模板支架受力分析计算
- 格式:ppt
- 大小:4.30 MB
- 文档页数:125
模板支架是建筑施工中用于支撑、固定和保持混凝土模板的结构体系。
其设计计算原理主要涉及以下几个方面:
1. 荷载计算:首先需要计算模板支架所承受的荷载,包括混凝土自重、混凝土浇筑时的活荷载、人员荷载以及其他附加荷载等。
根据相关规范和设计要求,对荷载进行合理估计和分析。
2. 结构稳定性计算:模板支架设计中的一个重要考虑因素是结构的稳定性。
通过分析支撑系统的各种力学特性,如弯矩、剪力、轴力等,并综合考虑支撑材料的强度和刚度等参数,进行稳定性计算。
3. 材料选择和尺寸确定:在设计模板支架时,需要选择合适的材料,如钢材、木材或者复合材料等。
根据支撑结构的荷载要求和稳定性要求,确定材料的强度等级和尺寸。
4. 连接方式和节点设计:模板支架的连接方式和节点设计对整个结构的稳定性和安全性至关重要。
需要考虑连接的刚度、强度和可靠性,确保支撑系统能够有效地传递荷载并保持结构的稳定。
5. 施工和使用限制:在模板支架的设计过程中,还需要考虑施工和使用的限制条件,如施工工艺、施工时间、空间限制等。
设计应满足施工操作的要求,并保证在使用过程中的安全性和便利性。
总的来说,模板支架设计计算原理基于结构力学、材料力学和工程经验等理论基础,通过合理的力学分析和设计方法,确保模板支架能够承受预期荷载并满足结构稳定性和安全性的要求。
具体的设计计算应根据不同的工程情况和规范要求进行,并由专业工程师进行设计和审核。
(六)、承台施工方案及模板计算4、安装模板承台桥墩均采用大块钢模板施工,设拉杆。
面板采用δ=6mm厚钢板,[10 竖带间距0。
3m,[14 横带间距0。
5m,竖肋采用[10槽钢,间距30cm,横肋采用[14槽钢,间距100cm.横肋采用2[14a工字钢,拉杆间距150cm。
拉杆采用φ20圆钢承台尺寸:钢桁梁部分11.4×18。
4×3.5m。
模板采用分块吊装组拼就位的方法施工。
根据模板重量选择合适的起吊设备立模、拆模。
根据承台的纵、横轴线及设计几何尺寸进行立摸。
安装前在模板表面涂刷脱模油,保证拆模顺利并且不破坏砼外观。
安装模板时力求支撑稳固,以保证模板在浇筑砼过程中不致变形和移位。
由于承台几何尺寸较大,模板上口用对拉杆内拉并配合支撑方木固定。
承台模板与承台尺寸刚好一致,可能边角处容易出现漏浆,故模板设计时在一个平行方向的模板拼装后比承台实际尺寸宽出10cm,便于模板支护与加固。
模板与模板的接头处,应采用海绵条或双面胶带堵塞,以防止漏浆。
模板表面应平整,内侧线型顺直,内部尺寸符合设计要求.模板及支撑加固牢靠后,对平面位置进行检查,符合规范要求报监理工程师签证后方能浇筑砼。
5、浇注砼钢筋及模板安装好后,现场技术员进行自检,各个数据确认无误,然后报验监理,经监理工程师验收合格后方可浇筑砼。
砼浇注前,要把模板、钢筋上的污垢清理干净。
对支架、模板、钢筋和预埋件进行检查,并做好记录.砼浇注采用商品砼.浇筑的自由倾落高度不得超过2m,高于2 m时要用流槽配合浇筑,以免砼产生离析.砼应水平分层浇筑,并应边浇筑边振捣,浇筑砼分层厚度为30 cm左右,前后两层的间距在1。
5m以上。
砼的振捣使用时移动间距不得超过振捣器作用半径的1.5倍;与侧模应保持5~10cm 的距离;插入下层砼5~10cm;振捣密实后徐徐提出振捣棒;应避免振捣棒碰撞模板、钢筋及其他预埋件,造成模板变形,预埋件移位等.密实的标志是砼面停止下沉,不再冒出气泡,表面呈平坦、泛浆。
箱梁模板支架计算书弄广分离立交桥为3-22m等宽截面,根据箱梁截面特点,即取:一、横梁及实腹板段底模板支架计算计算参数:模板支架搭设高度为7.0m,立杆的纵距 b=0.60m,立杆的横距 l=0.90m,立杆的步距 h=1.20m。
面板厚度12mm,剪切强度1.6N/mm2,抗弯强度18.0N/mm2,弹性模量9000.0N/mm2。
木方100×100mm,间距200mm,剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。
