数值分析作业
- 格式:doc
- 大小:101.00 KB
- 文档页数:3
数值分析第一章作业1.数值计算方法设计的基本手段是( ).(A) 近似 (B) 插值 (C) 拟合 (D) 迭代2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ).(A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ).(A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响.(A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似5.当N 充分大时,利用下列各式计算121N N dx I x+=+⎰,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+6.计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么?(B) 3(3- (D) 99-7.计算球体的体积,已知半径的相对误差限不超过3310-⨯,则计算所得体积的相对误差限如何估计?8.设0x >,近似值*x 的相对误差限为δ,试估计*ln x 的误差限.9.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限不超过δ,则计算所得体积的相对误差限如何估计?.10.用秦九韶算法求32()431f x x x x =-+-在2x =处的值.11.已知近似值 1.0000x *=的误差限4()110x ε*-=⨯,21()16f x x =,求(())f x ε*,并说明x *及()f x *的各有几位有效数字.12.设a 为非零常数,已知0y 的近似值0y *,由递推式1n n y ay -=计算序列{}n y 的近似值,分析该算法的稳定性.。
习题(一)1. 指出四舍五入得到的下列各数有几位有效数字:x 1∗=7.8673,x 2∗=8.0916,x 3∗=0.06213,x 4∗=0.07800,x 5∗=90×103,x 6∗=2.0×10−4解:由有效数字定义得:x 1∗,x 2∗具有5位有效数字x 3∗,x 4∗具有4位有效数字x 5∗,x 6∗具有2位有效数字.2. 设准确值为x=3.78695,y=10,它们的近似值分别为x 1∗=3.7869,x 2∗=3.7870及y 1∗=9.9999,y 2∗=10.1,y 3∗=10.0001,试分析x 1∗,x 2∗,y 1∗,y 2∗,y 3∗分别具有几位有效数字. 解:x 1∗=3.7869=x 1∗=0.37869×101,k 1=1|x 1∗−x|=|3.7869−3.78695|=0.00005≤0.5×10−4=0.5×101−5, 即x 1∗具有5位有效数字;同理,x 2∗=3.7870=0.37870×101,k 2=1|x 2∗−x|=|3.7870−3.78695|=0.00005≤0.5×101−5,所以x 2∗具有5位有效数字; 将y 1∗,y 2∗,y 3∗分别写成y=±10k ×0.α1α2...αn 的表示形式,有:y 1∗=9.9999=0.99999×101,k 3=1;y 2∗=10.1=y 2∗=0.101×102,k 4=2;y 3∗=10.0001=0.100001×102,k 5=2;|y 1∗−y |=|9.9999−10|=0.0001=0.1×10−3≤0.5×101−4,n=4;|y 2∗−y |=|10.1−10|=0.1≤0.5×102−2,n=2;|y 3∗−y |=|10.0001−10|=0.0001=0.1×10−3≤0.5×102−5,n=5;所以y 1∗,y 2∗,y 3∗分别具有4,2,5位有效数字.8.为了使√11的近似值的相对误差不超过0.1%,问至少应取几位有效数字. 解:√11=0.3316624…=0.α1α2...αn ×10k ,α1=3,设x ∗有n 位有效数字,又因为|E x ∗|比值比较小, 故可用E r ∗(x ∗)= |E(x ∗)x ∗|代替相对误差E r ∗(x ∗),用εr ∗=εx ∗代替相对误差限εr 所以εr ∗≤12α1×10−n+1=16×10−n+1 令16×10−n+1≤0.1%,解得n ≥3.22即至少应取4位有效数字.12.如何计算下列函数值才比较精确.(1)11+2x −11+x ,对|x|≪1; (2)√x +1x −√x −1x ,对x ≫1;(3)∫dx 1+x 2N+1N,其中N 充分大; (4)1−cos xsin x ,对|x|≪1;(5)ln(30−√302−1)(开平方用6位函数表);解:(1)原式=1+x−(1+2x)(1+2x)(1+x)=−x (1+2x)(1+x); (2)原式=x+1x −(x−1x )√x+1x +√x−1x =2x √x+1x +√x−1x ;(3)原式=arc tan x|NN+1=arc tan N +1−arc tan N =arc tan N+1−N 1+N(N+1)=arc tan 11+N(N+1); (4)原式=2sinx 222sin x 2cos x 2=tan x2; (5)原式=30+√302−1=−ln(30+√302−1)令f(x)=ln(x −√x 2−1),则f(30)=ln(30−√302−1)=ln(30−√899),记a=30−√899 若用6位开方函数表,则有a ∗=30−29.9833=0.0167,故有ε(a ∗)=0.5×10−4, 而f(30)≈ln a ∗,于是ε(f (30))=ε(ln a ∗)≈|1a ∗|ε(a ∗)=0.50.0167×10−4≈0.003; 又因为f(x)等价于f(x)=-ln(x +√x 2−1),则f (30)=-ln(30+√899),记b=30+√899 同理b ∗=59.9833,进而ε(b ∗)=(2×10−4)−1,对f (30)≈ln b ∗ε(f (30))=ε(ln b ∗)≈|1b ∗|ε(b ∗)=0.559.9833×10−4≈0.834×10−6。
