数字计频器课程设计-六位数字计频器设计
- 格式:doc
- 大小:445.50 KB
- 文档页数:10
六位密码控制 课程设计一、课程目标知识目标:1. 学生能够理解六位密码的基本概念,掌握密码的组成元素和编码规则。
2. 学生能够运用六位密码进行信息的加密和解密,理解加密技术在日常生活中的应用。
3. 学生了解密码学的基本原理,认识到密码在信息安全中的重要性。
技能目标:1. 学生能够运用所学的六位密码知识,独立进行简单的信息加密和解密操作。
2. 学生能够通过小组合作,解决与密码相关的问题,提高解决问题的能力。
3. 学生能够运用密码学知识,设计出具有一定安全性的六位密码。
情感态度价值观目标:1. 学生对密码学产生兴趣,认识到学习密码学的实用价值,激发进一步学习的欲望。
2. 学生在小组合作中,学会尊重他人意见,培养团队协作精神和沟通能力。
3. 学生通过学习六位密码,增强信息安全意识,树立正确的网络道德观念。
课程性质:本课程为信息技术学科的一节实践性课程,旨在让学生通过实际操作,掌握六位密码的相关知识。
学生特点:六年级学生具有一定的信息技术基础,好奇心强,喜欢动手实践,善于合作。
教学要求:结合学生特点,注重理论与实践相结合,以任务驱动法引导学生自主探究,小组合作完成任务,培养学生的实践能力和团队协作精神。
通过本课程的学习,使学生能够将所学知识应用于实际生活,提高信息安全意识。
二、教学内容1. 密码学基础知识介绍:密码的概念、组成元素、编码规则。
2. 六位密码的构成:数字、字母、特殊字符的组合方式及其在密码中的应用。
3. 加密与解密技术:介绍对称加密和非对称加密的基本原理,以六位密码为例进行讲解。
4. 密码破译与防护策略:分析常见的密码破译方法,提出六位密码的防护措施。
5. 实践操作:指导学生运用所学知识,设计并实现一个六位密码控制系统。
6. 信息安全意识培养:结合实例,让学生了解信息安全的重要性,树立正确的网络道德观念。
教材章节关联:1. 《信息技术》六年级上册:第三章“网络与信息安全”中的第三节“密码与信息安全”。
数字频率计设计(PCB图+电路图+源程序)-课程设计数字频率计设计开题报告选题意义及国内外发展状况本课题主要研究如何用单片机来设计数字频率计。
因为在电子技术中,频率的测量十分重要,这就要求频率计要不断的提高其测量的精度和速度。
在科技以日新月异的速度向前发展,经济全球一体化的社会中,简洁、高效、经济成为人们办事的一大宗旨。
在电子技术中这一点表现的尤为突出,人们在设计电路时, 都趋向于用尽可能少的硬件来实现, 并且尽力把以前由硬件实现的功能部分, 通过软件来解决。
因为软件实现比硬件实现具有易修改的优点, 如简单地修改几行源代码就比在印制电路板上改变几条连线要容易得多, 故基于微处理器的电路往往比传统的电路设计具有更大的灵活性。
单片机就属于这一类设计电路,单片机因其功能独特和廉价已在全球有数???千种成功的范例, 在国内也开发出了充电器、空调控制器、电子定时器、汽车防盗器、卫星接收机以及各种智能仪表等实用产品。
频率计也是单片机的一种很重要的应用, 价格低廉且具有实际意义。
虽然使用逻辑分析仪也可以很好的测量信号的频率等参数,但其价格太昂贵。
实现测量的数字化、自动化、智能化已成为各类仪表设计的方向,而由单片机控制的、全自动的、数字显示的频率计就符合这一设计理念。
说到用单片机设计的频率计,这里说一下单片频率计ICM7216D。
单片频率计ICM7216D是美国Intersil公司首先研制的专用测频大规模集成芯片。
它是标准的28引脚的双列直插式集成电路,采用单一的+5V稳压电源工作。
它内含高频振荡器、10进制计数器、7段译码器、位多路复用器、能够直接驱动LED显示器的8段段码驱动器、8位位码驱动器。
其基本的测频范围为DC至10MHz,若加预置的分频电路,则上限频率可达40MHz或100MHz,单片频率计ICM7216D只要加上晶振、量程选择、LED显示器等少数器件即可构成一个DC至40MHz的微型频率计,可用于频率测量、机械转速测量等方面的应用。
