近代物理实验微波电子自旋共振(7-2)课件
- 格式:pdf
- 大小:3.59 MB
- 文档页数:16
深圳大学实验报告课程名称:近代物理实验
实验名称:电子自旋共振
学院:
专业:班级:
组号:指导教师:
报告人:学号:
实验地点
实验时间:年日星期二
实验报告提交时间:
五、数据处理
每组正向测厚反向高斯计总共测两次
自旋磁矩朗德因子g=
B hf
B =2.08 六、实验总结
1、实验测得电子自旋的朗德因子俄日2.08,偏大可能与仪器工作不算稳定和在观察共振波形上有点误差。
2实验验证了电子自旋共振:电子收到原子外部电荷的作用使得电子轨道发生旋进,角动量量子数L 平均为0 ,样品DPPH 为顺磁物质,其磁矩主要由电子自旋贡献。
使得我们能得以观察电子共振现象。
微波段电子自旋共振实验仪一、概述电子自旋共振(Electron Spin Resonance)缩写为ESR,又称顺磁共振(缩写为EPR,Paramagnetic Resonance)。
它是指处于恒定磁场中的电子自旋磁矩在射频电磁场作用下发生的一种磁能级间的共振跃迁现象。
这种共振跃迁现象只能发生在原子的固有磁矩不为零的顺磁材料中,称为电子顺磁共振。
1944年由前苏联的柴伏依斯基首先发现。
它与核磁共振(NMR)现象十分相似,所以1945年Purcell、Paund、Bloch和Hanson等人提出的NMR实验技术后来也被用来观测ESR现象。
ESR己成功地被应用于顺磁物质的研究,目前它在化学、物理、生物和医学等各方面都获得了极其广泛的应用。
例如发现过渡族元素的离子、研究半导体中的杂质和缺陷、离子晶体的结构、金属和半导体中电子交换的速度以及导电电子的性质等。
所以,ESR也是一种重要的近代物理实验技术。
由上海复旦天欣科教仪器有限公司生产的FD-ESR-C型微波段电子自旋共振实验仪是用来完成微波段电子自旋共振实验教学的近代物理实验仪器,它主要用来测量DPPH样品的ESR吸收谱线,测量g因子,并分析微波系统的特性。
该仪器测量准确、稳定可靠、实验内容丰富,可以用于物理高年级学生专业实验以及近代物理实验。
二、仪器简介FD-ESR-C型微波电子自旋共振实验仪主要由三部分组成:磁铁系统、微波系统、实验主机系统,如图1所示,另外实验时必须配有双踪示波器(选购件)。
图1 FD-ESR-C型微波段电子自旋共振实验仪三、技术指标1.短路活塞调节范围 0-65mm2.样品管外径 4.8mm3.微波频率计测量范围 8.2GHz-12.4GHz 分辨率 0.005GHz4.数字式高斯计测量范围 0-2T 分辨率 0.0001T5.波导规格:BJ-100(波导内尺寸:22.86mm×10.16mm)四、实验项目1. 了解和掌握各个微波波导器件的功能和调节方法。
中国石油大学 近代物理实验 实验报告 成 绩:班级: 姓名: 同组者: 教师:实验7-2 微波法测电子自旋共振实验【实验目的】1、 了解电子自旋共振理论2、 掌握电子自旋共振的实验方法3、 测定DPPH 自由基中电子的g 因子和共振线宽【实验原理】1、电子自旋共振基础原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为 () 1+=S S p S (7-2-1)其中S 是电子自旋量子数,2/1=S 。
电子的自旋角动量S p 与自旋磁矩S μ间的关系为 ()⎪⎩⎪⎨⎧+=-=12S S g p m e g B SS e S μμμ (7-2-2) 其中:e m 为电子质量;eB m e 2 =μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为 )1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3) J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。
对于单电子原子,原子 的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。
含有单电子或未偶电子的原子处于基态时,L=0,J=S=1/2,即原子的角动量和磁矩等价于单个电子的自旋角动量和自旋磁矩。
设g m e e2=γ为电子的旋磁比,则 S S p γμ= (7-2-4)电子自旋磁矩在外磁场B (z 轴方向)的作用下,会发生进动,进动角频率ω为B γω= (7-2-5)由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取m p z S = (S S S S m -+--=,1,,1, )m 表示电子的磁量子数,由于S =1/2,所以m 可取±1/2。
