2016年广东省实验中学中考数学一模试卷带答案解析
- 格式:doc
- 大小:1.29 MB
- 文档页数:28
广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】2的倒数是()A.2 B.﹣2 C. D.【答案】C【解析】试题分析:直接根据倒数的定义:乘积是1的两数互为倒数,解得2的倒数是.故选C.考点:倒数【题文】下列图形中,不是中心对称图形有()A. B. C. D.【答案】D【解析】试题分析:根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.可得:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.考点:中心对称图形【题文】数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【答案】C【解析】试题分析:根据众数是一组数据中出现次数最多的数,数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.考点:众数【题文】下列四个几何体中,主视图是三角形的是(    )A. B. C. D.【答案】B【解析】试题分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.考点:简单几何体的三视图【题文】下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a6【答案】D【解析】试题分析:A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由3a﹣a=2a,可得选项A不正确;B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由a2+a2=2a2,可得选项B不正确;C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由(3a)﹣(2a)=a,可得选项C不正确;D:幂的乘方,底数不变,指数相乘.由(a2)3=a6,可得选项D正确.故选:D.考点:1、幂的乘方与积的乘方;2、合并同类项【题文】函数中自变量x的取值范围是()A. x≥-3B. x≥-3且x≠1C. x≠1D. x≠-3且x≠1【答案】B【解析】试题分析:根据被开方数为非负数和分母不分0列不等式:,解得:x≥﹣3且x≠1.故选B.考点:函数自变量的取值范围【题文】如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【答案】B【解析】试题分析:连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数∠BOC=2∠BAC=2×36°=72°,然后利用弧长计算公式求解,则劣弧BC的长是:=.故选B.考点:1、弧长的计算;2、圆周角定理【题文】如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【答案】B【解析】试题分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB=,tanB′=tanB=.故选B.考点:1、锐角三角函数的定义;2、旋转的性质【题文】二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【答案】B【解析】试题分析:由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围a<0,对称轴在y轴的左边,可由,可以确定b的取值范围b<0,然后就可以确定反比例函数与正比例函数y=bx 在同一坐标系内的大致图象:反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.考点:1、二次函数的图象;2、正比例函数的图象;3、反比例函数的图象【题文】如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【答案】D【解析】试题分析:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.考点:规律型:图形的变化类【题文】分解因式:2a2+4a=.【答案】2a(a+2)【解析】试题分析:直接提取公因式2a,进而分解因式得出2a2+4a=2a(a+2).考点:因式分解-提公因式法【题文】正n边形的一个外角的度数为60°,则n的值为.【答案】6【解析】试题分析:先根据正n边形的一个外角的度数为60°求出其内角的度数120°,再根据多边形的内角和公式=120°,解得n=6.考点:多边形内角与外角【题文】已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.【答案】m>﹣2【解析】试题分析:根据一次函数的图象与系数的关系列出关于m的不等式m+2>0,求出m的取值范围m>﹣2.考点:一次函数图象与系数的关系【题文】关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.【答案】0或8【解析】试题分析:先根据关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,可得△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.考点:根的判别式【题文】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B’重合.若AB=2,BC=3,则△FCB’与△B’DG的面积比为.【答案l【答案】100°【解析】试题分析:作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″=180°﹣∠130°=50°,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.考点:轴对称-最短路线问题【题文】解方程:【答案】x=2【解析】试题分析:观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.考点:解分式方程【题文】先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【答案】2a+2,【解析】试题分析:先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.试题解析:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.考点:整式的混合运算—化简求值【题文】以AB、AC为边向△ABC外作等边△A BD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD .(尺规作图,不写作法,保留作图痕迹)【答案】作图与证明见解析【解析】试题分析:分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.试题解析:如图所示:∵△ABD和△ACE都是等边三角形,∴A D=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.考点:1、全等三角形的判定与性质;2、等边三角形的性质;3、作图—复杂作图【题文】我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元【解析】试题分析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.试题解析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.考点:1、一元一次不等式的应用;2、二元一次方程组的应用【题文】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)20,2,1;(2)图形见解析(3)【解析】试题分析:(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.试题解析:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:.考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图【题文】如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且,求m的值和一次函数的解析式.【答案】(1)m>,(2)4,y=x﹣5【解析】试题分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x ,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.试题解析:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵,∴,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.