梁顶托采用100×150mm木方。
模板自重0.50kN/m2,混凝土钢筋自重26.00kN/m3,施工活荷载2.50kN/m2。
采用的钢管类型为48×2.9。
1、模板面板计算面板为受弯结构,需要验算其抗弯强度和刚度。
模板面板的按照三跨连续梁计算。
静荷载标准值 q1 = 26.000×1.400×0.600+0.500×0.600=22.140kN/m活荷载标准值 q2 = (0.000+2.500)×0.600=1.500kN/m面板的截面惯性矩I和截面抵抗矩W分别为:本算例中,截面惯性矩I和截面抵抗矩W分别为:W = 60.00×1.20×1.20/6 = 14.40cm3;I = 60.00×1.20×1.20×1.20/12 = 8.64cm4;(1)抗弯强度计算f = M / W < [f]其中 f ——面板的抗弯强度计算值(N/mm2);M ——面板的最大弯距(N.mm);W ——面板的净截面抵抗矩;[f] ——面板的抗弯强度设计值,取18.00N/mm2;M = 0.100ql2其中 q ——荷载设计值(kN/m);经计算得到M = 0.100×(1.20×22.140+1.40×1.500)×0.200×0.200=0.115kN.m经计算得到面板抗弯强度计算值 f = 0.115×1000×1000/14400=7.963N/mm2面板的抗弯强度验算 f < [f],满足要求!(2)抗剪计算 [可以不计算]T = 3Q/2bh < [T]其中最大剪力 Q=0.600×(1.20×22.140+1.4×1.500)×0.200=3.440kN截面抗剪强度计算值 T=3×3440.0/(2×600.000×12.000)=0.717N/mm2 截面抗剪强度设计值 [T]=1.60N/mm2抗剪强度验算 T < [T],满足要求!(3)挠度计算v = 0.677ql4 / 100EI < [v] = l / 250面板最大挠度计算值v = 0.677×22.140×2004/(100×9000×86400)=0.308mm面板的最大挠度小于200.0/400,满足要求!2、模板支撑木方的计算木方按照均布荷载计算。
箱梁模板支架计算书弄广分离立交桥为3-22m等宽截面,根据箱梁截面特点,即取:一、横梁及实腹板段底模板支架计算计算参数:模板支架搭设高度为,立杆的纵距b=,立杆的横距l=,立杆的步距h=。
面板厚度12mm,剪切强度mm2,抗弯强度mm2,弹性模量mm2。
木方100×100mm,间距200mm,剪切强度mm2,抗弯强度mm2,弹性模量mm2。
梁顶托采用100×150mm木方。
模板自重m2,混凝土钢筋自重m3,施工活荷载m2。
采用的钢管类型为48×。
1、模板面板计算面板为受弯结构,需要验算其抗弯强度和刚度。
模板面板的按照三跨连续梁计算。
静荷载标准值q1 = ××+×=m活荷载标准值q2 = +×=m面板的截面惯性矩I和截面抵抗矩W分别为:本算例中,截面惯性矩I和截面抵抗矩W分别为:W = ××6 = ;I = ×××12 = ;(1)抗弯强度计算f = M / W < [f]其中f ——面板的抗弯强度计算值(N/mm2);M ——面板的最大弯距;W ——面板的净截面抵抗矩;[f] ——面板的抗弯强度设计值,取mm2;M =其中q ——荷载设计值(kN/m);经计算得到M = ××+×××= 经计算得到面板抗弯强度计算值 f = ×1000×1000/14400=mm2面板的抗弯强度验算f < [f],满足要求!(2)抗剪计算[可以不计算]T = 3Q/2bh < [T]其中最大剪力Q=××+××=截面抗剪强度计算值T=3×(2××=mm2截面抗剪强度设计值[T]=mm2抗剪强度验算T < [T],满足要求!(3)挠度计算v = / 100EI < [v] = l / 250面板最大挠度计算值v = ××2004/(100×9000×86400)=面板的最大挠度小于400,满足要求!2、模板支撑木方的计算木方按照均布荷载计算。