电子电路课程设计课程教案
P91 (1)整体功能要求
频率计数器(简称频率计)主要用于测量正弦波、脉冲波、三角波和其他周期信号的频率。
其扩展功能是可以测量信号的周期和脉冲宽度。
采用数字显示技术(如LED、LCD等)显示测量结果。
为了突出数字电路的应用,本课题被测量信号仅限于TTL脉冲波。
(2)系统结构
数字频率计的整体结构要求如图7-19所示。
外部“被测信号”送入“测量电路”进行处理和测量,“挡位转换”可以用于选择测试项目,包括频率、周期或脉宽,也可以进一步选择测量频率挡位。
(3)技术指标
①被测信号波形:正弦波、三角波和矩形波。
②测量频率范围:分三挡:
1Hz~999Hz;
0.01kHz~9.99kHz;
0.1kHz~99.9kHz。
③测量周期范围:1ms~1s。
④测量脉宽范围:1ms~1s。
⑤测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误差)。
⑥输入阻抗:大于100kΩ。
(4)扩展技术指标
①要求测量频率时,1Hz~99.9kHz的精度均为1%。
②测量占空比。
测量精度:1%分辨率。
测量范围:1%~99%
(5)设计条件
①电源:直流稳压电源提供+5V电压。
②可供选择的元器件见表7-10。
填表说明:1 每项页面大小可自行添减。
2 课次为授课次序,填1、2、3等。
. I目录前言01. 总体设计方案11.1总体设计方案12. 单元模块设计12.1十进制计数器设计12.1.1 十进制计数器原件t10设计12.1.2 位十进制计数器的顶层设计22.2闸门控制模块EDA设计32.2.1 定时信号模块Timer32.2.2 控制信号发生器模块T_con42.3译码显示模块42.3.1 显示存放器设计42.3.2 译码扫描显示电路52.3.3 译码显示模块的顶层电路设计73. 软件测试83.1测试的环境83.2调试和器件编程84. 设计总结85. 参考文献9前言在电子技术高度开展的今天,各种电子产品层出不穷,而频率作为设计的最根本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程的自动化等优点。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的根本功能是测量正弦信号、方波信号、尖脉冲信号以及其它各种单位时间变化的物理量。
当今国外厂家生产的数字频率计在功能和性能方面都比拟优良,而且还在不断开展中,但其构造比拟复杂,价位也比拟高,在测量精准度要求比拟低的测量场合,使用这些数字频率计就不够经济合算。
我所设计的这款数字频率计能够可靠实现频率显示功能,原理及构造也比拟简单本次所做的课程设计就是一个数字频率计,能测量1HZ~9999HZ的矩形波信号,并正确地显示所测信号的频率值。
数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比拟复杂,而且会产生比拟大的延时,造成测量误差、可靠性差。
随着现场可编程门阵列FPGA 的广泛应用,以EDA工具作为开发手段,运用VHDL等硬件描述语言语言,将使整个系统大大简化,提高了系统的整体性能和可靠性。
采用FPGA现场可编程门阵列为控制核心,通过硬件描述语言VHDL编程,在Quartus‖仿真平台上编译、仿真、调试,并下载到FPGA芯片上,通过严格的测试后,能够较准确地测量各种常用的波形信号的频率,而且还能对其他多种物理量进展测量。
eda课程设计 数字频率计一、课程目标知识目标:1. 学生能够理解并掌握数字频率计的基本原理,包括频率的概念、测量方法及其在电子工程中的应用。
2. 学生能够运用所学知识,分析并识别EDA(电子设计自动化)软件中与数字频率计相关的元件和模块。
3. 学生能够运用电子元件搭建简单的数字频率计电路,并描述其工作过程。
技能目标:1. 学生能够运用EDA软件进行数字频率计电路的设计、仿真和调试,具备实际操作能力。
2. 学生能够通过小组合作,解决在数字频率计设计过程中遇到的技术问题,提高团队协作和问题解决能力。