考点:反比例函数与一次函数的交点问题【题文】已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【答案】(1)证明见解析(2)4.8【解析】试题分析:(1)连接OM.根据OB=OM,得∠1=∠3,结合BMl∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.考点:1、切线的判定与性质;2、等腰三角形的性质;3、圆周角定理;4、解直角三角形【题文】如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A 、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【答案】(1)2(2)①不存在,②t=时,PQ最小值为,△CPQ的外接圆与直线AB相交【解析】试题分析:(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.试题解析:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.考点:圆的综合题【题文】已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q .连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【答案】(1)B(4,0),C(﹣1,0)(2)①P(,)或(7,24)②P(4,0)或(5,﹣6)③m<0,或m>【解析】试题分析:(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.试题解析:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m>.考点:二次函数综合题。
机密★启用前2016年广东省初中毕业生学业考试模拟考试(一)数 学 试 卷说明:1.全卷共6页,满分为100分,考试用时为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑. 1.下面有理数中,最大的数是 A.21B.0C.-1D.-32.﹣的倒数的相反数等于A .﹣2B .C .﹣D .23.2015年春节“黄金周”某市接待游客总数为833100人次,833100用科学记数法表示为A .0.833×106B .83.31×105C .8.331×105D .8.331×1044. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这五个数据的众数和中位数分别是A .9,8B .9,7C .8,9D .9,9 5.(﹣2x 2)3的结果是A .﹣2x 5B .﹣8x 6C .﹣2x 6D .﹣8x 56.若关于y 的一元二次方程ky 2﹣7y ﹣7=0有实根,则k 的取值范围是A .k >﹣B .k≥﹣且k ≠0C .k≤﹣D .k >﹣且k≠07.三角形两边的长分别是4和10,则此三角形第三边的长可能是 A.5 B.6 C.11 D.168.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5. 从中随机摸出一个小球,其标号大于2的概率为 A. 15B. 25C. 35D. 459.如右下图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,若y 关于x 的图象如图所示,则ABC ∆的面积是 A.10 B.16 C.18 D.2010.如题10图,、是⊙O的两条互相垂直的直径,点从点O出发,沿的路线匀速运动,设(单位:度),那么与点运动的时间(单位:秒)的关系图是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 12.不等式组的解集是 .故答案为:﹣1<x≤2.13.如右图,正方形ABCD 中,M ,N 分别为BC ,CD 的中点,连接AM ,AC 交BN 与点E ,F ,则EF : FN 的值是__________.14.点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 15.如图,半圆的直径10=AB ,P 为AB 上一点,点C ,D 为半圆的三等分点,则图中阴影部分的面积等于 .图1图216.如果记y==f (x ),并且f (1)表示当x=1时y 的值,即f (1)==;f ()表示当x=时y 的值,即f ()==,那么f (1)+f (2)+f ()+f (3)+f()+…+f(n )+f ()= .(结果用含n 的代数式表示,n 为正整数). 三、解答题(一)(本大题共3小题,每小题6分,共18分)170114cos30(21)()2-+-.18、先化简,再求值:1)111(2-÷-+a aa ,其中.3-=a19.从△ABC(CB <CA )中裁出一个以AB 为底边的等腰△ABD,并使得△ABD 的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明) (2)若AB=2,∠CAB=30°,求裁出的△ABD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴某市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(2)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.21.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D 是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24. AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.25.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD 于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2016年广东省初中毕业生学业考试模拟考试(一)数学试卷参考答案及评分说明一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分)11.11 . 12.﹣1<x≤213.答案:试题分析:设EF=x,FN=y,正方形ABCD的边长为a,根据正方形的性质、M、N分别为BC、CD的中点及勾股定理即可得到关于x、y、a的方程组,从而求得结果.设EF=x,FN=y,正方形ABCD的边长为a,由题意得,解得则EF:FN的值是.点评:正方形的性质的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.1415.答案:16.答案:三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式=1231-=-……………4分3323121-+-=-……………6分18.解:原式 =aa a a a a 1)1)(1(1)1)(1(-⋅-++-+……………3分=aa a a a 1)1)(1(2-⋅-+……………4分 =1+a a…………………………5分 把3-=a 代入上式,得23133=+--……………6分19.【考点】作图—复杂作图.【分析】(1)直接利用线段垂直平分线的性质作出AB 的垂直平分线,交AC 于点D ,进而得出△ABD ;(2)利用锐角三角形关系得出DE 的长,进而利用三角形面积求法得出答案. 【解答】解:(1)如图所示,△ABD 即为所求............................2分(2)∵MN 垂直平分AB ,AB=2m ,∠CAB=30°,∴AE=1m ,……………3分则tan30°==,……………4分 解得:DE=.……………5分故裁出的△ABD 的面积为:×2×=(m 2).……………6分【点评】此题主要考查了复杂作图以及线段垂直平分线的性质与作法、三角形面积求法、锐角三角函数关系等知识,熟练应用线段垂直平分线的性质是解题关键四、解答题(二)(本大题共3小题,每小题7分,共21分) 20. 解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);……1分 则第五组人数为:50﹣4﹣8﹣20﹣14=4(名); 根据题意得:考试成绩评为“B ”的学生大约有:×1500=420(名); ……………3分如图:……………4分(2)画树状图得:……………7分点评: 此题考查了树状图法与列表法求概率的知识以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)证明:∵ 四边形ABCD 是矩形∴ CD AB =, ︒=∠=∠90C A ............................1分 由折叠可得 CD ED =, ︒=∠=∠90C E∴ ED AB =, ︒=∠=∠90E A ............................2分 又∵ EFD AFB ∠=∠∴ ABF ∆≌EDF ∆............................3分(2)解: 四边形BMDF 是菱形。
