独立按键控制步进电机运转C语言程序
- 格式:pdf
- 大小:106.43 KB
- 文档页数:8
题目:单片机控制步进电机系统摘要很多工业控制设备对位移和角度的控制精度要求较高, 一般电机很难实现, 而步进电机可精确实现所设定的角度和转数。
本设计主要是运用51 单片机控制六线4相步进电机系统, 由单片机产生驱动脉冲信号, 控制步进电机以一定的转速向某一方向产生一定的转动角度。
同时能够利用单片机实现电机的正、反转及速度控制,并能在数码管上显示出相应的速度。
本文中给出了该系统设计的硬件电路,软件设计,人机交互等。
并对各个功能模块进行了详细的说明。
主要内容包括以下几个方面:单片机控制步进电机的一般原理。
电机驱动及控制的实现。
控制系统整体设计以及模块划分说明。
原理图。
代码。
关键词:单片机;步进电机;系统;驱动AbstractMany Industrial control equipment have a highly requirement in displacement and angle with control accuracy, the most motor can't carry out .but the step motor can carry out the displacement and angle that you enactmented in accuracy. This design mainly used SCM to control step motor system.The step motor is formed six lines and four phasic.Through SCM generate the drive pulse signal.Control stepper motor through a certain speed in a direction to get a certain degree of rotation angle.At the same time, It can use SCM to realization of the motor is , reverse and speed control. and showed the speed in the digital tube.In this paper, given the design of the system hardware circuit,software design, human-computer interaction and so on.and it given the details description of each functional module.the main contents include the following:(1) The general principles of signal_chip controlling step motor.(2) The realization of motor driving and controlling(3) Control system overall design and description module division(4) Schematic Diagram(5) CodeKey Words:SCM; stepper motor; system; drive目录引言41 单片机控制步进电机的一般原理41.1 步进电机41.1.1 步进电机介绍41.1.2 步进电机分类51.1.3 技术指标51.1.4 步进电机工作原理51.2 单片机72 步进电机驱动实现82.1简介82.2驱动选择83 系统硬件设计93. 1 单片机控制电机93.2 键盘93.3 显示部分10程序流程图11总结12致谢13参考文献13附录13C代码13引言目前,在工业控制生产以及仪器上应用十分广泛。
C 语言实现单片机控制步进电机加减速源程序1. 引言在现代工业控制系统中,步进电机作为一种常见的执行元件,广泛应用于各种自动化设备中。
而作为一种常见的嵌入式软件开发语言,C 语言在单片机控制步进电机的加减速过程中具有重要的作用。
本文将从单片机控制步进电机的加减速原理入手,结合 C 语言的编程技巧,介绍如何实现单片机控制步进电机的加减速源程序。
2. 单片机控制步进电机的加减速原理步进电机是一种能够精确控制角度的电机,它通过控制每个步骤的脉冲数来实现旋转。
在单片机控制步进电机的加减速过程中,需要考虑步进电机的加速阶段、匀速阶段和减速阶段。
在加速阶段,需要逐渐增加脉冲的频率,使步进电机的转速逐渐增加;在匀速阶段,需要保持恒定的脉冲频率,使步进电机以匀速旋转;在减速阶段,需要逐渐减小脉冲的频率,使步进电机的转速逐渐减小。
这一过程需要通过单片机的定时器和输出控制来实现。
3. C 语言实现步进电机加减速的源程序在 C 语言中,可以通过操作单片机的 GPIO 来控制步进电机的旋转。
在编写源程序时,需要使用单片机的定时器模块来生成脉冲信号,以控制步进电机的旋转角度和速度。
以下是一个简单的 C 语言源程序,用于实现步进电机的加减速控制:```c#include <reg52.h>void main() {// 初始化定时器// 设置脉冲频率,控制步进电机的加减速过程// 控制步进电机的方向// 控制步进电机的启停}```4. 总结与回顾通过本文的介绍,我们了解了单片机控制步进电机的加减速原理和 C 语言实现步进电机加减速源程序的基本思路。
掌握这些知识之后,我们可以更灵活地应用在实际的嵌入式系统开发中。
在实际项目中,我们还可以根据具体的步进电机型号和控制要求,进一步优化 C 语言源程序,实现更加精准和稳定的步进电机控制。
希望本文能为读者在单片机控制步进电机方面的学习和应用提供一定的帮助。
5. 个人观点与理解在我看来,掌握 C 语言实现单片机控制步进电机加减速源程序的技术是非常重要的。