模板支架设计计算原理解析理论计算施工安全计算是保证施工方案和措施能够安全实施的计算,也就是通过提前计算、预演确保施工全过程各阶段所形成的的工况都应出于安全可靠的状态。
模板支架应根据架体构造、搭设部位、使用功能、荷载等因素确定设计计算内容。
一般来说,模板支架的验算内容应包含:1.水平杆件抗弯、抗剪、挠度和节点连接强度验算。
2.立杆稳定性验算3.基础承载能力验算4.架体抗倾覆验算竖向荷载传递路线竖向荷载面板小梁(次楞)主梁(主楞)顶托(扣件)立杆基础水平荷载传递路线水平荷载立杆、顶部横杆/剪刀撑立杆基础立杆(弯矩形式)(倾覆、附加轴力、连墙件)连墙件结构规范名称 T/CCIAT0003-2019JGJ162-2008 JGJ130-2011JGJ231-2010 JGJ166-2016永久荷载(竖向) 模板自重(G1k)支架自重(G2k)钢筋混凝土自重(G3k)同同同同模板、支架自重按各自规范给出大小取值钢筋混凝土自重:普通板25.1KN/m³普通梁25.5KN/m³可变荷载施工荷载Q1k附加水平荷载Q2k(泵送、倾倒混凝土产生的水平荷载作用架体顶部)风荷载Q3k施工荷载Q1k振捣砼荷载Q2k倾倒砼荷载Q3k(分别用于不同部位验算)风荷载Wk同JGJ62-2008施工荷载Q1k附加水平荷载Q2k(泵送、倾倒混凝土产生的水平荷载作用架体顶部)风荷载Wk施工荷载Q1k风荷载Wk荷载分类荷载可变荷载T/CCIAT0003-2019JGJ162-2008 JGJ130-2011JGJ231-2010 JGJ166-2016竖向荷载施工荷载Q1k:正常情况3.0KN/㎡模板、小梁验算2.5KN泵管、布料机4.0KN/㎡施工荷载Q1k:小梁2.5kN/㎡;主梁1.5kN/㎡;立柱1.0kN/㎡振捣荷载Q2k:2.0kN/㎡同JGJ62-2008施工荷载Q1:一般情况3.0KN/㎡施工荷载Q1k:①一般浇筑工艺:2.5kN/m2②有水平甭管或布料4kN/m2③桥梁结构:4kN/m2水平荷载 附加水平荷载Q2k:垂直永久荷载2%(作用架体顶部)作用侧模水平荷载(略)同JGJ62-2008附加水平荷载Q2k:垂直永久荷载2%(作用架体顶部)风荷载Wk:按地区选择基本风压乘以体型、高度变化系数荷载荷载组合计算项目荷载的基本组合水平杆强度由永久荷载控制的组合永久荷载+ 施工荷载及其他可变荷载由可变荷载控制的组合永久荷载+施工荷载+ 其他可变荷载立杆稳定承载力由永久荷载控制的组合永久荷载+ 施工荷载及其他可变荷载+ 风荷载由可变荷载控制的组合永久荷载+施工荷载+ 其他可变荷载+ 风荷载支撑脚手架倾覆永久荷载+施工荷载及其他可变荷载+风荷载立杆地基承载力来自GB51210-2016,以各自架体对应规范为准。
五、受力分析(一)、荷载标准值钢筋砼容重取26kN/m3。
顶板位置每延米砼为0.45m3/m,宽度0.6m混凝土自重标准值:g1=(0.45m3/m×26KN/m3)/0.6m=19.5KN/m2竹胶板自重标准值: g2=0.2KN/m2方木自重标准值:g3=0.047×0.07×10KN/m3=0.0329KN/m施工人员及机械设备均布活荷载: q1=3KN/m2 振捣砼时产生的活荷载: q2=2KN/m2(二)、模板检算模板材料为竹胶板,其静弯曲强度标准值为60f MPa =,弹性模量为:36.010E MPa =⨯,模板厚度m d 015.0=。
模板截面抵抗矩和模板截面惯性矩取宽度为1m 计算:模板截面抵抗矩)(1075.36015.0163522m m m ad W -⨯=⨯==模板截面惯性矩)(108125.212015.01124733m m m ad I -⨯⨯==模板支撑肋中心距为0.2m ,宽度0.6m ,模板在桥纵向按均布荷载作用下的三跨连续梁计算,跨度为:0.2m+0.2m+0.2m 。