2013年初中毕业生学业考试模拟试题数学说明:1.全卷共 4 页,满分120 分,考试时间 100分钟; 2. 答案务必填写在答卷相应位置上,否则无效。
一、选择题(每小题3分,共30分)1. -31的倒数是( )A -3B 3C -31D 312. 下列运算中,正确的是( )A x 3-x 2=xB (x -y) 2=x 2-y 2C x 2·x 3=x 6D (x 3)2=x 63. 用配方法解方程时,方程x 2-2x -3=0变形正确的是( )A (x -1)2=2B (x -1)2=4C (x -1)2=1D (x -1)2=74. 函数y=21x 中,自变量x 的取值范围是:( )A x > 2B x <2C x ≠ 2D x ≠ -2 5. 不等式2-3x ≥2x -8的非负整数解有:( )A 1 个B 2个C 3个D 4个6. 在围棋盒中有4颗黑色棋子和a 颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是53,则a =( )A 6B 4C 3D 2 7. 如图,已知A B ∥CD,BE 平分∠ABC ,∠CDE =1500,则∠C 的度数是:( ) A 1000 B 1100 C 1200 D 1500 8. 如图,在△ABC 中,∠C =900,AD 是BC 边上的中线,BD =4,AD =25则tan ∠CAD 的值是( ) A 2 B 3 C 5 D 29. 如图,AB 是⊙O 的直径,弦C D ⊥AB ,垂足为E ,如果AB =10,CD =8,那么,sin ∠OCE=( ),A 34B 53C 54D 4310. 如图,两块相同的直角三角形完全重合在一起,∠A =300,AC =10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D =( ) A 2.5 B 2 C 32 D235二、填空题(每小题4分,共24分) 11.分解因式:2x 2-8=12.化简:x 1-11-x =13.若关于x 的方程ax 2+2 (a+2)x+a=0有实数解,那么实数a 的取值范围是 . 14.不等式组⎩⎨⎧+≤〉-53412x x xx 的解集是 .15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠D 的大小是 .16如图,在矩形ABCD 中,AB =3,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三.解答题(一)(每小题5分,共15分)17.计算:12-(-2013)0+(21)-1 +31- 18.已知一次函数y=2x+1的图象分别与坐标轴相交于A 、B 两点(如图所示)与反比例函数的图象相交于C 点,(1)写出A 、B 两点的坐标; (2)作CD ⊥x 轴,垂足为D ,如果OB 是△ACD是中位线,求反比例函数y=xk(k >0)的关系式.19.尺规作图:已知△ABC ,请用直尺和圆规作出△ABC 的外接圆O.(要求保留作图痕迹,不写作法.)三、解答题(二)(每小题8分,共24分)20.已知甲同学手中藏有三张分别标有数字21、41、1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b, (1)请你用树状图或列表法列出所有可能的结果;(2)现制定这样一个游戏规则,若所选出的a 、b 能使得方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜,请问这样的游戏规则公平吗?请你用概率知识解释。
2016年广东省初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-2的相反数是( )A.2B.-2C.12D.-122.如图所示,a与b的大小关系是( )A.a<bB.a>bC.a=bD.b=2a3.下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27 700 000人,将27 700 000用科学记数法表示为( )A.0.277×107B.0.277×108C.2.77×107D.2.77×1085.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为( )A.√2B.2√2C.√2+1D.2√2+16.某公司的拓展部有五个员工,他们每月的工资分别是3 000元,4 000元,5 000元,7 000元和10 000元,那么他们工资的中位数是( )A.4 000元B.5 000元C.7 000元D.10 000元7.在平面直角坐标系中,点P(-2,-3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cos α的值是( )A.34B.43C.35D.459.已知方程x-2y+3=8,则整式x-2y的值为( )A.5B.10C.12D.1510.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )第Ⅱ卷(非选择题,共90分)二、填空题(本大题6小题,每小题4分,共24分) 11.9的算术平方根是 . 12.分解因式:m 2-4= .13.不等式组{x -1≤2-2x ,2x 3>x -12的解集是 .14.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC,已知圆锥的高h 为12 cm,OA=13 cm,则扇形AOC 中AC⏜的长是 cm(计算结果保留π).15.如图,矩形ABCD 中,对角线AC=2√3,E 为BC 边上一点,BC=3BE.将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的B'处,则AB= .16.如图,点P 是四边形ABCD 外接圆☉O 上任意一点,且不与四边形顶点重合.若AD 是☉O 的直径,AB=BC=CD,连接PA,PB,PC.若PA=a,则点A 到PB 和PC 的距离之和AE+AF= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:|-3|-(2 016+sin 30°)0-(-12)-1.18.先化简,再求值:a+3a·6a 2+6a+9+2a -6a 2-9,其中a=√3-1.19.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作边AC 的中点E,并连接DE(保留作图痕迹,不要求写作法); (2)在(1)的条件下,若DE=4,求BC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条长1 200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米;(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.22.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;(4)若该学校有1 500人,请你估计该学校选择足球项目的学生人数约是人.五、解答题(三)(本大题3小题,每小题9分,共27分)(x>0)相交于点P(1,m).23.如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2x(1)求k的值;(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q( );),求该抛物线的函数解析式,并求出抛物线的对(3)若过P、Q二点的抛物线与y轴的交点为N(0,53称轴方程.24.如图,☉O是△ABC的外接圆,BC是☉O的直径,∠ABC=30°.过点B作☉O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作☉O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=√3,求DE的长;4(3)连接EF,求证:EF是☉O的切线.25.如图,BD是正方形ABCD的对角线,BC=2.边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.答案全解全析:一、选择题1.A -2的相反数是2,故选A.评析 本题考查相反数的概念,属简单题.2.A 因为数轴上右边的点表示的数总是比左边的点表示的数大,所以由题图可知b>a,故选A. 评析 本题考查由数轴上的点的位置比较相应数的大小.3.B 由中心对称图形旋转180°后与原图形重合,可知直角三角形、正五边形和正三角形都不是中心对称图形,只有平行四边形是中心对称图形.故选B.4.C 27 700 000=2.77×107 ,故选C.5.B 如图,连接BD,由题可知BC=CD=1, ∴BD=√2.∵E,F 分别为BC,CD 的中点, ∴EF=12BD=√22,∴正方形EFGH 的周长为2√2. 