裂缝测井识别
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
裂缝的识别裂缝是指岩石的断裂,即岩石中因失去岩石内聚力而发生的各种破裂或断裂面,但岩石通常是那些两个未表现出相对移动的断裂面。
其成因归纳为:(1)形成褶皱和断层的构造作用;(2)通过岩层弱面形成的反差作用;(3)页岩和泥质砂岩由于失水引起的体积收缩;(4)火成岩在温度变化时的收缩。
从FMI图像上,我们可以总结出裂缝的类型:(1)高角度缝:裂缝面与井轴的夹角为0~15度;(2)低角度缝:裂缝面与井轴的夹角为70~90度;(3)斜交缝:裂缝面与井轴的夹角为15~70度。
在某些特定的地区,我们可以从FMI图像上观察出网状缝,弥合缝和一些小断层。
第一节地层真假裂缝的识别方法在微电阻率扫描成像测井图FMI上,与裂缝相似的地质事件有许多,但它们与裂缝有本质的区别。
一、层界面与裂缝前者常常表现为一组相互平行或接近平行的高电导率异常,且异常宽度窄而均匀;但裂缝由于总是与构造运动和溶蚀相伴生,因而高电导率异常一般既不平行,又不规则。
二、缝合线与裂缝缝合线是压溶作用的结果,因而一般平行于层界面,但两侧有近垂直的细微的高电导率异常,通常它们不具有渗透性。
裂缝主要受构造运动压溶作用的影响,因此与缝合线的形状不一样,并且与裂缝也不相关。
三、断层面与裂缝断层面处总是有地层的错动,使裂缝易于鉴别。
四、泥质条带与裂缝泥质条带的高电导率异常一般平行于层面且较规则,仅当构造运动强烈而发生柔性变形才出现剧烈弯曲,但宽窄变化仍不会很大;而裂缝则不然,其中总常有溶蚀孔洞串在一起,使电导率异常宽窄变化较大。
五、黄铁矿条带与裂缝黄铁矿条带成像测井特征与泥质条带的特征混相似,但其密度明显增大,可作为鉴别特征。
总之,如图3—1所示,除断层面以外,其他地质现象基本平行于层理面,而裂缝的产状各异。
无论怎样弯曲变形,相似的这些地质现象的导电截面的宽度却相对稳定,相反裂缝的宽度通常因岩溶与充填作用变化较大。
第二节地层中天然裂缝和诱导裂缝的鉴别方法要鉴别天然裂缝和诱导裂缝,就须搞清诱导缝产生的机理和相应的特征。
人工压裂裂缝的检测人工压裂直接关系到压裂效果。
压后产量及其稳产效果等都决定于人工裂缝的几何尺寸和裂缝方位,而裂缝方位有直接关系到井区的井网布置和开发政策。
压裂后对所产生裂缝的几何形态的检测是压裂施工的一项重要工作。
对目前国内外广泛采用几种不同的检测方法来综合分析。
裂缝高度的检测目前对水力压裂裂缝高度的检测技术中,效果比较好的有油井温度测量法和放射性同位素示踪法。
油井温度测量法是在压裂前先测出地层基准温度剖面,然后在压裂时将冷或热的压裂液压入裂缝中,在压裂结束后测的井温曲线在裂缝段会发生温度异常,根据井温曲线上的温度异常范围来确定裂缝的高度。
放射形同位素示踪法又分为两种方法,一是在支撑剂中加入示踪剂,压裂结束后用伽玛射线测井法测量裂缝中的放射形示踪剂确定裂缝的高度。
二是在施工的最后,在压裂液中加入示踪剂,再进行伽玛射线测井。
裂缝方位和几何尺寸的检测目前检测裂缝的方位和几何尺寸的主要方法是在裸眼井中用下井下电视测量、微地震测量、无线电脉冲测量等方法对裂缝进行探测,通过传送系统在地面进行实时显示,根据图象观察和分析裂缝的方位和几何形态。
地层人工裂缝监测方法有诸多,其中以微地震方法最为及时、直接、可靠。
当压裂井实施压裂形成人工裂缝时,沿裂缝面必然出现微震,微震震源的分布反映了人工裂缝的轮廓。
根据监测结果可以汇出裂缝的形态、方位、高度、产状,从而弄清油田地应力方向。
井温测井可用来评估水力裂缝高度,通常可根据压裂作业后很短时间进行的关井测井曲线上的高温异常或低温异常来确定。
挤入的压裂液一般比被压裂地层的的温度低,在压裂过程中,低温压裂液被挤入裂缝,而井周未被压裂的地层散热从而降温。
关井后,对应着未压开地层的井眼部位,通过非稳态的辐射热传导方式,温度逐渐转回至地热温度;在被压开地层段,主要以热传导方式升温。