情感态度价值观目标:1. 学生能够认识到数字频率计在电子工程领域的重要性和实际应用价值,激发对电子工程的兴趣和热情。
2. 学生在课程学习中,培养严谨的科学态度,注重实验数据的真实性和准确性。
3. 学生通过小组合作,学会尊重他人意见,培养良好的沟通能力和团队精神。
本课程针对高中年级学生,结合电子工程学科特点,强调理论与实践相结合,注重培养学生的动手操作能力和实际应用能力。
课程目标具体、可衡量,旨在帮助学生和教师在课程结束后,能够清晰地了解学生在知识、技能和情感态度价值观方面的预期成果。
同时,将课程目标分解为具体的学习成果,便于后续的教学设计和评估。
二、教学内容本章节教学内容依据课程目标,紧密围绕数字频率计的设计与实现,确保内容的科学性和系统性。
具体教学内容如下:1. 理论知识学习:- 频率概念及其测量方法- 数字频率计的原理与分类- EDA软件的基本操作与使用方法2. 实践操作环节:- 数字频率计电路设计原理- EDA软件中数字频率计电路搭建与仿真- 实际电路搭建与调试3. 教学大纲安排:- 第一课时:介绍频率概念、测量方法及数字频率计的原理与分类,让学生了解课程背景和目标。
- 第二课时:讲解EDA软件的基本操作与使用方法,引导学生学习并掌握软件应用。
- 第三课时:分析数字频率计电路设计原理,指导学生进行电路设计和仿真。
数字频率计逻辑电路设计一﹑简述在进行模拟﹑数字电路的设计﹑安装和调试过程中,经常要用到数字频率计。
数字频率计实际上就是一个脉冲计数器,即在单位时间里(如1秒)所统计的脉冲个数,如图3.1计数时序波形图所示。
频率数即为在1秒内通过与门的脉冲个数。
图3.1(a)门控计数图3.1(b)门控序列通常频率计是由输入整形电路﹑时钟振荡器﹑分频器﹑量程选择开关﹑计数器﹑显示器等组成。
如图3.2所示。
图3.2 方框图图3.2中,由于计数信号必须为方波信号,所以要用史密特触发器对输入波形进行整形,分频器输出的信号必须为1Hz,即脉冲宽度为1秒,这个秒脉冲加到与门上,就能检测到待测信号在1秒内通过与门的个数。
脉冲个数由计数器计数,结果由七段显示器显示。
二﹑设计任务和要求设计一个八位的频率计数器逻辑控制线路,具体任务和要求如下:1. 八位十进制数字显示。
2. 测显范围为1Hz~10MHz。
3. 量程分为四档,分别为*1000﹑*100﹑*10﹑*1。
三﹑可选用器材1. NET系列数字电子技术实验系统2. 直流稳压电源3. 集成电路:频率计数器专用芯片ICM7216B,74LS93,74LS123,74LS390,7555及门电路4. 晶振:8MHz,10MHz5. 数显:CL102,CL002,LC5011—116. 电阻﹑电容等四﹑设计方案提示数字频率计可分为三部分进行考虑:1. 计数﹑译码﹑显示这一部分是频率计数器不可少的。
即外部整形后的脉冲。
通过计数器在单位时间里进行计数﹑译码和显示。
计数器选用十进制的中规模(TTL/CMOS)集成计数器均可,译码显示可采用共阴或共阳的配套器件。
例如计数器选用74LS161,译码器为74LS248,数显器为LC5011—11。
也可选用四合一计数﹑寄存﹑译码﹑显示CL102或专用大规模频率计数器ICM7216芯片等。
中规模组成的计数﹑译码显示和四合一的数显。
我们在基本实验和前几个课题中都已使用过,使用时,可参阅有关章节。
数字频率计(51单片机)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--自动化与电子工程学院单片机课程设计报告课程名称:单片机原理与应用学院:自动化与电子工程院专业班级:学生姓名:完成时间:报告成绩:评阅意见:评阅教师日期目录第1章数字频率计概述 (1)数字频率计概述 0数字频率计的基本原理 0单脉冲测量原理 (1)第2章课程设计方案设计 (1)系统方案的总体论述 (1)系统硬件的总体设计 (2)处理方法 (2)第3章硬件设计 (3)单片机最小系统 (3)第4章软件设计 (4)系统的软件流程图 (4)程序清单 (6)第5章课程设计总结 (6)参考文献 (7)附录Ⅰ仿真截图 (8)附录Ⅱ程序清单 (14)第1章数字频率计概述数字频率计概述数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。