①强度计算模板上的均布荷载设计值为:q=[1.2×(g1+g2)+1.4×(q1+q2)] ×0.6m =[1.2×(19.5+0.2)+1.4×(3+2)] ×0.6=18.384KN/m 最大弯矩:Mmax=0.1×ql 2=0.1×18.408×0.22=0.0735KN ·mσmax=Mmax/(1.4×W)=0.0735/(1.4×3.75×10-5)=1.401MPa <f=60MPa[满足要求] ②挠度计算刚度验算采用标准荷载,同时不考虑振动荷载作用。
q=(g1+g2)×0.6=(19.5+0.2) ×0.6=11.82KN/m 最大挠度为: δ=m <δ=[满足要求]。
模板支架设计一——受力分析(1)、《建筑施工扣件式钢管脚手架安全技术规范》对模板支架计算规定:1)、模板支架立杆轴向力设计值不组合风荷载时:N=1.2∑N Gk +1.4∑N Qk组合风荷载时: N=1.2∑N Gk +0.85×1.4∑N Qk式中 ∑N Gk ——模板支架自重、新浇砼自重与钢筋自重标准值产生的轴向力总和; ∑N Qk ——施工人员及施工设备荷载标准值、振捣砼时产生的荷载标准值产生的轴向力总和。
2)、模板支架立杆的计算长度l 0l 0=h+2a式中h——支架立杆的步距;a——模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度。
3)、对模板支架立杆的计算长度l0=h+2a的理解为保证扣件式钢管模板支架的稳定性,规范中支架立杆的计算长度是借鉴英国标准《脚手架实施规范》(BS5975-82)的规定,即将立杆上部伸出段按悬臂考虑,这有利于限制施工现场任意增大伸出长度。
若步高为1.8m,伸出长度为0.3m,则计算长度为l0=h+2a=1.8+0.6=2.4m,其计算长度系数µ=2.4/1.8=1.333,比目前通常取µ=1的值提高33.3%,对保证支架稳定有利。
a.两端铰接b.一端固定一端铰接c.一端固定一端自由(2)、扣件抗滑承载力的计算复核:底模下水平钢管与立杆之间常用单扣件连接。
在标准拧紧力矩为40N.m条件下,扣件钢管模板支架单扣件抗滑实验结论:扣件滑动时加荷1.1~1.2t。
扣件钢管支架的双扣件抗滑试验用钢管扣件搭设模板支架,水平杆将荷载通过扣件传给立杆。
步高在1.8m以内时,其承载力主要由扣件的抗滑力决定。
双扣件抗滑试验表明:扣件滑动:2t扣件抗滑设计:1.2t(保证安全系数)(3)、扣件钢管支模计算实例:预应力大梁1000*2650mm,27m跨。
钢管排架间距600 *600mm1)荷载计算恒载砼:1×2.65×2.4=6.36t/m钢筋:1×2.65×0.25=0.66t/m模板:(1+2.51+2.51) ×0.03=0.18t/m6.36+0.66+0.18=7.2t/m活载:(1+1+1)×0.25=0.75t/m支撑设计荷载:7.2×1.2+0.75×1.4=9.69t/m2)按双扣件抗滑设计梁下按每排5根钢管,横向间距@600,沿梁纵向钢管排架间距亦@600。
地铁车站结构支架、模板受力分析及施工方法摘要:结合石家庄地铁**站土建工程施工实例,对住建部规定的危险性较大工程之一的高支模设计计算及应用进行了详细介绍,重点说明了设计计算的主要内容及施工注意事项,对类似工程具有普遍指导意义。
关键词:地铁车站危险性较大工程高支模受力分析施工方法1工程概况**站车站为地下两层三跨岛式站台车站,中心里程为DK7+583.000,车站全长223.62m,结构标准段总宽度21.1m,基坑深约13.34m。
该车站为二层明挖现浇框架结构,车站中板厚度为400mm,侧墙厚度为700mm,顶板厚度为800mm 和900mm,负一层层高4950mm,负二层层高6190mm。
2 侧墙、顶板设计计算在地铁站混凝土施工过程中,大量使用高支模现浇施工方法,为保证施工质量与安全,模板和脚手架计算显得更为重要,需要受力验算的部位有:顶板、中板、梁、柱、侧墙等,验算主要包括强度、刚度、稳定性三个方面,下面以侧墙、顶板、立柱的受力验算为例,计算模板和脚手架的布置。