51单片机控制的步进电机C语言程序用的是L298驱动的和ULN2003一样,你把它换成2003就行拉#include <AT89X51.H>unsigned char codetable[]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9,0x00,0xf1,0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0x f3,0x00};unsigned char temp,temp_old;unsigned char key;unsigned char i,j,k,m,s;void delay(int i){for(m=i;m>0;m--)for(j=250;j>0;j--)for(k=10;k>0;k--);}void saomiao(){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=4;break;}temp=P3;temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}temp=P3;temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}}void main(void){while(1){saomiao();if(key==1){ P1=0;P2=0;saomiao();}if(key==2){temp_old=key;for(s=0;s<8;s++){ P2=table[s];P1_4=0;delay(13);saomiao();if(key!=temp_old){P1_4=1;break;}}}if(key==3){temp_old=key;for(s=0;s<8;s++){ P2=table[s];P1_5=0;delay(5);saomiao();if(key!=temp_old){P1_5=1;break;}}}if(key==4){temp_old=key; for(s=0;s<8;s++){ P2=table[s];P1_6=0;delay(20);saomiao();if(key!=temp_old){P1_6=1;break;}}}if(key==5){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_7=0;delay(13);saomiao();if(key!=temp_old){P1_7=1;break;}}}if(key==6){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_5=0;delay(5);saomiao();if(key!=temp_old){P1_5=1;break;}}}if(key==7){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_6=0;delay(20);saomiao();if(key!=temp_old){P1_6=1;break;}}}}}C语言程序源代码#include <REGX51.H> // 51寄存器定义#include "intrins.h"#define control P1 //P1_0:A相,P1_1:B相,P1_2:C相,P1_3:D相#define discode P0 //显示代码控制端口#define uchar unsigned char //定义无符号型变量#define uint unsigned intsbit en_dm=P3^0; //显示代码锁存控制sbit en_wk=P3^1; //位控锁存控制uchar code corotation[4]= {0x03,0x06,0x0c,0x09};//电机正转uchar code rollback[4]={0x0c,0x06,0x03,0x09}; //电机反转uchar code tab[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//显示字段uint code Levspeed[5]={500,400,300,200,100};//电机速度等级uchar Hscan,speedcount;//Hscan行扫描,speedcount 速度等级计数uint uu; //频率计数uint step,setstep; //step:电机步伐计数,setstep:手动设置电机步伐uint speed=500; //电机初始速度uchar count;uchar flag[5];uchar butcount; //按键次数//****************************************//flag[0] 正转标志//flag[1] 反转标志//flag[2] 加速标志//flag[3] 减速标志//flag[4] 设置标志//****************************************Delay1mS(unsigned int tt) //延时1ms “Delay1mS”延时子程序,用循环语句延时。
用单片机按键控制步进电机转动的程序怎么写结合按键程序,我们设计这样一个功能程序:按数字键1~9,控制电机转过1~9 圈;配合上下键改变转动方向,按向上键后正向转1~9 圈,向下键则反向转 1~9 圈;左键固定正转 90 度,右键固定反转90;Esc 键终止转动。
通过这个程序,我们也可以进一步体会到如何用按键来控制程序完成复杂的功能,以及控制和执行模块之间如何协调工作,而你的编程水平也可以在这样的实践练习中得到锻炼和提升。
#includesbit KEY_IN_1 = P2^4;sbit KEY_IN_2 = P2^5;sbit KEY_IN_3 = P2^6;sbit KEY_IN_4 = P2^7;sbit KEY_OUT_1 = P2^3;sbit KEY_OUT_2 = P2^2;sbit KEY_OUT_3 = P2^1;sbit KEY_OUT_4 = P2^0;unsigned char code KeyCodeMap[4][4] = { //矩阵按键编号到标准键盘键码的映射表{ 0x31, 0x32, 0x33, 0x26 }, //数字键 1、数字键 2、数字键 3、向上键{ 0x34, 0x35, 0x36, 0x25 }, //数字键 4、数字键 5、数字键 6、向左键{ 0x37, 0x38, 0x39, 0x28 }, //数字键 7、数字键 8、数字键 9、向下键{ 0x30, 0x1B, 0x0D, 0x27 } //数字键 0、ESC 