故选B.评析 本题考查正方形的性质,三角形的中位线等.6.B 将数据由小到大排列,最中间的数据是5 000,∴他们工资的中位数是5 000元,故选B. 评析 本题考查中位数,求中位数时,易忽略排序而导致错误.7.C ∵点P 的横坐标与纵坐标都是负数, ∴点P 在第三象限.8.D 过点A 作AB 垂直x 轴于B,则AB=3,OB=4. 由勾股定理得OA=5. ∴cos α=OB OA =45.故选D.9.A 把x-2y 看成一个整体,移项得x-2y=8-3=5.评析 本题主要考查整体思想,整体代入法是解决此类问题的常用方法,属容易题.10.C 设正方形的边长为a,则当点P 在AB 上时,y=12·AP ·CB=12·x ·a=12ax,显然y 是x 的正比例函数,且12a>0,排除A 、B 、D,故选C. 二、填空题 11.答案 3解析 9的算术平方根为3. 12.答案 (m+2)(m-2)解析 m 2-4=m 2-22=(m+2)(m-2). 评析 本题考查因式分解、平方差公式. 13.答案 -3<x ≤1解析 解x-1≤2-2x,得x ≤1. 解2x 3>x -12,得x>-3.所以原不等式组的解集为-3<x ≤1.14.答案 10π解析 根据勾股定理可知,圆锥的底面半径为√132-122=5 cm.所以扇形AOC 中AC⏜的长为2π×5=10π cm. 15.答案 √3解析 由折叠和矩形的性质,可知BE=B'E,∠AB'E=∠ABE=90°,∴∠EB'C=90°.∵BC=3BE,∴EC=2BE=2B'E,∴∠ACB=30°,∴AB=12AC.∵AC=2√3,∴AB=√3.评析 本题考查折叠和矩形的性质等知识.属中档题.16.答案 1+√32 a解析 如图,连接OB 、OC,∵AB=BC=CD,∴AB⏜=BC ⏜=CD ⏜. 又∵AD 是☉O 的直径,∴∠AOB=∠BOC=∠COD=60°,∴∠CPB=∠APB=30°,∴AE=12PA=12a,∠APC=60°,Rt △APF 中,AF=APsin 60°=√32a,∴AE+AF=1+√32 a.评析 本题主要考查圆的有关性质与锐角三角函数.三、解答题(一)17.解析 原式=3-1-(-2)(3分)=2+2(5分)=4.(6分)评析 本题主要考查绝对值、零指数幂和负整数指数幂的相关计算.18.解析 原式=a+3a ×6(a+3)2+2(a -3)(a+3)(a -3)(2分)=6a (a+3)+2a+3=6a (a+3)+2aa (a+3)(3分)=2a .(4分)当a=√3-1时,原式=√3-1=√3+1.(6分)评析 本题主要考查分式的化简、求值、因式分解和分母有理化运算.19.解析 (1)如图.(2分)E 点,DE 即为所求.(3分)(2)∵DE 是△ABC 的中位线,且DE=4,∴BC=2DE=2×4=8.(6分)评析 本题主要考查平面几何中尺规作图的基本方法(中点的作法),以及三角形中位线的性质.四、解答题(二)20.解析 (1)设原计划每天修建道路x m,则实际平均每天修建道路为(1+50%)x m.(1分)由题意得,1 200x -1 200(1+50%)x =4.(2分)解得x=100.经检验,x=100是原方程的解.(3分)答:这个工程队原计划每天修建道路100米.(4分)(2)设实际平均每天修建道路的工效比原计划增加y,由题意得,100(1+y)(1 200100-2)=1 200.解得y=0.2,即y=20%.(6分)答:如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加20%.(7分) 评析 本题主要考查分式方程、一元一次方程的解法和应用,考查运用方程思想解决实际问题的能力.21.解析 ∵Rt △ABC 中,∠B=30°,∠ACB=90°,∴∠A=60°.(1分)∵CD ⊥AB,∴∠ADC=90°,∠ACD=30°.(2分)∵AC=a,∴Rt △ADC 中,AD=12AC=a 2,CD=√3AD=√32a.(4分)同理可得,Rt △DFC 中,DF=12CD=√34a,CF=√3DF=34a.(5分)Rt △FHC 中,FH=12CF=38a,CH=√3FH=3√38a,(6分)Rt △CHI 中,CI=√3CH=98a.(7分) 评析 本题考查直角三角形的基本性质与运算.22.解析 (1)250.(1分)(2)图形正确得满分.(3分)(3)108.(5分)(4)480.(7分)评析 本题主要考查条形统计图和扇形统计图的相关计算,以及通过样本推算总体的数据分析能力.五、解答题(三)23.解析 (1)把P(1,m)代入y=2x ,得m=21=2,(1分)∴P(1,2).把P(1,2)代入y=kx+1,得2=k+1,∴k=1.(2分)(2)(2,1).(4分)(3)由N (0,53),可设抛物线的函数解析式为y=ax 2+bx+53,(5分) 把P(1,2)和Q(2,1)代入上式可得{2=a +b +53,1=4a +2b +53.(6分)解得{a =-23,b =1.(7分) ∴抛物线的解析式为y=-23x 2+x+53.(8分) 对称轴方程为x=-b 2a =-1-43=34.(9分) 评析 本题考查一次函数、反比例函数和二次函数的图象及性质,考查待定系数法和函数方程思想的运用能力.24.解析 (1)证明:∵BC 是☉O 的直径,∴∠BAC=∠BAD=90°.∵∠ABC=30°,OA=OB=OC,∴∠OAB=∠OBA=30°,∴∠OAC=∠OCA=∠AOC=60°,∴∠ACF=∠DAE=120°.(1分)∵AF 是☉O 的切线,∴OA ⊥AF,∴∠OAF=90°,∴∠CAF=90°-∠OAC=90°-60°=30°.(2分)∵BD 是☉O 的切线,∴∠D=90°-∠BCD=90°-60°=30°,∴∠D=∠CAF,∴△ACF ∽△DAE.(3分)(2)设OC=r,∵△OAC 是等边三角形,∴S △AOC =12·r ·√32r=√34r 2,(4分)∴√34r 2=√34,∴r=1或r=-1(舍去),∴OC=1.∴AB=√3,BD=2√3.(5分)∵∠BEO=180°-∠DAE-∠D=180°-120°-30°=30°,∴∠BEO=∠BAO,∴BE=AB=√3,∴DE=BD+BE=3√3.(6分)(3)证明:过点O 作OG ⊥EF,垂足为G.∵∠AFB=∠ACB-∠CAF=30°,∴AC=FC=1.∴BF=3,OF=2.(7分)在Rt △BEF 中,EF=√BE 2+BF 2=√(√3)2+32=2√3,∵∠EBF=∠OGF=90°,∠OFG=∠EFB,∴Rt △OFG ∽Rt △EFB,(8分)∴OG EB =OF EF , ∴√3=2√3,∴OG=1,∴OG=OC,∴EF 是☉O 的切线.(9分)评析 本题考查直角三角形、等腰三角形、等边三角形及圆的相关知识.25.解析 (1)四边形APQD 是平行四边形.(1分)(2)OA=OP 且OA ⊥OP.证明如下:①当BC 向右平移时,如图,∵四边形ABCD 是正方形,∴AB=BC,∠ABD=∠CBD=45°.∵PQ=BC,∴AB=PQ.∵QO ⊥BD,∴∠BOQ=90°,∴∠BQO=90°-∠CBD=45°,∴∠BQO=∠CBD=∠ABD=45°,∴OB=OQ.在△ABO 和△PQO 中,{AB =PQ ,∠ABO =∠PQO ,OB =OQ ,∴△ABO ≌△PQO(SAS).(3分)∴OA=OP,∠AOB=∠POQ.∵∠POQ+∠BOP=∠BOQ=90°,∴∠AOB+∠BOP=90°,即∠AOP=90°.∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(4分)②当BC 向左平移时,如图,同理可证,△ABO ≌△PQO(SAS).∴OA=OP,∠AOB=∠POQ,∴∠AOP+∠POB=∠POB+∠BOQ,∴∠AOP=∠BOQ=90°,∴OA ⊥OP,∴OA=OP 且OA ⊥OP.(5分)(3)过点O 作OE ⊥BC 于E.在Rt △BOQ 中,OB=OQ,∴OE=12BQ.①当BC 向右平移时,如图,(6分)BQ=BP+PQ=x+2,∴OE=12(x+2).∵y=S △OPB =12BP ·OE=12x ·12(x+2),∴y=14x 2+12x(0≤x ≤2).当x=2时,y 有最大值2.(7分)②当BC 向左平移时,如图,BQ=PQ-PB=2-x,∴OE=12(2-x).∵y=S △OPB =12BP ·OE =12x ·12(2-x),∴y=-14x 2+12x(0≤x ≤2). 当x=1时,y 有最大值14.(8分)综上所述,线段BC 在其所在直线平移过程中,△OPB 的面积能够取得最大值,最大值为2(参考下图).(9分)评析 本题考查对正方形、直角三角形和平行四边形基本性质的理解与应用,考查数形结合思想和分类讨论思想.。
2016年广东省初中毕业生学业考试模拟考试(一)
数学试卷参考答案及评分说明
一、选择题(本大题共10小题,每小题3分,共30分)
1 2 3 4 5 6 7 8 9 10
B D
C A B B C C A B
二、填空题(本大题6小题,每小题4分,共24分)
11.11 . 12.﹣1<x≤2
13.答案:
试题分析:设EF=x,FN=y,正方形ABCD的边长为a,根据正方形的性质、M、N分别为BC、CD的中点及勾股定理即可得到关于x、y、a的方程组,从而求得结果.