根据风道结构形式、施工荷载、施工质量等方面的因素,结合北京地铁车站主体结构工程施工经验,侧墙模板、顶板底模都采用2440×1220×15mm木模板。
背楞采用100×100mm方木,侧墙次楞间距200mm,主楞间距600mm;顶板次楞间距300mm,主楞间距600mm。
立杆间距:600×900mm(横×纵),水平杆步距:1200mm。
模板支撑体系采用扣件式脚手架钢管。
2.1侧墙模板支架验算2.1.1荷载计算新浇筑的混凝土作用于模板的最大侧压力计算C40混凝土自重(γc)取25 kN/m3,采用导管卸料,浇注速度v=2m/h,浇注入模温度T=25℃;β1=1.2;β2=1.15;t0=200/(T+15);墙高H=6.29m;F1=0.22γ c t0β1β2v1/2 =0.22×25×200/(25+15)×1.2×1.15×21/2=44.7KN/m2F2=γ c H=25×6.29=157.25KN/m2取较小值F1=44.7KN/m2作为计算值。
扣件式钢管脚手架模板支架的承载力计算及分析扣件式钢管脚手架作为梁板混凝土模板支架在房屋建筑施工中应用广泛,2011年12月1日实施的《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011(以下简称规范JGJ130-2011),把扣件式钢管模板支架按立杆偏心受压和轴心受压分别称之为满堂扣件式钢管脚手架和满堂扣件式钢管支撑架,两者的区别是:前者架体顶部作业层施工荷载通过水平杆用直角扣件连接传递给立杆,顶部立杆呈偏心受压状态(偏心距53㎜);后者架体顶部作业层施工荷载通过可调托撑轴心传力给立杆,顶部立杆呈轴心受压状态,此两种架体分别简称为满堂脚手架和满堂支撑架。
在立杆纵横向间距、纵横向水平杆竖向间距(亦即步距)、纵横向垂直剪刀撑间距、纵横向扫地杆距立杆底端高度、模板支撑点至顶层纵横双向水平杆中心线的距离均相同的情况下,两种架体的稳定承载力是不相同的,满堂脚手架因立杆呈偏心受压,其稳定承载力低,满堂支撑架因立杆呈轴心受压状态,其稳定承载力高。
这可从下面两端铰接的单根立杆的稳定承载力理论分析得到证明。
一两端铰接的单根立杆的稳定承载力理论分析1. 两端铰接呈轴心受压状态的单根立杆的稳定承载力两端铰接呈轴心受压状态的单根立杆见下图一:图一:两端铰接呈轴心受压状态的立杆图二:两端铰接呈偏心受压状态的单根立杆以欧拉临界力作为稳定承载力,欧拉临界力PE =2222λππEAlEI=,对于φ48×3.5钢管,弹性模量E=2.06×105N/mm2,截面积A=489mm2,回转半径i=15.8mm,当立杆长度l0=1800mm时,长细比λ=l/i=1800/15.8=113.9,欧拉临界力PE=3.142×2.06×105×489/113.92 =76557N ≈76.56KN,同样地可计算出立杆长度l=1700mm、1600mm、1500mm的欧拉临界力PE,结果见下表1(表中最后一列同时列出了按《冷弯薄壁型钢结构技术规范》GB50018-2002计算的立杆承载力设计值)。
支架、模板系统受力计算书一、支架、受力、模板布设方式1、钢管支架立杆箱体及翼板处统一布置为纵向间距0.6m,横向间距0.6m;横杆步距均1.5米,考虑到支架整体变形协调因素及门洞处立杆的受力情况,立支架立杆布置为纵向间距0.4m,横向间距0。
40m;大横杆步距均为1.2m.(实际施工时立杆钢管壁厚一般在3.0~3。
5mm浮动,取较小值规格统一为φ48×6。
0。
为增强支架总体稳定性,搭设立杆时尽量用较长杆件且满足同一断面接长接头≤50%的要求)2、箱梁底横向采用10cm×5cm木方,跨径0。
45m ;3、箱梁底纵向采用5cm×12cm木方跨径均为0。
9m。
4、外模面板均采用12mm厚度的双面覆膜竹胶板。
5、门洞顶纵梁采用20a,9米长的槽钢作横梁。
二、荷载计算由于桥跨长度和桥宽不同导致各桥跨支架及模板系统荷载情况不一致,为了符合现场实际情况,荷载及其他构件受力分析时按实心段梁体和空心段梁体两种情况分别计算。