键、回车键、向右键};unsigned char KeySta[4][4] = { //全部矩阵按键的当前状态{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};signed long beats = 0; //电机转动节拍总数void KeyDriver();void main(){EA = 1; //使能总中断TMOD = 0x01; //设置 T0 为模式 1TH0 = 0xFC; //为 T0 赋初值 0xFC67,定时 1msTL0 = 0x67;ET0 = 1; //使能 T0 中断TR0 = 1; //启动 T0while (1){KeyDriver(); //调用按键驱动函数}}/* 步进电机启动函数,angle-需转过的角度 */void StartMotor(signed long angle){//在计算前关闭中断,完成后再打开,以避免中断打断计算过程而造成错误EA = 0;beats = (angle * 4076) / 360; //实测为 4076 拍转动一圈EA = 1;}/* 步进电机停止函数 */void StopMotor(){EA = 0;beats = 0;EA = 1;}/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码*/void KeyAction(unsigned char keycode){static bit dirMotor = 0; //电机转动方向//控制电机转动 1-9 圈if ((keycode>=0x30) && (keycode<=0x39)){if (dirMotor == 0){StartMotor(360*(keycode-0x30));}else{StartMotor(-360*(keycode-0x30));}}else if (keycode == 0x26){ //向上键,控制转动方向为正转dirMotor = 0;}else if (keycode == 0x28){ //向下键,控制转动方向为反转dirMotor = 1;}else if (keycode == 0x25){ //向左键,固定正转 90 度StartMotor(90);}else if (keycode == 0x27){ //向右键,固定反转 90 度StartMotor(-90);}else if (keycode == 0x1B){ //Esc 键,停止转动StopMotor();}}/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */void KeyDriver(){unsigned char i, j;static unsigned char backup[4][4] = { //按键值备份,保存前一次的值{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};for (i=0; i<4; i++){ //循环检测 4*4 的矩阵按键for (j=0; j<4; j++){if (backup[i][j] != KeySta[i][j]){ //检测按键动作if (backup[i][j] != 0){ //按键按下时执行动作KeyAction(KeyCodeMap[i][j]); //调用按键动作函数}backup[i][j] = KeySta[i][j]; //刷新前一次的备份值}}}}/* 按键扫描函数,需在定时中断中调用,推荐调用间隔 1ms */ void KeyScan(){unsigned char i;static unsigned char keyout = 0; //矩阵按键扫描输出索引static unsigned char keybuf[4][4] = { //矩阵按键扫描缓冲区{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}};//将一行的 4 个按键值移入缓冲区keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;//消抖后更新按键状态for (i=0; i<4; i++){ //每行 4 个按键,所以循环 4 次if ((keybuf[keyout][i] & 0x0F) == 0x00){//连续 4 次扫描值为 0,即 4*4ms 内都是按下状态时,可认为按键已稳定的按下KeySta[keyout][i] = 0;}else if ((keybuf[keyout][i] & 0x0F) == 0x0F){//连续 4 次扫描值为 1,即 4*4ms 内都是弹起状态时,可认为按键已稳定的弹起KeySta[keyout][i] = 1;}}//执行下一次的扫描输出keyout++; //输出索引递增keyout = keyout & 0x03; //索引值加到 4 即归零//根据索引,释放当前输出引脚,拉低下次的输出引脚switch (keyout){case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;default: break;}}/* 电机转动控制函数 */void TurnMotor(){unsigned char tmp; //临时变量static unsigned char index = 0; //节拍输出索引unsigned char code BeatCode[8] = { //步进电机节拍对应的 IO 控制代码0xE, 0xC, 0xD, 0x9, 0xB, 0x3, 0x7, 0x6};if (beats != 0){ //节拍数不为 0 则产生一个驱动节拍if (beats > 0){ //节拍数大于 0 时正转index++; //正转时节拍输出索引递增index = index & 0x07; //用&操作实现到 8 归零beats--; //正转时节拍计数递减}else{ //节拍数小于 0 时反转index--; //反转时节拍输出索引递减index = index & 0x07; //用&操作同样可以实现到-1 时归 7beats++; //反转时节拍计数递增}tmp = P1; //用 tmp 把 P1 口当前值暂存tmp = tmp & 0xF0; //用&操作清零低 4 位tmp = tmp | BeatCode[index]; //用|操作把节拍代码写到低 4 位P1 = tmp; //把低 4 位的节拍代码和高 4 位的原值送回 P1}else{ //节拍数为 0 则关闭电机所有的相P1 = P1 | 0x0F;}}/* T0 中断服务函数,用于按键扫描与电机转动控制 */void InterruptTimer0() interrupt 1{static bit p = 0;TH0 = 0xFC; //重新加载初值TL0 = 0x67;KeyScan(); //执行按键扫描//用一个静态 bit 变量实现二分频,即 2ms 定时,用于控制电机p = ~p;if (p == 1){TurnMotor();}}这个程序是第 8 章和本章知识的一个综合——用按键控制步进电机转动。