由于辐射热交换比热传导交换的速度快,因此被压开地层的升温相对慢,所以在相应的井温曲线上呈现低温异常。
利用动态资料识别裂缝油藏注水后,注入水很容易沿裂缝窜进,使沿裂缝方向上的采油井见水快,油藏含水上升快,可能在很短的时间内就进入高含水阶段,而位于裂缝两侧的油井见效慢,压力恢复慢。
双侧向—微球形聚焦测井系列对高角度裂缝,深、浅側向曲线平缓,深側向电阻率> 浅側向电阻率,呈“正差异”。
在水平裂缝发育段,深、浅側向曲线尖锐,深側向电阻率< 浅側向电阻率,呈较小的“负差异”。
对于倾斜缝或网状裂缝,深、浅側向曲线起伏较大,为中等值,深、浅电阻率几乎“无差异”。
声波测井识别裂缝:一般认为声波测井计算的孔隙度为岩石基质孔隙度,其理由是声波测井的首波沿着基质部分传播并绕过那些不均匀分布的孔洞、孔隙。
但当地层中存在低角度裂缝(如水平裂缝)、网状裂缝时,声波的首波必须通过裂缝来传播。
裂缝较发育时,声波穿过裂缝使其幅度受到很大的衰减,造成首波不被记录,而其后到达的波反而被记录下来,表现为声波时差增大,即周波跳跃。
因此,可利用声波时差的增大来定性识别低角度缝或网状缝发育井段。
利用感应差别识别裂缝:钻井液侵入裂缝,使感应测井曲线有明显的降低。
密度测井识别裂缝密度测井测量的是岩石的体积密度,主要反映地层的总孔隙度。
由于密度测井为极板推靠式仪器,当极板接触到天然裂缝时,由于泥浆的侵入会对密度测井产生一定的影响,引起密度测井值减小。
井径测井的裂缝识别对于基质孔隙较小的致密砂岩,钻井使得裂缝带容易破碎,裂缝相交处的岩块塌落,可造成钻井井眼的不规则及井径的增大。
另一方面,由于裂缝具有渗透性,如果井眼规则,泥浆的侵入可在井壁形成泥饼,井径缩小。
因此,可以根据井眼的突然变化来预测裂缝的存在。
井径测井对于低角度缝与泥质条带以及薄层的响应很难区分;另外,其它原因(如岩石破碎、井壁垮塌)造成的井眼不规则,会影响到该方法识别裂缝的准确性。
自然伽玛能谱测井识别裂缝测量地层中天然放射性铀(U238)、钍(Th282)、钾(K40)含量。
原理:正常沉积环境U元素含量低于或接近泥质体(钍+钾)的值,当有裂缝存在时,铀含量比泥质体大。
应用能谱的高铀值识别裂缝和地下流体的运移及活跃程度有关。
当裂缝(孔洞)发育段的地下水活跃时,地下水中溶解的U元素才能被吸附及沉淀在裂缝(或孔洞)周围,造成U元素富集,使得自然伽玛能谱测井在裂缝带处显示出U含量增加,在地下水不活动地区,裂缝性储层的自然伽玛显示为低值。
摘要:声电成像测井技术目前在多种测井技术当中属于一种技术含量较高的先进技术,对非匀质储层相关问题能够实现有效解决。
该技术是根据声电成像原理具体颜色,对岩石结构以及地质构造进行分析,同时和核心数据相结合形成的一种基本声波成像解释模型。
在声电成像测井技术实践应用环节,可通过测井所得图像,科学、有效的评价油气层,在对储层断层、裂缝进行分析评价期间,属于一项重要的核心技术。
为了充分发挥声电成像测井技术重要应用优势,本文着重分析声电成像测井技术在储层裂缝识别中的运用。
关键词:声电成像测井技术;储层裂缝;识别;运用声电成像测井技术在储层裂缝识别中的运用分析刘仁地(中国石油集团测井有限公司大庆分公司)1前言声电成像测井技术属于一种可靠性较高的先进测井技术,通过此种技术的应用,能够快速获得井筒或地层有关图像资料,帮助工作人员尽快掌握各种井下信息。
目前声电成像测井技术已经广泛应用到测井领域,为油田勘探提供重要支撑。
为了充分发挥声电成像测井技术在储层裂缝识别中的运用价值,需要相关应用人员充分掌握技术运用原理以及相关适用条件,并在实践应用中对裂缝真实性、有效性及充填性实现科学评价。
2声电成像测井技术在储层裂缝识别中的运用原理和适用条件1、电阻率扫描成像测井电阻率扫描成像测井的基本原理,是通过在6位极板当中安装的144个纽扣电极将交变电流发射到井壁地层,同时使电流通过地层和井内泥浆柱返回至仪器设备上方回路电极当中[1]。