(一)实心段梁体荷载计算1、箱梁自重荷载:P1=1.8×26=46.8kN/m2(按1.8m厚度计算)2、模板荷载:P2=200kg/m2=2kN/m23、设备及人工荷载:P3=250kg/m2=2。
5kN/m24、20a槽钢荷载荷载:P5=200kg/m2=2kN/m25、砼浇注冲击及振捣荷载:P4=200kg/m2=2kN/m2则有P=(P1+P2+P3+P4)=53.3 kN/m2(二)空心段梁体荷载计算1、箱梁自重荷载:P1=0.5×26=13kN/m2(实际施工0.25+0。
22=0。
47m,按0。
5m砼厚度计算)2、模板荷载P2、设备及人工荷载P3、砼浇注冲击及振捣荷载P4等与实心段梁体相应荷载相同。
则有P=(P1+P2+P3+P4)=19。
5kN/m2计算立杆单根受力和基础受力时考虑支架自重每增加10m高度增加1kN的力。
三、受力分析(一)底板面板的强度和刚度计算1、实心段梁体底板面板强度验算a、荷载的取值由于箱梁混凝土浇筑分两次进行,先浇底板和腹板,第一次砼浇注对底模强度和刚度的要求较高;第二次浇筑顶板混凝土时,箱梁底板已形成一个整体受力板,对底模的强度和刚度的要求相对较低,因此取第一次浇筑位于盖梁实心段或腹板底处横桥向1m宽的模板进行验算,现浇砼的浇筑高度h=1.20m。
模板支架计算
一、工程模板及支架计算项目与要求
1、荷载计算
2、模板(含背肋、边框)计算
3、成型拼接和固定件计算
4、支架和支撑系统计算
5、连接计算
6、基础(或支撑结构、支撑物体)、支座和附着构造计算
7、机械转动装置计算
8、工作状态(工况)和状态转换的安全性计算
9、吊装和提升安全计算
10、保险装置和防护设施的计算
11、资源的合理配置计算
1.工程模板及支架计算项目与要求
2.工程模板及支架计算成果分析的项目与要求
5.基本组合的荷载分项系数取值
3.计算的常用荷载
4.工程模板及支架计算项目的荷载组合。
安徽新华书店图书批销配送中心A标段模板施工方案一、工程概况安徽新华书店图书批销配送中心工程位于北二环路与嘉山路交叉口,框架三层,一层层高5.5米,结构层高5.47米。
二、三层层高4.5米,结构层高4.47米。
占地面积143×52.5米,建筑面积24031平方米,现施工场地回填土至-1.00米标高位置,回填土地基承载力为120kN/m2。
现浇空心板40cm厚,框架梁最大为400×800mm。
二、模板支撑选型施工采用48×3.5mm钢管搭设满堂脚手架,做模板支撑架,楼板底立杆纵距、横距相等,为l a=l b=0.85米,步距1.8米,梁底立杆横距l b1=0.75米,立杆纵距l a1=0.8米。
模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度a=150mm。
一层支撑底部设50×300厚垫板,四周设置剪刀撑,中间每隔四跨设置一道剪刀撑,剪刀撑与地面成60度角。
模板支架搭设形式如下:三、模板支撑搭设要求1、脚手架用扣件应采用铸铁扣件,钢管应采用48×3.5无缝钢管。
扣件及钢管的使用应有质量证明文件。
2、剪刀撑与立杆及水平杆相交处,均应用旋转扣件连接牢固,水平杆件连接优先采用对接扣件连接,如采用搭接,水平杆及剪刀撑,搭接长度均不应小于1米,在搭接部位应等间距设置3个旋转扣件固定。
两根相临纵向、横向水平杆的接头不宜设置在同一步或同一跨内,不同步或不同跨两个相临接头在水平方向错开的距离不应小于0.5米。
3、满堂脚手架在底部即地梁上设置纵横向扫地杆,扫地杆宜采用直角扣件连接。
通过扫地杆将上部荷载传递到基础梁上。
(该满堂脚手架设计采用基础梁与地基共同承受荷载)该满堂架共设四道水平杆,三步架。
4、剪刀撑应由底至顶连续设置。
支架立杆应竖直设置,纵横方向应在同一条直线上,同一步水平杆件应在同一平面上,满堂架搭设完毕后,应作到整齐划一。
立杆全部采用6米长标准管。
5、在该满堂架顶层及梁上面一步水平杆处各设置一道水平剪刀撑。