE,推导出△CDE∽△ACD,△ACD∽△ABC,由此能求出BC的长.【解答】证明:(1)∵OA=OC,∴∠OAC=∠OCA,(2分)∵CD是圆的切线,∴OC⊥CD,(4分)∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA故∠DAC=∠OAC,即AC平分∠BAD.由(1)得:,∴BC=CE,(8分)连结CE,则∠DCE=∠DAC=∠OAC,∴△CDE∽△ACD,△ACD∽△ABC∴,故.(10分)【点评】本题考查角平分线的证明,考查线段长的求法,是中档题,解题时要认真审题,注意圆的简单性质的合理运用.[选修4-4;坐标系与参数方程]23.在直角坐标系中,直线l的参数方程为t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)求直线l被曲线C所截得的弦长.【分析】(1)曲线的极坐标方程即ρ=cosθ+sinθ,两边同乘以ρ得:ρ2=ρcosθ+ρsinθ,再根据直角坐标与极坐标的互化公式求得C的直角坐标方程.(2)将直线参数方程代入圆C的方程,利用根与系数的关系和弦长公式求得直线l被曲线C所截得的弦长.【解答】解:(1)由得:ρ=cosθ+sinθ,两边同乘以ρ得:ρ2=ρcosθ+ρsinθ,∴x2+y2﹣x﹣y=0,即.(2)将直线参数方程代入圆C的方程得:5t2﹣21t+20=0,∴.∴.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线的参数方程,弦长公式的应用,属于基础题.[选修4-5;不等式选讲]24.(2014长春四模)已知a>0,b>0,且a2+b2=,若a+b≤m恒成立,(Ⅰ)求m的最小值;(Ⅱ)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.【分析】(Ⅰ)变形已知表达式,利用柯西不等式,求出a+b的最大值,即可求m的最小值;(Ⅱ)通过2|x﹣1|+|x|≥a+b对任意的a,b恒成立,结合(Ⅰ)的结果,利用x的范围分类讨论,求出实数x的取值范围.【解答】解:(Ⅰ)∵a>0,b>0,且a2+b2=,∴9=(a2+b2)(12+12)≥(a+b)2,∴a+b≤3,(当且仅当,即时取等号)又∵a+b≤m恒成立,∴m≥3.故m的最小值为3.…(4分)(II)要使2|x﹣1|+|x|≥a+b恒成立,须且只须2|x﹣1|+|x|≥3.∴或或∴或.…(7分)【点评】本题考查绝对值不等式的解法,函数恒成立的应用,考查计算能力.。
唐山一中2017—2018学年高三年级12月份调研考试数学试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和II 卷(非选择题)两部分,满分150分,考试时间120分钟。
2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题。
3.选择题答案涂在答题卡上,非选择题答案写在答题卡上相应位置,在试卷和草稿纸上作答无效。
第Ⅰ卷 选择题(共60分)一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。
1.不等式21ax <解集为Q ,{}0p x x =≤,若104R QC P x x ⎧⎫=<<⎨⎬⎩⎭,则a 等于( )A.14 B.12C.4D. 2 2.设S n 为等比数列{a n }的前n 项和,若0852=-a a ,则=24S S ( ) A.8- B.5 C. 8 D. 153. 已知直线l ⊥平面α,直线m ⊂平面β,则“α∥β”是“l ⊥m ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件4.已知命题p :∀x ∈(0,∞+),3x>2x,命题q :∃x ∈(∞-,0),x x ->2,则下列命题为真命题的是( )A . p ∧qB .(¬p )∧q C.(¬p )∧(¬q ) D.p ∧(¬q )5. 直线x -2y -3=0与圆C :(x -2)2+(y+3)2=9交于E 、F 两点,则△ECF 的面积为( )A .23B.52C.553 D. 436.已知向量(sin(),1),(4,4cos 6παα=+=a b ,若⊥a b ,则4sin()3πα+等于( )A.14- D. 147. (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .8. 已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为9.函数3sin(2)3y x π=-的图像为C ,如下结论中错误的是( ) A .图像C 关于直线1112x π=对称B .图像C 关于点2(,0)3π对称 C .函数()f x 在区间)127,12(ππ-内是增函数D .由x y 2cos 3=得图像向右平移125π个单位长度可以得到图像C10. 已知函数()(f x x ∈R)是偶函数,且(2)(2)f x f x +=-,当[0,2]x ∈时,()1f x x =-,则方程1()1||f x x =-在区间[10,10]-上的解的个数是 ( ) A .8 B .9 C .10 D .11 11. △ABC 内接于以O 为圆心,1为半径的圆,且02=-+OC OB OA ,则的值为( )A.1-B.1C. 2-D. 2 12.定义在(0,)上的函数)(),(/x f x f 是它的导函数,且恒有x x f x f tan )()(/<成立,则( ) A.)3(2)4(3ππf f >B. 1sin )6(2)1(πf f <C. )4()6(2ππf f >D. )3()6(3ππf f <第Ⅱ卷 非选择题(共90分)二.填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置。