本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。
测量范围从10Hz—,精度为1%,用单片机实现自动测量功能。
基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以测量频率的方法对方波的频率进行自动的测量。
数字频率计的基本原理数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T(如图所示)。
图频率测量原理频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。
用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。
缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。
前言频率计的作用是对被测信号的频率进行测量,并以十进制数显示出来,测量范围越广误差越小越好。
频率计不但可以测频率,而且可以测周期并以十进制数显示,该设计的频率计就有此功能。
频率计的设计主要由四部分组成,即电源部分,被测信号源,频率测量和显示部分,周期测量和显示部分。
电源部分:由于数字频率计是由不同数字芯片和元件组成,数字芯片工作在0,1电平上,所以要对220Z,50HZ的交流电经过滤波,整形和稳压,使之变成电路工作所需的电压;被测信号源:由于此设计中被测信号源需自制,信号源可产生正弦波,方波和三角波,正弦波用电容三点式振荡电路产生,方波和三角波可由模电书上的方法生成,即电压比较器,电阻,电容按一定连接生成;频率测量和显示部分:数字频率计主要用来测频率,频率测量部分由555多谐振荡器,十分频器,数据选择器,二分频器,逻辑控制部分,放大整形电路,门控,计数器,锁存器,译码器,显示器,自动换挡部分,设计时需对各部分分别设计;周期测量部分:用来对被测信号周期进行测量,并按一定的误差要求用十进制显示,由二分频器,门控,数据选择器,555多谐振荡器,十分频器,逻辑控制部分,放大整形电路,门控,计数器,锁存器,译码器,显示器,自动换挡部分,电路的大部分可和频率测量部分共用,区别的是周期测量把被测信号作为门控信号,555多谐振荡器产生的信号作为被计数信号。
了解了频率计的各部分后,就要选择合适的芯片和元件,把各个部分的功能分别实现。
该设计的频率计具有频率测量和显示,周期测量和显示,自动换挡,测量频率范围为1HZ~1MHZ,周期范围为1us~1s,误差为0.1%的特点。
1.总体方案设计1.1 设计任务和要求设计一个能测量1Hz—1MHz,具有自动换挡功能的频率测量仪。
要求可以进行周期测量和显示并画出完整的电路图,说明电路的工作原理。
要求频率测量仪的周期范围为1us~1s,误差为0.1%。
1.2整体方案:同引言中的叙述,频率计由电源部分,被测信号源,频率测量和显示部分,周期测量和显示部分,下面对之分别设计,电源部分由220V,50HZ交流源,二极管滤波,电容整形,负反馈稳压部分组成;信号源由电容三点式振荡电路,电压比较器,电阻,电容组成的方波三角波产生电路;频率测量和显示部分,十分频器选择4518芯片,数据选择器选择74251芯片,二分频器选择4017芯片,逻辑控制部分选择74221芯片,放大整形电路选择三极管和555施密特触发器,门控用一个二输入和非门,计数器选择74LS90芯片,锁存器选择74LS273芯片,译码器选择74LS48芯片,显示器选择LTS547数码管,自动换挡部分主要有二进制加计数器74LV161和数据选择器选择74251;周期测量和显示部分的芯片型号和频率测量部分的选择相同。