R ⋅V 'Vr p r r r r 第一单元1.计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差是多少?解:∵球体体积公式为V =4πR 3,则该函数的条件数C 为3pC p ===3∴ξ(V *)=C ξ(R *)=3ξ(R *)∵ξ(V *)=1%∴ξ(R *)=1300=0.33%即度量半径R 时允许的相对误差是0.3%。
4.正方形的边长大约为100cm ,问测量时允许多大的误差才能使其面积误差不超过1cm 2。
解:设测量得到的正方形边长为x *,即其面积可表示为S (x *)=(x *)2;∵S (x *)=(x *)2∴ξ(S )=2x *ξ(x *)∵x *=100且ξ(S )≤1∴ξ(x *)≤1⨯10-22即测量时允许的误差不超过0.005cm ,才能使其面积误差不超过1cm 2。
x k -131+x 2k 1x2231+x 2k 00200⎝⎪第二单元1.为求方程x 3-x 2-1=0在x 0=1.5附近的一个根,设将方程改写为下列等价形式,并建立相应的迭代公式。
(1)x =1+1/x 2,迭代公式x k +1=1+1/x 2;(2)x 2=1/(x -1),迭代公式x k +1=1/;(3)x 3=x 2+1,迭代公式x k +1=;试分析每种迭代公式的收敛性,选取一种公式求出具有4位有效数字的近似根。
x=1+1/x 2,ϕ(x )=1+,解:(1)∵k +1k∴ϕ'(x )=-2⨯x -3,ϕ'(x )=-2⨯1.5-3=16/27=0.5926<1;(2)∵x k +1=1/1,ϕ(x )=1/-3,1∴ϕ'(x )=-(x -1)22,ϕ'(x )=-(1.5-1)2=≈1.414>1;(3)∵x k +1=,ϕ(x )=,2x -223⎛2⎛3⎫2⎫3∴ϕ'(x )=(1+x 2)3,ϕ('x )=⨯⨯ 1+⎪=0.4558<1;3032 ⎪⎝⎭⎭对比分析得,第(1)种迭代公式收敛,第(2)种迭代公式发散,第(3)种迭代公式收敛。
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
第一章 误差与算法1. 误差分为有__模型误差___, _观测误差___, __方法误差____, ___舍入误差____, Taylor 展开式近似表达函数产生的误差是_方法误差 .2. 插值余项是插值多项式的 方法误差。
0.2499作为1/4的近似值, 有几位有效数字?00.24990.249910,0m =⨯=即,031|0.2499|0.00010.5100.510,34m n n ---=<⨯=⨯=即22 3.1428751...,7=作为圆周率的近似值,误差和误差限分别是多少,有几位有效数字?2133.142875 3.14159260.00126450.5100.510---=<⨯=⨯有3位有效数字.* 有效数字与相对误差的关系3. 利用递推公式计算积分110,1,2,...,9n x n I x e dx n -==⎰错误!未找到引用源。
, 建立稳定的数值算法。
该算法是不稳定的。
因为:11()()...(1)!()n n n I n I n I εεε-=-==-111n n I I n n -=-, 10110I =4. 衡量算法优劣的指标有__时间复杂度,__空间复杂度_.时间复杂度是指: , 两个n 阶矩阵相乘的乘法次数是 , 则称两个n 阶矩阵相乘这一问题的时间复杂度为 .二 代数插值1.根据下表数据建立不超过二次的Lagrange 和Newton 插值多项式, 并写出误差估计式, 以及验证插值多项式的唯一性。
x 0 1 4f(x) 1 9 3Lagrange:设0120120,1,4;()1()9()3x x x f x f x f x ======则,, 对应 的标准基函数 为:1200102()()(1)(x 4)1()(1)(x 4)()()(01)(04)4x x x x x l x x x x x x ----===------ 1()...l x =2()...l x =因此, 所求插值多项式为:220()()()....i i i P x f x l x ===∑ (3)2()()(0)(1)(x 4)3!f R x x x ξ=--- Newton:构造出插商表:xi f(xi ) 一 二 三0 11 9 84 3 -2 -5/2所以, 所求插值多项式为:2001001201()()[,]()[,,]()()518(0)(0)(1)2...P x f x f x x x x f x x x x x x x x x x =+-+--=+----=插值余项: 2()[0,1,4,](0)(1)(x 4)R x f x x x =---2. 