设EF=x,FN=y,正方形ABCD的边长为a,由题意得
,解得
则EF:FN的值是.
点评:正方形的性质的应用是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,
一般难度不大,需熟练掌握.
14.(﹣2,﹣3)
15.答案:
16.答案:。
广东省实验中学2016届九年级中考第一次模拟考试数学试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C.12D.12【答案】C考点:倒数2.下列图形中,不是中心对称图形有()A.B.C.D.【答案】D【解析】试题分析:根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.可得:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.考点:中心对称图形3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【答案】C【解析】试题分析:根据众数是一组数据中出现次数最多的数,数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.考点:众数4.下列四个几何体中,主视图是三角形的是()【答案】B考点:简单几何体的三视图5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a6【答案】D【解析】试题分析:A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由3a﹣a=2a,可得选项A不正确;B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由a2+a2=2a2,可得选项B不正确;C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由(3a)﹣(2a)=a,可得选项C不正确;D:幂的乘方,底数不变,指数相乘.由(a2)3=a6,可得选项D正确.故选:D.考点:1、幂的乘方与积的乘方;2、合并同类项6.函数中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【答案】B考点:函数自变量的取值范围7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.15π B.25π C.35π D.45π【答案】B【解析】试题分析:连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数∠BOC=2∠BAC=2×36°=72°,然后利用弧长计算公式求解,则劣弧BC的长是:721180π⨯=25π.故选B.考点:1、弧长的计算;2、圆周角定理8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A .12 B .13 C .14 D 【答案】B 【解析】试题分析:过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB=13CD BD =,tanB′=tanB=13. 故选B .考点:1、锐角三角函数的定义;2、旋转的性质 9.二次函数y=ax 2+bx+c 的图象如图所示,反比例函数ay x=与正比例函数y=bx 在同一坐标系内的大致图象是( )A .B .C .D .【答案】B 【解析】试题分析:由已知二次函数y=ax 2+bx+c 的图象开口方向可以知道a 的取值范围a <0,对称轴在y 轴的左边,可由02b x a =-<,可以确定b 的取值范围b <0,然后就可以确定反比例函数ay x=与正比例函数y=bx 在同一坐标系内的大致图象:反比例函数ay x=的图象在第二四象限,正比例函数y=bx 的图象在第二四象限.故选:B.考点:1、二次函数的图象;2、正比例函数的图象;3、反比例函数的图象10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【答案】D考点:规律型:图形的变化类二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a= .【答案】2a(a+2)【解析】试题分析:直接提取公因式2a,进而分解因式得出2a2+4a=2a(a+2).考点:因式分解-提公因式法12.正n边形的一个外角的度数为60°,则n的值为.【答案】6【解析】试题分析:先根据正n 边形的一个外角的度数为60°求出其内角的度数120°,再根据多边形的内角和公式(2)180n n-⋅=120°,解得n=6.考点:多边形内角与外角13.已知一次函数y=(m+2)x+3,若y 随x 值增大而增大,则m 的取值范围是 . 【答案】m >﹣2 【解析】试题分析:根据一次函数的图象与系数的关系列出关于m 的不等式m+2>0,求出m 的取值范围m >﹣2. 考点:一次函数图象与系数的关系14.关于x 的一元二次方程x 2+(m ﹣2)x+m+1=0有两个相等的实数根,则m 的值是 . 【答案】0或8考点:根的判别式15.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG 的面积比为 .【答案】169【解析】试题分析:设BF=x ,则CF=3﹣x ,B'F=x ,在Rt △B′CF 中,B'F 2=B′C 2+CF 2,即x 2=1+(3﹣x )2,利用勾股定理求出x 的值53,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出22''4163()()'19FCB B DGS FC S B D ===.考点:1、翻折变换(折叠问题);2、矩形的性质16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.【答案】100°考点:轴对称-最短路线问题三、解答题17.(9分)解方程:113 22xx x-+= --【答案】x=2【解析】试题分析:观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:原方程即11322xx x-+=--.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根, ∴原方程无解. 考点:解分式方程18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a ﹣1),其中,﹣1. 【答案】2a+2,考点:整式的混合运算—化简求值19.(10分)以AB 、AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,请你完成图形,并证明:BE=CD .(尺规作图,不写作法,保留作图痕迹) 【答案】作图与证明见解析 【解析】试题分析:分别以A 、B 为圆心,AB 长为半径画弧,两弧交于点D ,连接AD ,BD ,同理连接AE ,CE ,如图所示,由三角形ABD 与三角形ACE 都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS 得到三角形CAD 与三角形EAB 全等,利用全等三角形的对应边相等即可得证.试题解析:如图所示:证明:∵△ABD 和△ACE 都是等边三角形, ∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB , ∵在△CAD 和△EAB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴BE=CD.考点:1、全等三角形的判定与性质;2、等边三角形的性质;3、作图—复杂作图20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.考点:1、一元一次不等式的应用;2、二元一次方程组的应用21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)20,2,1;(2)图形见解析(3)1 2(2)如图:考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数43myx-=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且13BCAB=,求m的值和一次函数的解析式.【答案】(1)m>43,(2)4,y=12x﹣5【解析】试题分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣8x,∵13 BCAB=,∴14 BCAC=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴1 44y BCAC-==,解得:y=﹣1,∴﹣8x=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴24 81k bk b+=-⎧⎨+=-⎩,解得:125 kb⎧=⎪⎨⎪=-⎩,∴一次函数的解析式是y=12x﹣5.考点:反比例函数与一次函数的交点问题23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=14,求⊙O的直径.【答案】(1)证明见解析(2)4.8试题解析:(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;考点:1、切线的判定与性质;2、等腰三角形的性质;3、圆周角定理;4、解直角三角形24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【答案】(1)2(2)①不存在,②t=65时,PQ ,△CPQ 的外接圆与直线AB 相交试题解析:(1)∵△CBP 是等腰三角形,∠C=90°,∴CQ=CP ,∴6﹣t=2t ,∴t=2,∴t=2秒时,△CBP 是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ 是菱形,则PD=BQ , ∴43t=8﹣2t , ∴t=125, ∴CQ=245,PC=6﹣125=185,BQ=PD=165,∴=6,∴PQ ≠BQ ,∴假设不成立,∴不存在.设点Q 的速度为每秒a 个单位长度.∵四边形PDBQ 是菱形,∴PD=BD , ∴43t=10﹣53t , ∴t=103, ∴BQ=PD=409, ∴6﹣103a=409, ∴a=715. ∴点Q 的速度为每秒715个长度单位时,使四边形PDBQ 在某一时刻为菱形. ②如图,⊙O 是△PQC 的外接圆的圆心,作OM ⊥AB 于M ,OE ⊥AC 于E ,OF ⊥BC 于F ,连接OB 、OC 、OA .