课程设计简易计算器设计与实现长江职业学院工学院毕业实践报告课题名称:简易计算器设计与实现专业班级:计算机控制技术081班学生姓名:黄杨学号: 20082940班级序号 6实践性质:校内毕业实践实践成绩:指导老师:杜力2011年2月25日目录一、绪论1.1 计算器的历史 (5)1.2 电子计算器的特殊键 (6)1.3单片机概述 (6)1.4设计要求 (6)1.5我做简易模拟计算器的过程说明 (7)1.6系统的基本功能 (7)二、课题设计的分析与思路的确定 (7)三、芯片简介 (8)3.1MSC-51芯片简介 (8)3.2 MCS-51的引脚说明 (10)四、计算器程序设计 (12)4.1存储单元分配 (12)4.2主程序设计 (12)4.3 数码管显示数据转换子程序CONV (13)4.4 数码管动态显示子程序 (13)五、连接知识 (13)5.1键盘的连接 (13)5.2、显示器的连接 (14)六、仿真过程 (15)八、参考文献 (18)一、绪论本课题拟定以MCS-51系列单片机为控制中心,采用模块化的设计方案,运用液晶显示器或LED显示数据/键盘输入数据,以实现能够完成加、减、乘、除、数据存储等运算的简易计算器。
系统的功能是:(1)模拟的计算器能显示10位数字,开机运行时,只显示最低位为“0”,其余不显示;(2)4×4键盘分别表示:0到9,+,-,×,/,=,CL;(3)第一次按下,显示“D1”,第二次按下,显示“D1D2”,第三次按下,显示“D1D2D3”…8个全显示完毕,再次按下按键时,给出“嘀”的提示音;(4)可以对计算结果小于256的两个无符号数进行加、减、乘、除运算。
单片机程序用汇编语言编写,经过Wave软件调试,生成HEX文件,再用Proteus软件进行计算机仿真。
程序中键盘部分使用行列式扫描原理,若无键按下则调用动态显示程序,并继续检测键盘;若有键按下则得其键值,并通过查表转换为数字0—9和功能键与清零键的代号。
数字电子技术课程设计(频率计设计)姓名:学号:班级:成绩:指导老师:设计时间:一.设计题目自动换挡型1Hz-9.99KHz频率计二.设计要求1设计一个能测量1Hz—9.99KHz、TTL电平的频率计,具有自动换挡功能。
要求用三位数字显示,1—999Hz显示单位为Hz、1KHz—9.99KHz显示单位为0.01KHz。
画出完整的电路图,说明电路的工作原理。
2根据所给参考电路分析其工作原理并解答思考题。
3 根据上述原理电路图,在印刷电路图中标出元器件的位置及代号,并完成跳线,使连接完整。
4 组装、调试频率计;写出实验、调试报告。
选作内容:1频率计输入接口,可以测量5mV—10V的正弦波、三角波方波信号。
2让频率计具有以下精度:1—99Hz精度为0.2Hz100—999Hz精度为0.5Hz1KHz—9.99KHZ精度为1Hz三.题目分析:所谓频率,就是周期性信号在单位时间(1s)里变化的次数。
根据频率计的测频原理,可以选择合适的基准信号即闸门时间,对输入被测信号脉冲进行计数,实现测频的目的。
并且当频率超过一定值后,电路能够自动换挡。
四.整体构思:本数字频率计的设计思路是:1 数字频率计的主要功能是测量周期信号的频率。
频率是单位时间( 1S )内信号发生周期变化的次数。
如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。
2 数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。
这就是数字频率计的基本原理。
值了。
此时的时基信号为输入信号。
3 自动换挡,由于此频率计只有三个数码管显示,故数字频率即必须采用自动换挡的方式工作,当所测频率超过999Hz时自动换挡,借助分频器分频后通过数码管显示。
五.具体实现:画出总体方框图和原理图并给出说明。
原理图必须电脑画。
数字计频器课程设计
2008.12.29
六位数字计频器设计
一、数字频率计测频率基本原理
数字频率计的基本原理就是测量单位时间内脉冲信号的个数,即,
f=N/T
其中,f 是被测信号的频率,N 是计数器累加的脉冲个数,T 是测量时间。
基本原理如下图所示:
(1)时基单元