自动门控制的步进电机正反转和加速减速C程序步进电机的正反转和加速减速是实现自动门控制的关键功能。
通过编写C程序,我们可以实现对步进电机的控制,使其按照设定的方向旋转,并可以进行加速和减速操作。
步进电机正反转步进电机的正反转是通过控制电机的相序来实现的。
下面是一个简单的C程序示例,用于控制步进电机的正反转:include <stdio.h>int main() {// 定义电机的相序int sequence[] = {1, 2, 4, 8};int direction = 1; // 1表示正转,-1表示反转// 正转if (direction == 1) {for (int i = 0; i < 4; i++) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出}}// 反转else if (direction == -1) {for (int i = 3; i >= 0; i--) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出}}return 0;}在以上示例代码中,我们通过设置`sequence`数组来表示电机的相序,其中`sequence[0]`表示第一相,`sequence[1]`表示第二相,以此类推。
通过循环遍历数组中的元素,并控制步进电机相序的输出,从而实现步进电机的正反转。
步进电机加速减速步进电机的加速减速是通过逐渐改变电机的驱动信号频率来实现的。
下面是一个简单的C程序示例,用于控制步进电机的加速减速:include <stdio.h>include <unistd.h>int main() {// 定义电机的相序int sequence[] = {1, 2, 4, 8};int delay = 1000; // 初始延时时间,单位为毫秒int minDelay = 100; // 最小延时时间,单位为毫秒// 加速for (int i = 0; i < 4; i++) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出usleep(delay); // 延时if (delay > minDelay) {delay -= 100; // 减小延时时间,实现加速}}// 延时一段时间// 减速for (int i = 3; i >= 0; i--) {printf("Phase: %d\n", sequence[i]);// 在这里控制步进电机的相序输出usleep(delay); // 延时if (delay < 1000) {delay += 100; // 增加延时时间,实现减速}}return 0;}在以上示例代码中,我们通过循环遍历数组中的元素,并控制步进电机相序的输出,并通过调用`usleep`函数来实现延时,从而控制步进电机的转速。
#include "reg52.h"//电机IO#define GPIO_MOTOR P1//sbit F1 = P1^0;//sbit F2 = P1^1;//sbit F3 = P1^2;//sbit F4 = P1^3;//按键IOsbit K1=P3^0;sbit K2=P3^1;sbit K3=P3^2;sbit K4=P3^3;unsigned char code FFW[8]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9}; //反转顺序unsigned char code FFZ[8]={0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1}; //正转顺序unsigned char Direction,Speed;void Delay(unsigned int t);//延时函数声明void Motor(); //步进电机程序函数声明/******************************************************************** ***********主程序********************************************************************* **********/void main(void){unsigned char i;Speed=30;while(1){if(K1==0) //检测按键K1是否按下{Delay(1); //消除抖动if(K1==0){Direction=1;}while((i<200)&&(K1==0)) //检测按键是否松开{Delay(1);i++;}i=0;}if(K2==0) //检测按键K1是否按下{Delay(1); //消除抖动if(K2==0){Direction=2;}while((i<200)&&(K2==0)) //检测按键是否松开{Delay(1);}i=0;}if(K3==0) //检测按键K1是否按下{Delay(1); //消除抖动if(K3==0){Speed=15;}while((i<200)&&(K3==0)) //检测按键是否松开{Delay(1);i++;}i=0;}if(K4==0) //检测按键K1是否按下{Delay(1); //消除抖动if(K4==0){Speed=40;}while((i<200)&&(K4==0)) //检测按键是否松开{Delay(1);}i=0;}Motor();}}/******************************************************************** ***********步进电机控制程序********************************************************************* **********/void