已知函数f(0)=1,f(1)=3,f(2)=7,则f[0,1]=___2________, f[0,1,2]=____1______)('],[000x f x x f =3.过0,1两节点构造三次Hermite 插值多项式, 使得满足插值条件: f(0)=1. .’(0)=... f(1.=2. .’(1)=1设0101010,1,()1()2'()0,'()1x x f x f x f x f x ======则,, 写出插商表:xi f(xi) 一 二 三0 10 1 01 a 1 11 a 1 0 a-1因此, 所求插值多项式为:插值余项:222()[0,0,1,1,](1)R x f x x x =-4.求f(x)=sinx 在[a,b]区间上的分段线性插值多项式, 并写出误差估计式。
数值分析课后作业:习题一1.在字长为3的十进制计算机上计算f (3.33)和g (3.33),其中f(x)=x 4-x 3+3x 2+x-2,g(x)=(((x-1)x+3)x+1)x-2解: m=3; f=@(x)digit(digit(x^4,m)- digit(x^3,m)+ digit(3*x^2,m)+ digit(x-2,m),m); g=@(x)digit(digit(digit( digit(digit(digit( (x-1)*x,m)+3,m)*x,m)+1,m)*x,m)-2,m); f(3.33) g(3.33) 有ans = 121 ans =121 2.下列各近似值的绝对误差限都是1021⨯-3,试指出它们各有几位有效数字:x=1.00052, y=0.05, z=0.00052.解:当 x=1.00052时, 由丨X*—X 丨 ≤0.5×10-3 得 x=1.00052 有四位有效数字; 同理 y=0052 有两位有效数字 Z=0.00052有零位有效数字 3,计算圆的面积,要使其相对误差限为1%,问测量半径r 允许的相对误差限是多少? 解:设圆的面积为S , 由题意有|e(S)|≤1%。
又S=πr 2 dS=2πr dr 所以 dS/S=(2πrdr)/(πr 2)=2(dr/r)∴|e(r)|≈21|e(S)|≤0.5×1%=0.5% 11.数组与矩阵是Matlab 编程的基础,试学习Matlab 的数组与矩阵的表示方法,并举例介绍数组、矩阵的常见运算. 解:>> syms a b c d; >> a=[1 2 3];>> b=[4 5 6];>> a+bans =5 7 9>> b-aans =3 3 3>> a.*bans =4 10 18 >> a.^2 ans = 1 4 9>> c=[1 2 3;1 2 3;1 2 3];>> d=[4 5 6;4 5 6;4 5 6];>> cc = 1 2 3 1 2 3 1 2 3d = 4 5 6 4 5 6 4 5 6 >> c+dans =5 7 9 5 7 9 5 7 9>> d-cans = 3 3 33 3 33 3 3 12.学习使用Matlab 命令help 和doc 学习自己感兴趣的Matlab 的运算、函数或命令的用法,并对于任意给定的实数a,b,c,编写Matlab 程序求方程ax 2+bx+c=0的根. 解:x 1=a ac b b b 24)sgn(2---, x 2=1ax c1 x>0 其中 sgn = 0 x=0 -1 x<0 disp('Please input the coefficients of');disp('quadratic equation ax^2+bx+c=0, respectively') a=input('a='); b=input('b='); c=input('c=');m=3; if abs(a)<eps & abs(b)<eps error End if abs(a)<eps disp('Since a=0, quadrtic equation degen erates into a linear equation.') disp('The only solution of the linear equtio n is')x=digit(-c/b,m) return Enddelta=b^2-4*a*c; temp=sqrt(delta); x 1=(-b+temp)/(2*a) ; x 2=(-b-temp)/(2*a) ;err1=abs(a*x 1^2+b*x 1+c) ; err2=abs(a*x 2^2+b*x 2+c) ; if b>0x 1=(-b-temp)/(2*a) End if b<0x 1=(-b+temp)/(2*a) End if b=0x 1=temp/(2*a) Endx 2=c/(a*x 1)err1=abs(a*x 1^2+b*x 1+c) err2=abs(a*x 2^2+b*x 2+c) if abs(a)<epsdisp('Since a=0, quadrtic equation degen erates into a linear equation.')disp('The only solution of the linear equtio n is')x=digit(-c/b,m) return