13.抛物线22px y =过点()2,2M ,则点M 到抛物线焦点的距离为 .14.已知,x y 满足约束条件⎪⎩⎪⎨⎧≤-≤+≥231y x y x x ,点A (2,1), B (x ,y ),O 为坐标原点,则OA OB ∙最大值时为 .15.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π, 则异面直线AB 与OC 所成角余弦值为 .16.已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立, 且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范 围是 ,三.解答题:大本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)已知等差数列}{n a 中,公差0>d ,其前n 项和为n S ,且满足:4532=⋅a a ,1441=+a a .(1)求数列}{n a 的通项公式;(2)令122-=n S b nn ,*)()25()(1N n b b n n f n n ∈+=+,求)(n f 的最小值。
18.(本小题满分12分)已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,ACa cb cos cos 2=- (1)求A 的大小;(2)当3=a 时,求22cb +的取值范围.19.(本小题满分12分)在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 中点,又PA=AB=4,∠CDA=120°。
(1)求证:BD ⊥PC ;(2)设E 为PC 的中点,点F 在线段AB 上,若直线EF ∥平面PAD ,求AF 的长; (3)求二面角A ﹣PC ﹣B 的余弦值.20.(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。
该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%. 若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案。
21.(本小题满分12分)如图,已知椭圆)0(12222>>=+b a by a x 的长轴为AB,过点B 的直线l 与x轴垂直,椭圆的离心率23=e ,F 为椭圆的左焦点,且1=⋅BF AF (1) 求此椭圆的标准方程;(2) 设P 此椭圆上异于A,B 的任意一点, x PH ⊥轴,H 为垂足,延长HP 到点Q,使得HP=PQ,连接AQ并延长交直线l 于点M ,N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 位置关系。
22.(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值; (2)若x ∈[a ,2a]求f (x )的最大值;(3)若f(x1)=f(x2)=0(x1<x2),求证:.河北武邑中学2017—2018学年高三年级第三次调研考试数学试题(理科)答案一、D B A D B B A C C B D D17解:(Ⅰ)∵ 数列{}n a 是等差数列,∴ 144132=+=+a a a a .又4532=a a ,∴ ⎩⎨⎧==9532a a ,或⎩⎨⎧==5932a a .∵ 公差0>d ,∴ 52=a ,93=a . ∴ 423=-=a a d ,121=-=d a a .∴ 34)1(1-=-+=n d n a a n .(2)∵ n n n n n d n n na S n -=-+=-+=212)1(2)1(21, ∴ n b n 2=362625226252)1)(25(2)(=+≥++=++=nn n n n n n n f当且仅当nn 25=,即5=n 时,)(n f 取得最小值36. 18解:(I )△ABC 中,∵,由正弦定理,得:,即 2sinBcosA=sinAcosC+sinCcosA ,故2sinBcosA=sin (A+C )=sinB ,…(4分)3,21cos π==A A (2)由正弦定理得2sin sin sin ===CcB b A aC c B b sin 2,sin 2==,)2cos 12cos 1(2sin 4sin 42222C B C B c b -+-=+=+ )]120(2cos 2cos 2[20B B ---= )]2240cos(2cos 2[20B B ---=)302sin(240-+=B001200<<B00021030230<-<-B1)302sin(210≤-<-B 6322≤+<c b,,,即的一个法向量为的大小为θ,则余弦值为.20解:∵21'(34)0100y x =+>, ∴函数y =31(416)100x x ++是增函数,满足条件①。
设2116()(4)100y g x x x x==++,则222116(2)(24)'()(2)10050x x x g x x x x-++=-=, 令'()0g x =,得2x =。
当2x <时,'()0g x <,()g x 在(,2)-∞上是减函数; 当2x >时,'()0g x >,()g x 在(2,)+∞上是增函数,又1=a ,4=b ,即]2,1[∈x ,()g x 在]2,1[上是减函数,在]4,1[上是增函数, ∴当2x =时,()g x 有最小值=16%>15%, 当4=x 时,()g x =24%<25%,1=x 时,()g x =25%≤25%.∴能采用函数模型y =31(416)100x x ++作为生态环境改造投资方案。
21解:(1)可知,)0,(a A -,)0,(a A -,)0,(c F -,1))((2==-+=⋅b c a c a BF AF , 43122222222=-=-==a a a b a a c e ,得42=a椭圆方程为1422=+y x(2)设),,(00y x P 则)2,2)(2,(0000-≠≠x x y x Q 由)0,2(-A 得2200+=x y k AQ , 所以直线AQ 的方程为)2(2200++=x x y y , 由)0,2(B 得直线l 的方程为2=x)24,2(),28,2(0000++∴x y N x y M 由42222420000000-=--+=x y x x y x y k NQ,又因为442020=+y x 所以202044y x -=- 02y x k NQ -= 所以直线NQ 的方程为)(22000x x y x y y --=- 化简整理得到442202000=+=+y x y y x x ,所以点O 直线NQ 的距离2442020=+=yx d =圆O 的半径,直线QN 与以AB 为直径的圆O 相切。