∵,∴t=65时,PQ .此时PC=245,CQ=125,, ∵12•AC•OF +12•AC•OE +12•AB•OM=12•BC•AC, ∴12×8×125+12×6×65+12×10×OM=24, ∴OM=5425, ∴OM <OP ,∴△CPQ的外接圆与直线AB相交.考点:圆的综合题25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【答案】(1)B(4,0),C(﹣1,0)(2)①P(134,5116)或(7,24)②P(4,0)或(5,﹣6)③m<0,或m>3 2③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.试题解析:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x, 4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴AM MP ME PF=.∵MP=x2﹣3x,∴234x x xPF-=,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x 2+3x+4和A (0,4),∴抛物线和直线l 的交点坐标为A (0,4),(3,4), 设P (a ,﹣a 2+3a+4);(a <0或a >3)∵AP 的中点是R ,A (0,4), ∴2a =m ,23442a a -+++=n , ∴n=﹣2m 2+3m+4,∵a <0或a >3,∴2m <0,或2m >3,∴m <0,或m >32.考点:二次函数综合题。
2016年广东省潮州高级实验学校中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣2.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.5x2+x3=5x5C. += D.(a2b)3=a6b33.要使有意义,则x的取值范围是()A.x≠1 B.x≠3 C.x≥1且x≠3 D.x≥3且x≠14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱D.圆锥5.有二十二位同学参加智力竞赛,他们的分数互不相同,按分数高低选十一位同学进入下一轮比赛,小明知道了自己的分数后,还需知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数 C.方差 D.平均数6.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于()A.20° B.25° C.35° D.50°7.已知一圆锥的母线长为6,底面半径为3,则该圆锥的侧面积为()A.27π B.36π C.18π D.9π8.不等式组的解集在数轴上表示正确的是()A. B. C. D.9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a< C.﹣<a<1 D.a>10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a﹣b+c<0;④b2﹣4ac<0.其中正确的结论是()A.①② B.②③ C.②④ D.③④二、填空题:本大题6小题,每小题4分,共24分11.地球上的海洋面积约为361 000 000平方千米,用科学记数法表示为______平方千米.12.方程:3x2=x的解为:______.13.分解因式:m(x﹣y)+n(y﹣x)=______.14.关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是______.15.如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=______.16.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为______.三、解答题:本大题共3小题,每小题6分,共18分17.计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣.18.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100﹣2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?19.如图,在直角三角形ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,请你确定AB与所作⊙O的位置关系,直接写出你的结论.四、解答题:本大题共3小题,每小题7分,共21分20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21.如图,在平面直角坐标系中,双曲线y=与直线y=kx+b相交于A、B两点,过点A作AC ⊥x轴于点C,其中AC=4,tan∠AOC=且点B的坐标为(﹣6,n).(1)求双曲线和直线AB的解析式;(2)根据图象回答,当x取何值时kx+b>.22.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).五、本大题共3小题,每小题9分,共27分23.已知抛物线y=x2﹣px﹣(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点;(3)若抛物线的顶点在x轴上,求出这时顶点的坐标.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D 作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.25.如图,Rt△ABC的顶点坐标分别为A(0,),B(,),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式.(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.2016年广东省潮州高级实验学校中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.5x2+x3=5x5C. += D.(a2b)3=a6b3【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用二次根式的性质以及积的乘方运算法则分别化简求出答案.【解答】解:A、(a﹣b)2=a2+b2﹣2ab,故此选项错误;B、5x2+x3,无法计算,故此选项错误;C、+,无法计算,故此选项错误;D、(a2b)3=a6b3,故此选项正确;故选:D.3.要使有意义,则x的取值范围是()A.x≠1 B.x≠3 C.x≥1且x≠3 D.x≥3且x≠1【考点】分式有意义的条件.【分析】分式有意义的条件是:分母不等于零.【解答】解:依题意得:x﹣3≠0,解得x≠3.故选:B.4.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱D.圆锥【考点】简单几何体的三视图.【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图.分别分析四个选项的左视图和主视图,从而得出结论.【解答】解:A、左视图与主视图都是正方形,故A不符合题意;B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选:B.5.有二十二位同学参加智力竞赛,他们的分数互不相同,按分数高低选十一位同学进入下一轮比赛,小明知道了自己的分数后,还需知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数 C.方差 D.平均数【考点】统计量的选择.【分析】因为有二十二位同学参加,选十一位同学进入下一轮比赛.那么分数从高到低排列后,小明知道自己的分数与第11名学生的分数,才能判断自己能否进入下一轮比赛.【解答】解:因为有二十二位同学参加,选十一位同学进入下一轮比赛,那么分数从高到低排列后,第11名和第12名的平均的分数就是中位数,所以小明知道自己的分数和中位数后,才能判断自己能否进入下一轮比赛.故选A.6.如图,AB是⊙O的直径,C,D为圆上两点,若∠AOC=130°,则∠D等于()A.20° B.25° C.35° D.50°【考点】圆周角定理.【分析】先根据∠AOC=130°得到∠BOC,再根据圆周角定理即可得到∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=∠BOC=×50°=25°.故选B.7.已知一圆锥的母线长为6,底面半径为3,则该圆锥的侧面积为()A.27π B.36π C.18π D.9π【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵一圆锥的母线长为6,底面半径为3,∴该圆锥的侧面积为:π×3×6=18π.故选C.8.不等式组的解集在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集的公共部分是不等式组的解集,可得答案.【解答】解:,解得,故选:C.9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a< C.﹣<a<1 D.a>【考点】关于x轴、y轴对称的点的坐标;一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,∴,解不等式①得,a>﹣1,解不等式②得,a<,所以,不等式组的解集是﹣1<a<.故选:B.10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a﹣b+c<0;④b2﹣4ac<0.其中正确的结论是()A.①② B.②③ C.②④ D.③④【考点】二次函数图象与系数的关系.【分析】由图象获取相关信息:系数a、b、c的符号,对称轴的位置,x=±1时,对应的函数值,及抛物线与x轴(y轴)的交点情况.【解答】解:①由图象可知a>0,b>0,c<0,abc<0,错误;②把(1,2)代入抛物线解析式可得a+b+c=2,正确;③当x=﹣1时,y<0,即a﹣b+c<0,正确;④抛物线与x轴有2个交点,故△=b2﹣4ac>0,错误.故选B.二、填空题:本大题6小题,每小题4分,共24分11.地球上的海洋面积约为361 000 000平方千米,用科学记数法表示为 3.61×108平方千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:361 000 000=3.61×108平方千米.12.