Enddelta=digit(digit(b^2,m)-digit(4*digit(a*c,m),m),m);temp=digit(sqrt(delta),m);x 1=digit(digit(-b+temp,m)/digit(2*a,m),m); x 2=digit(digit(-b-temp,m)/digit(2*a,m),m); err1=abs(a*x 1^2+b*x 1+c); err2=abs(a*x 2^2+b*x 2+c); if b>0x 1=digit(digit(-b-temp,m)/digit(2*a,m),m) ; End if b<0x 1=digit(digit(-b+temp,m)/digit(2*a,m),m); End if b=0x 1=digit(temp/digit(2*a,m),m); Endx 2=digit(digit(c/a,m)/x1,m) ; err1=abs(a*x 1^2+b*x 1+c) ; err2=abs(a*x 2^2+b*x 2+c) ; 14分别利用ln (1+x)=11,)1(11≤<--+∞=∑x nx nn n 和ln11...),12...53(2111253<<-++++++=-++x n x x x x x x n ,给出计算ln2的近似方法,编写相应的Matlab 程序,并比较算法运行情况. 解:方法一: x=1; s=0;for k=1:100s=s+(-1)^(k+1)*(x^k)/k; end sq=log(2)err=abs(t-q) ans= t =0.6882 q =0.6931 err = 0.0050方法二x=1/3; s=0;for k=1:2:100 s=s+(x^k)/k; end t=2*s q=log(2)err=abs(t-q) Ans= t =0.6931 q =0.6931 err =2.2204e-16所以方法二较方法一好。
数值分析作业及答案Chap11、写出下列语句的运行结果。
在MA TLAB 上执行它们以验证所得解答。
a=[1 2 3 ;4 5 6 ]’ b=[9;7;5;3;1] c=b(2:4) d=b(4:-1:1) e=sort(b) f=[3,b ’]解:a=635241 b=13579c=357d=9753 e=97531F=[3 9 7 5 3 1] 3、给定一向量:a=[4 -1 2 -8 4 5 -3 -1 6 -7]写一段程序计算a 中正数的和。
运行程序并显示结果。
解:a=[4 -1 2 -8 4 5 -3 -1 6 -7]; s=0;for i=1:length(a) if a(i)>0s=s+a(i); end end s6、编写一个函数M 文件fun_es(x),计算如下函数:230.5sin x y e x x =-其中参数可以为标量,也可以为向量。
在MA TLAB 里键入如下命令检验此函数:fun_es(3) fun_es([1 2 3])解:function y=fun_es(x) y=0.5*exp(x/3)-x.^2.*sin(x);chap21、设0x >,x 的相对误差为δ,求L nx 的误差。
解:Lnx-Lnx*=dLnx=dx/x=δ2、设x 的相对误差为2%,求2x 的相对误差。
解:dLnf(x)=xf ’(x)/f(x)dLnx=4%5、计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?解:dLnf(x)=xf ’(x)/f(x)dLnx=3dLnx=1% dLnx=0.33%9、正方形的边长大约为100cm ,应怎样测量才能使其面积误差不超过1cm 2? 解:s=x 2s-s*=2x(x-x*)=1x-x*=1/(2x)=1/200=0.5*10-2 即测量边的误差不超过0.005cm 10、设212S gt =,假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。
第二章15.方程组的性态和矩阵条件数试验。
设有线性方程组Ax=b ,其中系数矩阵A=(a ij )nXn 分别为a ij =x i j −1(x i =1+0.1i;i,j=1,2…,n)或a ij =1i+j −1(i,j=1,2…,n),右端向量b=( a 1j n j=1, a 2j n j=1,…, a nj nj=1)T .利用MATLAB 中的库函计算:(1)取n=5,10,20,分别系数矩阵的2-条件数,判别他们是否是病态矩阵?随着n 的增大。
矩阵形态的变化如何?(2)分别取n=5,10,20解两个线性方程组,并求的的解与精确解做比较,说明的什么?(3)取n=10,对系数矩阵中的a 22和a nn 增加扰动10-8,求解方程组,解得变化? 程序如下:n=input('n='); for i=1:n; for j=1:n;a(i,j)=1/(i+j-1); end end c=norm(a); d=norm(inv(a)); t=c*d; b=sum(a'); x=inv(a)*b'; disp(t); disp(x')输入n=5时得到t=4.7661e+005 X=1.0000 1.0000 1.0000 1.0000 1.0000 输入n=10时得到t=1.6025e+013 X=1.0000 1.0001 1.0000 1.0000 0.9999 0.9998 0.9991 0.9999 1.0000 1.0001 输入n=20时得到t= 2.3003e+018 X=Columns 1 through 130.2609 9.6667 0.9976 1.1094 0.6875 1.3750 3.3125 2.0000 16.0000 -18.0000 32.0000 -10.0000 8.0000Columns 14 through 20-56.0000 4.0000 24.0000 39.5000 -144.0000 28.0000 -14.0000通过题意可知线性方程组的精确解为x=ones(n,1).通过对条件数t 值计算可知其随n 值增加而增加,n 值变大矩阵变为病态矩阵,病态矩阵的结果偏差较大。