因为纽扣电极所接触到的岩石具有不同的成分、所含流体以及结构,其产生的电流强度会出现一定变化,结合相关变化反映到井壁地层特性相关电阻率曲线当中,曲线共144条,同时通过彩色或灰度图像对地层电阻率变化进行显示。
电阻率扫描成像测井适用条件:实际测井环节,相关测井仪器位于水基泥浆井当中,同时地层电阻率和泥浆电阻率两者之比要在2000以内,适合用于直径在16~55cm 区间内的井眼当中,若井眼为8.5in,其中1in 是2.54cm,那么相应图像覆盖保持在66%左右,倾斜度最大是90°,同时垂直分辨率是5.08cm,具体可见表1。
浅析电成像测井资料在裂缝识别中的应用作者:刘梦虎来源:《中国科技博览》2013年第29期摘要:本文介绍了电阻率扫描成像测井技术识别裂缝的基本原理及适用条件,探讨了微电阻率扫描成像测井资料进行裂缝识别的方法,并提出了几点认识。
关键词:成像测井原理识别方法中图分类号:TU855 文献标识码:A 文章编号:1009-914X(2013)29-561-010 前言裂缝性油气藏大多分布在各种致密、性脆的硬地层中,如碳酸盐岩、坚硬砂岩、砾岩、火成岩、变质岩以及页岩等。
寻找裂缝性油气藏的关键是探测裂缝带,特别是高倾角裂缝带(垂直裂缝)的位置、发育程度、产状及其分布规律。
裂缝不仅是重要的储集空间,而且它提供了极好的流体渗滤通道,可以使孤立的孔洞得以连通,发育成有效的储集空间,大大提高基质渗透率,因此裂缝是决定致密砂岩储层产能的关键因素。
油气勘探开发后期的储层预测中,地应力研究的主要作用表现在裂缝性储层的预测、裂缝导致的储层参数各向异性等方面。
成像测井能够提供丰富的井壁及井眼周围的信息,可以直观地从测井图像中定性地识别地层、裂缝以及构造形态,而且可以利用数据处理方法对测井图像作定量处理和分析。
本文主要探讨微电阻率扫描成像测井资料进行裂缝识别的方法。
1 电阻率扫描成像测井技术识别裂缝的基本原理及适用条件(1)基本原理微电阻率扫描成像是利用位于 6块极板上的 144个钮扣电极向井壁地层发射交变电流,电流通过井内泥浆柱和地层返回到仪器上部的回路电极。
由于钮扣电极接触的岩石成分、结构以及所含流体不同引起电流强度的变化,从而得到反映井壁地层特性的 144条电阻率曲线,并用灰度或彩色图像显示地层电阻率的变化。
(2)适用的地质条件微电阻率扫描成像测井仪器工作在水基泥浆井中,且地层电阻率与泥浆电阻率之比应小于 2000,可用于直径为 16~ 54 cm的井眼中,在 8.5 in (1 i n= 2.54 c m,)的井眼中,其图像覆盖约为66%,最大井斜为 900 ,垂直分辨率为 5.08 cm(表1)。
测井资料的裂缝解释方法及其应用[摘要]T油田F油层属于干旱气候条件下浅水湖盆中一套特殊类型的河流一三角洲沉积,天然裂缝发育,储层物性较差,为特低渗透裂缝性储层。
由于储层非均质性和裂缝影响,目前含水上升快,产量递减快,裂缝反向水淹,层间差异大,层间和平面矛盾突出。
通过开展常规测井曲线识别储层裂缝方法的研究,搞清了储层的裂缝发育状况,裂缝发育程度向定量化方向迈进了一步,为搞清储层动用状况和剩余油分布提供技术支撑。
[关键词]F油层裂缝测井地质建模T油田F油层是一个受岩性、构造等多种因素控制的构造一岩性复合油藏,储层裂缝发育。
整体上储层复杂,非均质性强,平均空气渗透率为1.19×10-3um2,平均有效孔隙度为11.4%,为低孔特低渗油藏。
储层裂缝对开发影响很大,T油田已开发区均发生不同程度的东西向水淹,油田主体区块产量下降较快。
深入认识T油田储层裂缝发育状况,可以为油田开发调整工作提供重要的地质依据。
1利用常规测井资料识别储层裂缝方法1.1国内外研究现状影响裂缝发育的因素互相作用,针对不同成因的裂缝具有不同的预测方法:(1)主要针对构造裂缝预测的构造应力场方法和曲率法;(2)现代数学理论方法,其主要应用在进行井间预测时;(3)如何对地震资料进行解译,即如何充分发挥地震资料的功用,进行裂缝空间分布的预测。