电子的磁矩与外磁场B 的相互作用能为 B B B E z S S γμμ21±==⋅= (7-2-6) 相邻塞曼能级间的能量差为B g B E B μγω===∆ (7-2-7) 如果在垂直于B 的平面内加横向电磁波,并且横向电磁波的量子能量 ω正好与△E 相等时,即满足电子自旋共振条件时,则电子将吸收此旋转磁场的能量,实现能级间的跃迁,即发生电子自旋共振。
实验简介1924年,泡利(Pauli)首先提出电子自旋的概念。
1954年开始,电子自旋共振(ESR)逐渐发展成为一项新技术。
电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子以及内电子壳层未被充满的离子,受辐射作用产生的自由基及半导体、金属等。
通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构何化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛的应用。
本实验要求观察电子自旋共振现象,观察顺磁离子对共振信号的影响,测量DPPH中电子的g因子,并利用电子自旋共振测量地球磁场的垂直份量。
实验原理⏹电子的自旋磁矩●电子具有自旋,由量子力学可知,其自旋角动量(1)式中S为自旋量子数,S=1 / 2。
自旋时电子具有自旋磁矩,自旋磁矩为(2)其中g为朗德因子,对自由电子,g=2.00232,e为电子电荷,m为电子质量,为波尔磁子,,其值为。
⏹外磁场中电子的自旋能级●若电子处于外磁场B(沿z方向)中,由于B与自旋磁矩的作用,其自旋角动量将对z轴发生进动,据量子力学的观点,在空间的取向是量子化的,在z方向的投影为(3)m为磁量子数,m=S,S-1,…,-S,故m可取值为,磁矩与外磁场B的相互作用能为(4)在外磁场中,电子自旋能级分裂为两个,如图4.4.1-1,其能量差为(5)对由大量原子组成的样品,在热平衡下,处在和能级的电子数满足玻尔兹曼分布,两个能级上的电子数、的比值为(6)k为玻尔兹曼常数,T为热力学温度,,一般满足高温近似,即,上式可写成(7)显然,外加磁场越强,温度越低,两个能级上的粒子数差越大。
⏹电子自旋共振●若在垂直于外磁场B的平面上施加一频率为的旋转磁场,当满足(1)时,电子吸收的能量,从低能级跃迁到高能级,这就是电子自旋共振。
当然处于高能级的电子会自发地辐射能量跃迁回低能级。
实验7-2 微波电子自旋共振谭晓宇·1010177·物理学·光学一、实验背景电子微波共振也称电子顺磁共振(EPR ,Electron Paramagnetic Resonance ),其工作机理与核磁共振是相同的。
当原子、分子或离子中所有电子的自旋磁矩与轨道磁矩的总和不为零时,外界磁场便会引起它发生能级分裂。
基于这种能级分裂,我们便可以观察到顺磁共振的现象。
能产生顺磁共振的物质大致有这样几类:过渡族元素的离子、金属中的导电电子、半导体中的杂志原子、自由基。
通过对这些物质EPR 谱的观测,可以获得他们的g 因子,线宽,弛豫时间,超精细结构参数等,可以了解有关原子、分子及离子中未偶电子的状态,从而获得有关物质的微观结构。
现EPR 谱已广泛应用于物理、化学、医学、生物、考古、石油、地质等领域。
EPR 谱仪具有很高的灵敏度和分辨率,可提供物质结构的丰富信息,是一项先进的无损伤探测技术。
二、实验原理原子中,电子的磁矩为: B j j j g P P μμγ=-=式中,B μ为玻尔磁子,γ为旋磁比:Bg μγ=-当自旋粒子处于磁场中时,空间量子化。
取外磁场方向为Z 轴方向,则电子的磁矩在外磁场方向的投影为:Z m μγ=,m= j , j-1 , ……, -j+1, -j设外磁场的强度为B ,则电子在磁场中具有的磁能为:j Z B E B B mg B μμμ=-⋅==-每个m 都对应了一个能级,相邻能级之间的能量差为:B E g B h μν∆==式中,v 为垂直于B 的交变磁场B1的频率。
在B1的作用下,当v=v0, B=B0 时,电子将会在相邻能级之间发生偶极跃迁,即发生电子自旋共振,其条件可以表示为:00B v g B μ= 如果能够测得v ₒ和B ₒ,便能据此求出该种物质中电子的朗德因子g.三、实验内容及步骤我们使用的实验装置如下图所示:1、在系统开启之前,将可变衰减器旋钮顺时针旋至最大(以防系统开启时受到功率过高的微波影响,损耗仪器),再开启系统的电源,使其预热20分钟左右(使系统内的各个器件达到微波工作状态,从而更灵敏)。