Motor(){unsigned char i;for(i=0;i<8;i++){if(Direction==1)GPIO_MOTOR = FFW[i];if(Direction==2)GPIO_MOTOR = FFZ[i];Delay(Speed); //调节转速}}/******************************************************************** ***********延时程序********************************************************************* **********/void Delay(unsigned int t){unsigned int k;while(t--){for(k=0; k<80; k++){ }}}。
51单片机控制的步进电机C语言程序用的是L298驱动的和ULN2003一样,你把它换成2003就行拉#include <AT89X51.H>unsigned char codetable[]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9,0x00,0xf1,0xf9,0xf8,0xfc,0xf4, 0xf6,0xf2,0xf3,0x00};unsigned char temp,temp_old;unsigned char key;unsigned char i,j,k,m,s;void delay(int i){for(m=i;m>0;m--)for(j=250;j>0;j--)for(k=10;k>0;k--);}void saomiao(){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=4;break;}temp=P3;temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}temp=P3;temp=temp&0x0f;while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}}void main(void){while(1){saomiao();if(key==1){ P1=0;P2=0;saomiao();}if(key==2){temp_old=key;for(s=0;s<8;s++){ P2=table[s]; P1_4=0;delay(13);saomiao();if(key!=temp_old) {P1_4=1;break;}}}if(key==3){temp_old=key;for(s=0;s<8;s++){ P2=table[s]; P1_5=0;delay(5);saomiao();if(key!=temp_old) {P1_5=1;break;}}}if(key==4){temp_old=key;for(s=0;s<8;s++){ P2=table[s]; P1_6=0;delay(20);saomiao();if(key!=temp_old) {P1_6=1;break;}}}if(key==5){temp_old=key;for(s=9;s<17;s++){ P2=table[s]; P1_7=0;delay(13);saomiao();if(key!=temp_old) {P1_7=1;break;}}}if(key==6){temp_old=key;for(s=9;s<17;s++){ P2=table[s]; P1_5=0;delay(5);saomiao();if(key!=temp_old){P1_5=1;break;}}}if(key==7){temp_old=key; for(s=9;s<17;s++){ P2=table[s]; P1_6=0;delay(20);saomiao();if(key!=temp_old){P1_6=1;break;}}}}}C语言程序源代码#include <REGX51.H> // 51寄存器定义#include "intrins.h"#define control P1 //P1_0:A相,P1_1:B相,P1_2:C相,P1_3:D相#define discode P0 //显示代码控制端口#define uchar unsigned char //定义无符号型变量#define uint unsigned intsbit en_dm=P3^0; //显示代码锁存控制sbit en_wk=P3^1; //位控锁存控制uchar code corotation[4]= {0x03,0x06,0x0c,0x09};//电机正转uchar code rollback[4]={0x0c,0x06,0x03,0x09}; //电机反转uchar code tab[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//显示字段uint code Levspeed[5]={500,400,300,200,100};//电机速度等级uchar Hscan,speedcount;//Hscan行扫描,speedcount 速度等级计数uint uu; //频率计数uint step,setstep; //step:电机步伐计数,setstep:手动设置电机步伐uint speed=500; //电机初始速度uchar count;uchar flag[5];uchar butcount; //按键次数//****************************************//flag[0] 正转标志//flag[1] 反转标志//flag[2] 加速标志//flag[3] 减速标志//flag[4] 设置标志//****************************************Delay1mS(unsigned int tt) //延时1ms “Delay1mS”延时子程序,用循环语句延时。