包括振荡器和分频器,用来产生周期为1s 的脉冲信号,称为时基信号。
控制电路
(2)控制电路
其一得到宽度为1s的方波,称为闸门信号,其二在每次取样后封锁主控门和时基信号的输入门
(3)计数单元
把通过主控门的被测信号输入计数器、寄存器、译码器和显示器。
(4)延时单元
数据显示一段时间,其时间的长短取决于延时电路,然后对计数器进行清零,重新进行测量。
(5)主控门
起控制被测信号通过的作用,在取样时间内主控门打开,清零和显示时间内主控门关闭。
(6)输入单元
将接受的各种信号放大、整形,变换为脉冲信号。
二、数字频率计主要技术指标
1、频率测量范围
在输入电压符合规定要求值时,能够正常进行测量的频率区间称为频率测量范围。
频率测量范围主要由放大整形电路的频率响应决定。
本方案的测量范围是1-999999Hz。
2、数字显示位数
频率计的数字显示位数决定了频率计的分辨率。
位数越多,分辨率越高。
本方案的显示位数为6位
3、测量时间
频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。
三、计频器功能
1、一秒显示一秒清零;
2、显示两秒清零一秒;
3、消隐功能;
4、能够实现开关和清零功能;
四、设计环境
本方案是以max+plus 2.0为设计和仿真平台,GW48-CK实验开发系统为应用平台。
五、方案及原理图
实验方案选择试验指导书提供的例题——二位十进制的频率计频器的类似的设计方案,以下将给出电路设计图并予以说明。
A、频率显示1s,0显示1s
Ⅰ、两位计数器原理图及说明
说明:
74390连接成两个独立的十进制计数器,待测信号clk通过一个与门电路进入74390计数器1的时钟输入端1CLKA,与门的另一端接使能enb当enb=1时能够计数,enb=0时禁止计数。
计数器的1到4位输出集成总线的方式q[3..0],并由OUTPUT输出口向外输出计数值。
同时由一个4输入与门和两个方向器构成进位信号进入第2个计数器的时钟输入端。
第2个的4位输出集总线成q[7..4],两个计数器的进位信号,既可用于扩展的的今威信好友6输入与们和两个反相器产生,由cout输出,Clr为计数器的清零信号。
并将其封装成conter
元件。
波形图:
Ⅱ、六位计数器:
说明:
将上步得到的两位十进制计数器级联成六位十进制计数器,f_in为信号输入端,cnt_en为信号使能端,clr为清零端,计数值由q[3..0]、q[7..4]、q[11..8]、q[15..12]、q[19..16]、q[23..20]输出。
并封装成c11元件。
连接原理和两位十进制计数器的原理一样,不在叙述,波形图也不在展示。
Ⅲ、控制电路
说明:
通过以7493十六进制计数器和74154十六进制译码器为主要的元件,当clk输入频率8hz的信号,enb为计数控制端。
clr在lock信号1秒后发出,clr和lock都是2秒一周期,所以能够实现频率显示1s,“0”状态显示1s,而key为1(高电平)。
并封装成c22元件。
波形图:
Ⅳ、寄存器电路图:
说明:
锁存器选用的是74374,计数器记的数将保存在锁存器中,并将其封装为元件命名为count。
Ⅴ、总电路图:
说明:
c22为控制电路,c11为计数器,在以上已经进行说明了。
波形图:
B、频率显示2s,0显示1s:
该功能只需改变控制电路即可实现。
说明:
主要是用7493(十六进制的计数器)74154(十六进制的译码器)和7476(jk触发器)为主要元件和一些辅助元件构成。
enb对输入信号clk,周期比为1:3,其中enb为使能端,其周期为3秒,使能1秒,停止2秒,从而完成要求的功能。
Clr为计数器清零控制端,lock为锁存控制端。
波形图:
C、消隐
74374的后面加上74248译码器就行,电路:
波形图:
六、实验体会
通过课程设计不仅将所学的理论知识应用到实际中,还体会到设计过程中所遇到的问题和解决问题的思路,这些是在理论知识学习中很少涉及的。
还有就是在实际的设计过程中必须考虑设计最简单的方
案而又不影响功能的实现和需要,达到设计效果的最优化。