目前的研究正在向多角度、多资料匹配裂缝预测等综合研究方向发展。
Ouenes等提出采用神经网络方法,对多种数据(地震三维数据体、压力测试、井点的分析等)进行集成,建造联系的裂缝油藏模型。
1.2单井裂缝测井解释方法介绍裂缝性地层裂缝的测井解释主要包括两方面的工作:识别裂缝带和定量计算储层裂缝参数。
常规测井方法的难点在于:(1)裂缝本身具有大小不等,分布不均,产状及发育程度不同,裂缝体积比岩石基块体积小及裂缝中有充填物等较为复杂的特征;(2)单一或少数识别参数对裂缝的识别比较困难。
虽然使用了不同的测井方法,但其测量结果都会受到探测范围内裂缝、井孔、岩石基块、流体等介质物理性质的综合影响,而裂缝对岩石物理性质的印象非常有限,不足以使其发生明显变化。
所谓裂缝识别,主要包含四个含义,即裂缝的真实性、裂缝的有效性、裂缝填充物的性质(即含油气性)、裂缝产状的计算。
裂缝综合分类如下:
⎪⎪
⎪
⎪
⎪
⎪
⎩⎪⎪⎪⎪
⎪
⎪
⎨
⎧
⎪⎩
⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<︒<<︒︒<<︒︒>应力释放缝钻井液与地应力压裂缝钻具诱导缝诱导缝网状裂缝)水平缝()低角度缝()斜交缝()高角度缝(低阻(低密度)缝高阻(高密度)缝天然裂缝
裂缝5305753075αααα
常规测井曲线对裂缝的响应
1、微侧向测井
微侧向测井采用贴井壁测量。
由于其电极系尺寸小,测量范围小,所以,其测量结果反映了井壁附近的地层情况,对裂缝的发育情况十分敏感。
在裂缝发育段,电阻率出现低阻异常,往往表现为以深侧向为背景的针刺状低阻突跳。
2、双侧向测井
从宏观上看,深、浅侧向,尤其是深侧向能反映出井眼周围较大范围内地层总的电性变化,由于探测深度有较大差别,往往出现深、浅侧向值的大小不同,表现为电阻率的“差异”。
影响双侧向差异性质及大小的因素较多,但主要是裂缝发育程度、裂缝角度、流体性质因素的影响。
(1) 裂缝发育程度的影响
经验表明,裂缝越发育的地方,双侧向的正差异一般也越大。
(2) 裂缝角度的影响
高角度、垂直裂缝的双侧向为正差异。
斜交缝的双侧向不明显。
低角度缝、水平缝的双侧向为低阻尖峰。
(3) 流体性质的影响
在淡水钻井液作用下,当地层中的流体为油气时,侵入带的电阻率低于原状地层的电阻率,双侧向出现正差异。
如果地层中油裂缝发育,钻井液滤液沿着较大的裂缝侵入较深,但微缝中的油气缺少被驱替;离开井筒越远,地层中的油气呗驱替越少,从而一般仍出现双侧向的正差异。
当地层中的流体为水时双侧向差异减小。
(4) 地应力集中的影响
在地应力集中段,岩石变致密,地层电阻率急剧上升,高达上万欧姆米,大大超过一般致密层的电阻率。
在钻井过程中,地应力通过井眼释放,造成该井段井壁沿最小主应力方向定向坍塌,使浅侧向值显著降低,从而出现深、浅侧向的正差异。
3、补偿密度测井
为了消除泥饼和井壁不平对密度测量的影响,采用补偿密度测井方法。
轮南地区石灰岩块岩性致密,渗透性差,很难形成泥饼,这样,补偿密度测井的密度值也
就成了我们借以识别井壁不平情况,从而间接反映裂缝发育的信息之一。
诱导缝与天然裂缝在形态上的主要区别有以下三点:
(1)诱导缝是地应力作用下即使产生的裂缝,因此只与地应力有密切关系,故排列整齐,规律性强;而天然裂缝常为多期构造运动形成,有遭地下水的溶蚀与沉淀作用的改造,因而分布极不规则。
(2)天然裂缝因常遭受溶蚀和褶皱的作用,故裂缝面总不太规则,且裂缝有较大的变化;而有道裂缝的缝面形状较规则且缝宽变化很小。
(3)有道裂缝的径向延伸都不大,故深侧向测井电阻率下降不明显。
补充:张开缝以黑色的高电导异常出现;被方解石、石英等矿物充填的裂缝则以高电阻率异常出现。
如被泥质等低阻物质充填,其图像特征亦为暗色高导异常,与有效缝不易区分。