方程:3x2=x的解为:x1=0,x2= .【考点】解一元二次方程-因式分解法.【分析】先移项得到3x2﹣x=0,然后利用因式分解法解方程.【解答】解:3x2﹣x=0,x(3x﹣)=0,x=0或3x﹣=0,所以x1=0,x2=.故答案为x1=0,x2=.13.分解因式:m(x﹣y)+n(y﹣x)= (x﹣y)(m﹣n).【考点】因式分解-提公因式法.【分析】直接提取公因式(x﹣y),进而求出答案.【解答】解:m(x﹣y)+n(y﹣x)=m(x﹣y)﹣n(x﹣y)=(x﹣y)(m﹣n).故答案为:(x﹣y)(m﹣n).14.关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣1 .【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣2)2+4k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个不相等的实数根,∴△=(﹣2)2+4k>0,解得k>﹣1.故答案为:k>﹣1.15.如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD= 4 .【考点】全等三角形的判定与性质.【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,那么BD的长就不难求出.【解答】解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF的中点,∴DE=EF,在△ADE与△CFE中,,∴△ADE≌△CFE,∴AD=CF,∵AB=10,CF=6,∴BD=AB﹣AD=10﹣6=4.故答案为4.16.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为3﹣.【考点】平移的性质.【分析】根据特殊角的锐角三角函数值,求出EC、EG、AE的长,得到阴影部分的面积.【解答】解:∵∠F=45°,BC=3,∴CF=3,又EF=4,则EC=1,∵BC=3,∠A=30°,∴AC=3,则AE=3﹣1,∠A=30°,∴EG=3﹣,阴影部分的面积为:×3×3﹣×(3﹣1)×(3﹣)=3﹣.故答案为:3﹣.三、解答题:本大题共3小题,每小题6分,共18分17.计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=﹣2﹣1+1﹣4=﹣2﹣4.18.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100﹣2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?【考点】一元二次方程的应用.【分析】本题的等量关系是每件商品的利润×每天的销售量=每天的总利润.依据这个等量关系可求出商品的售价,然后代入p与x的关系式中求出p的值.【解答】解:设每件商品的售价应定为x元,每天要销售这种商品p件.根据题意得:(x﹣30)=200,整理得:x2﹣80x+1600=0,∴(x﹣40)2=0,∴x1=x2=40∴p=100﹣2x=20;故,每件商品的售价应定为40元,每天要销售这种商品20件.19.如图,在直角三角形ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,请你确定AB与所作⊙O的位置关系,直接写出你的结论.【考点】作图—复杂作图;直线与圆的位置关系.【分析】(1)根据角平分线的作法作图即可;(2)过O向AB作垂线,再根据角平分线的性质可得DO=CO,然后可得D在⊙O上,进而得到直线AB与⊙O相切.【解答】解:(1)如图所示:(2)直线AB与⊙O相切;理由:过O向AB作垂线,∵BO平分∠ABC,∴DO=CO,∴D在⊙O上,∴直线AB与⊙O相切.四、解答题:本大题共3小题,每小题7分,共21分20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)利用总数50减去其它项的频数即可求得;(2)根据(1)的计算结果即可补全直方图;(3)利用树状图方表示出所有可能的结果,然后利用频率公式即可求解.【解答】解:(1)表中a的值是:a=50﹣6﹣8﹣16﹣10=10;(2)根据题意画图如下:(3)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是P==.21.如图,在平面直角坐标系中,双曲线y=与直线y=kx+b相交于A、B两点,过点A作AC ⊥x轴于点C,其中AC=4,tan∠AOC=且点B的坐标为(﹣6,n).(1)求双曲线和直线AB的解析式;(2)根据图象回答,当x取何值时kx+b>.【考点】反比例函数与一次函数的交点问题.【分析】(1)由AC=4、tan∠AOC=可得点A坐标,代入y=可得双曲线解析式,继而可知点B 坐标,将点A、B坐标代入y=kx+b可求得一次函数解析式;(2)根据图象,分别在第一、三象限求出一次函数的值大于反比例函数的值时x的取值范围.【解答】解:(1)∵AC=4,tan∠AOC=,∴OC=3,∴点A坐标为(3,4),将点A(3,4)代入y=,求得m=12,故反比例函数解析式为y=,将点B(﹣6,n)代入得:n=﹣2,即点B坐标为(﹣6,﹣2),将A(3,4)、B(﹣6,﹣2)代入y=kx+b得:,解得:,故直线AB的解析式为y=x+2;(2)由图象可知,当﹣6<x<0或x>3时,kx+b>.22.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).【考点】解直角三角形的应用-方向角问题.【分析】过P作PG⊥AB于点G,设PG=x,分别在Rt△PGB中和Rt△PGA中利用三角函数解答.【解答】解:如图,过P作PG⊥AB于点G,设PG=x,在Rt△PGB中,∵∠PBG=90°﹣45°=45°,∴∠BPG=45°=∠PBG,∴GB=PG=x,在Rt△PGA中,∠PAG=90°﹣60°=30°,∴AG==PG=x,∵AB=10,∴x+x=10,解得x=5(﹣1),答:船P到海岸线MN的距离为5(﹣1)海里.五、本大题共3小题,每小题9分,共27分23.已知抛物线y=x2﹣px﹣(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点;(3)若抛物线的顶点在x轴上,求出这时顶点的坐标.【考点】抛物线与x轴的交点.【分析】(1)将抛物线与y轴的交点代入解析式求出p的值,即可求出抛物线与x轴的交点;(2)找出a,b,c的值,表示出根的判别式,配方后利用完全平方式的性质判断得到根的判别式大于等于0,即可得证;(3)表示出顶点坐标,根据顶点在x轴上,得到纵坐标为0,即可确定出p的值,进而得出顶点坐标.【解答】解:(1)对于抛物线y=x2﹣px+﹣,将x=0,y=1代入得:﹣=1,即p=,∴抛物线解析式为y=x2﹣x+1,令y=0,得到x2﹣x+1=0,解得:x1=,x2=2,则抛物线与x轴交点的坐标为(,0)与(2,0);(2)∵△=p2﹣4(﹣)=p2﹣2p+1=(p﹣1)2≥0,∴无论p为何值,抛物线与x轴必有交点;(3)抛物线顶点坐标为(,﹣+﹣),∵抛物线的顶点在x轴上,∴﹣+﹣=0,解得:p=1,则此时顶点坐标为(,0).24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D 作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.【考点】圆的综合题.【分析】(1)根据圆周角定理得出∠ADB=90°,再由等腰三角形的三线合一性质即可得出结论.(2)推出△FOD∽△FAE,得出比例式,即可求出半径.(3)求出∠F=30°,求出∠BOD=60°,得出等边三角形OBD,推出∠ABC=60°,根据等边三角形判定推出即可.【解答】(1)证明:连接AD,如图所示:∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD;(2)解:设⊙O的半径是R,则FO=4+R,FA=4+2R,OD=R,连接OD,如图所示:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,即R2﹣R﹣12=0,∵R为半径,∴R=4,R=﹣3(舍去),即⊙O的半径是4.(3)△ABC是等边三角形;理由:∵EF是⊙O的切线,∴∠ODF=90°,∵FO=4+4=8,OD=4,∴∠F=30°,∴∠FOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠ABC=60°,∵AC=AB,∴△ABC是等边三角形.25.如图,Rt△ABC的顶点坐标分别为A(0,),B(,),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点y轴为对称轴的抛物线过点B.(1)求该抛物线的解析式.(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)设抛物线解析式,因点B在抛物线上面,代入求出抛物线解析式;(2)△ABC沿AC折叠,要用到点的对称,得到B′的坐标然后验证是否在抛物线上;(3)假设存在,设直线BA的解析式,根据B、A坐标解出直线BA的解析式,用m表示出P 点坐标,因为PF=AD可以得到P点坐标.【解答】解:(1)设抛物线的解析式为y=ax2+,∵B(,)在抛物线上,∴把B(,)代入y=ax2+得a=.∴抛物线解析式为y=x2+.(2)∵点B(,),C(1,0),∴CB=,∴CB'=CB=OA.又CA==2∴AB==1∴AB'=AB=OC.∴四边形AOCB'是矩形.∵CB'=,OC=1,∴B'点的坐标为(1,).∵当x=1时,代入y=x2+得y=,∴B'(1,)在抛物线上.理由是:设BA的解析式为y=kx+b,∴∴∵P,F分别在直线BA和抛物线上,且PF∥AD,∴设P(m, m+),F(m, m2+)PF=(m+)﹣(m2+),AD=﹣=如果PF=AD,则有=(m+)﹣(m2+)=解得m1=0(不符合题意舍去),m2=.∴当m=时,PF=AD,存在四边形ADFP是平行四边形.当m=时, m+=,∴P点的坐标是(,).。
2016年广东省初中毕业生学业考试数学一、选择题(本大题10小题,每小题3分,共30分)1、-2的绝对值是( )A 、2B 、-2C 、12D 、1-2答案:A解析:-2的绝对值是2,故选A 。
2、如图1所示,a 和b 的大小关系是( )baA 、a <bB 、a >bC 、a=bD 、b =2a答案:A解析:数轴上从左往右的点表示的数是从小往大的顺序,由图可知b >a ,选A 。