7、用列主元消去法解线性方程组
123123123
123315,18315,6,x x x x x x x x x -+=⎧⎪
-+-=-⎨⎪++=⎩ 并求出系数矩阵A 的行列式的值。
解:
31223211223,x a a a x x a ,为零,然后选出第二列的主元素,通过交换行,使它放在a 位置,在将我们对方程组的增广矩元素的值变阵做初等变换,先选出第一列的主元素,交换行,放在然后进行初等变换为零,然后回代,解出,,的值。
具体过,使得程如下:
183115183
115183115123315017/35017/3511160117/1831/60011/311---------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
所以解为1231,2,3,A -66x x x ===行列式的值为。
8、用直接三角分解(杜利特尔分解)求解线性方程组
1231231231
119,4561
118,3451
282x x x x x x x x x ⎧++=⎪⎪
⎪++=⎨⎪⎪++=⎪⎩
的解。
解:因为直接三角分解法将一个矩阵分解为一个单位下三角矩阵和一个上三角
矩阵,因此 设
12
31
452
3
61001
00,100
u u u A l u u l l u ⎡⎤⎡⎤
⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
根据矩阵乘法计算法则,得 1l =4/3,2l =2,3l =-36
1u =1/4,2u =1/5,3u =1/6,4u =-1/60,5u =-1/45,6u =13/15。
解方程组Ly=b,得
y 1239,4,154,y y ==-=-
同时解Ux=y,得
123227.08,476.92,177.69x x x =-==-
9、用追赶法解三对角方程组Ax=b,其中
2100012100012100012100012A -⎡⎤⎢⎥--⎢⎥⎢⎥=--⎢⎥--⎢⎥⎢⎥-⎣⎦,10000b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
解:
设A 可以分解为
1
12233
445211112111121111211
1121l u l u l u l u l -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=---⎢
⎥⎢⎥⎢⎥---⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦
⎣⎦ 根据矩阵乘法的运算法则,联立可解得
1234512342,3/2,4/3,5/4,6/5,1/2,2/3,3/4,4/5,l l l l l u u u u ======-=-=-=-
由
Ly=b,解得
y 123451/2,1/3,1/4,y 1/5,1/6y y y =====; 再由
Ux=y,解得
123455/6,2/3,1/2,1/3,1/6x x x x x =====
12
||x ||(Ax,x),||x ||15n
A A A =试证明为
、设为对称正定矩阵,定义上向量的一种范数。
证明:要证明该命题,只需证明||x ||A 满足向量范数的三个条件。
(1) 因A 正定对称,所以当x=0时, 1
2
||x ||(Ax,x)A ==0;而当x ≠0时,
12
||x ||(Ax,x)A =>0.
(2) 对任意α
属于
,有
|12
1112
2
2
2.
22222||x||(A ,)||||||x ||.(3)A ,||x||(A )(x)((x)(x))||x ||,||||||x+y||||(x+y)||||x y |||||||||||A A T T
T
T
T
T
T
T A n
T T T T T A x x x x x x y x y ααααα========∙==+≤+=因为正定,故有分解A=LL 因而
LL L L L 对任意属于,由的三角不等式有
L L L L L |x ||||y ||,
A A +所以待征成立。
17、矩阵第一行乘以一数,成为
111
22=(A)113023||,||,3
||A||22,||,311,
122|1|
||||.||
26||3,||,3(A)=||||||A||122(2),||,3A cond A A cond A λλλλλλλλλλλλλλλλ∞∞--∞-∞∞∞⎛⎫=± ⎪
⎝⎭
≠⎧
≥⎪⎪=⎨
⎪<⎪⎩
-⎛⎫= ⎪-⎝⎭+=⎧
+≥⎪⎪=⎨
⎪+<⎪⎩
,证明,当时,有最小值。
证明:设,则于是
所以待证成立。