/**名称:步进电机**晶振:12MHZ**修改:无**内容:主程序中用3个按键,加速、减速、启动和停止。
定时器做数码* *管动态扫描和步进电机驱动。
***硬件事项:J19的7B,6B,5B,4B依次用杜邦线连接到P27,P26,P25,P24***---------------------------------------------------------------*/#include <REG51.H>#define DataPort P1 //定义数据端口程序中遇到DataPort则用P1替换sbit LATCH1=P2^0;//定义锁存使能端口段锁存sbit LATCH2=P2^1;//位锁存sbit S17=P3^3;//独立按键sbit S18=P3^2;sbit S19=P3^1;sbit S20=P3^0;unsignedcharcodeHEYAO_DuanMa[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0x f8,0x80,0x90};//显示段码值89unsigned char code HEYAO_WeiMa[]={0x1,0x2,0x4,0x8,0x10,0x20,0x40,0x80};//分别对应相应的数码管点亮,即位码unsignedcharTempData[8]={0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF,0XFF};//存储显示值的全局变量sbit A1=P2^7; //定义步进电机连接端口sbit B1=P2^6;sbit C1=P2^5;sbit D1=P2^4;#define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电unsigned char Speed;bit StopFlag;bit Flag,sb;void Display(unsigned char FirstBit,unsigned char Num);void Init_Timer0(void);unsigned char KeyScan(void);//键盘扫描/*------------------------------------------------uS延时函数,含有输入参数unsigned char t,无返回值unsigned char是定义无符号字符变量,其值的范围是0~255这里使用晶振12M,大致xxxx如下T=tx2+5 uS------------------------------------------------*/void DelayUs2x(unsigned char t){while(--t);}void DelayMs(unsigned char t){while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}/*------------------------------------------------主函数------------------------------------------------*/main(){unsigned int j,i;//旋转一周时间unsigned char num;Init_Timer0();while(1)//正向{Coil_OFFnum=KeyScan();//循环调用按键扫描if(num==1)//第一个按键,速度等级增加{if(Speed<18)Speed++;}else if(num==2)//第二个按键,速度等级减小{if(Speed>1) Speed--;}else if(num==3)//第三个按键,电机停止和启动{switch(j) {case 0:Coil_OFFStopFlag=1;j++;break;case 1: StopFlag=0;j--;break;}}else if(num==4){sb=1;while((1)&&(sb)){Flag=1;i=50;while((i--)&&(Flag))//正向{Coil_A1DelayMs(Speed);Coil_AB1//遇到Coil_AB1{A1=1;B1=1;C1=0;D1=0;}代替力矩越小Coil_B1DelayMs(Speed);Coil_BC1DelayMs(Speed);Coil_C1DelayMs(Speed);Coil_CD1用DelayMs(Speed);Coil_D1DelayMs(Speed);Coil_DA1DelayMs(Speed);num=KeyScan();if(num==3)//第三个按键,电机停止和启动{Flag=0;sb=0;}} Coil_OFFi=50;while((i--)&&(Flag))//反?{// num=KeyScan();Coil_A1DelayMs(Speed);Coil_DA1//遇到Coil_AB1{A1=1;B1=1;C1=0;D1=0;}代替力矩越小Coil_D1DelayMs(Speed);Coil_CD1DelayMs(Speed);Coil_C1DelayMs(Speed);Coil_BC1DelayMs(Speed);Coil_B1DelayMs(Speed);Coil_AB1DelayMs(Speed);num=KeyScan();if(num==3)//第三个按键,电机停止和启动{用Flag=0;sb=0;}}TempData[0]=HEYAO_DuanMa[Speed/10];TempData[1]=HEYAO_DuanMa[Speed%10];}}//分解显示信息,如要显示68,则=668%10=8 TempData[0]=HEYAO_DuanMa[Speed/10];TempData[1]=HEYAO_DuanMa[Speed%10];}}/*------------------------------------------------显示函数,用于动态扫描数码管输入参数FirstBit表示需要显示的第一位,如赋值2表示从第三个数码管开始显示如输入0表示从第一个显示。