3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形答案:B解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。
4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯B 、80.27710⨯C 、72.7710⨯D 、82.7710⨯答案:C解析:科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。
故选C 。
5、如图,正方形ABCD 的面积为1,则以相邻两边中点连接EF 为边的正方形EFGH 的周长为( ) A B DCH FEA 2B 、22C 、21D 、221答案:B解析:连结BD ,由勾股定理,得BD 2E 、F 为中点,所以,EF =22,所以,正方形EFGH 的周长为226、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A、4000元B、5000元C、7000元D、10000元答案:B解析:数据由小到大排列,最中间或最中间的两个数的平均数为中位数,所以,中位数为5000元。
7、在平面直角坐标系中,点P(-2,-3)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限答案:C解析:因为点P的横坐标与纵坐标都是负数,所以,点P在第三象限。
2016年广东省实验中学中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.(3分)2的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)下列图形中,不是中心对称图形有()A.B.C.D.3.(3分)数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、4.(3分)下列四个几何体中,主视图是三角形的是()A.B.C.D.5.(3分)下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a66.(3分)函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠17.(3分)如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.B.C.D.8.(3分)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则ta nB′的值为()A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.10.(3分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:2a2+4a=.12.(3分)正n边形的一个外角的度数为60°,则n的值为.13.(3分)已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.15.(3分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为.16.(3分)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.三、解答题17.(9分)解方程:18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.19.(10分)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE 于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.2016年广东省实验中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.(3分)2的倒数是()A.2 B.﹣2 C.D.﹣【解答】解:∵2×=1,∴2的倒数是.故选C.2.(3分)下列图形中,不是中心对称图形有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.3.(3分)数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【解答】解:数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.4.(3分)下列四个几何体中,主视图是三角形的是()A.B.C.D.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.5.(3分)下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a6【解答】解:∵3a﹣a=2a,∴选项A不正确;∵a2+a2=2a2,∴选项B不正确;∵(3a)﹣(2a)=a,∴选项C不正确;∵(a2)3=a6,∴选项D正确.故选:D.6.(3分)函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【解答】解:根据题意得:,解得:x≥﹣3且x≠1.故选B.7.(3分)如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.B.C.D.【解答】解:连接OB,OC.∠BOC=2∠BAC=2×36°=72°,则劣弧BC的长是:=π.故选B.8.(3分)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.9.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=﹣<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.10.(3分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【解答】解:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:2a2+4a=2a(a+2).【解答】解:2a2+4a=2a(a+2).故答案为:2a(a+2).12.(3分)正n边形的一个外角的度数为60°,则n的值为6.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.13.(3分)已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是m>﹣2.【解答】解:∵一次函数y=(m+2)x+3中,y随x值增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.【解答】解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.15.(3分)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为16:9.【解答】解:设BF=x,则CF=3﹣x,B'F=x,∵点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=.∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:=()2=()2=.故答案为:16:9.16.(3分)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为100°.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°.三、解答题17.(9分)解方程:【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【解答】解:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.19.(10分)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)【解答】解:如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【解答】解:(1):(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);故答案为:20,2,1;(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:=.22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.【解答】解:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵=,∴=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴==,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE 于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【解答】(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【解答】解:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴PQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴8﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•BC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【解答】解:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,﹣24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME 于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);∵A(0,4),∴把y=4代入y=﹣x2+3x+4中,得,x=0或x=3,∴a>3∵AP的中点是R,A(0,4),∴=m,=n,∵a>3,∴2m>3,∴m>.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。