人教版、苏教版初中数学知识点总结
- 格式:doc
- 大小:1.60 MB
- 文档页数:41
苏教版初中数学知识点苏教版初中数学知识点概述一、数与代数1. 有理数- 有理数的概念- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念及性质2. 整数- 整数的性质- 整数的四则运算- 整数的因数与倍数- 质数与合数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式与因式分解- 分式与分式的运算4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 不等式及其解集- 一元一次不等式及其解法5. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解方程组 - 三元一次方程组的解法6. 函数- 函数的概念- 函数的表示方法- 一次函数与反比例函数- 二次函数的图像与性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的性质与分类- 四边形的性质与分类- 圆的性质2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形的面积计算 - 圆的周长与面积- 空间图形的体积计算3. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质 - 相似多边形- 相似三角形的面积比4. 解析几何- 坐标系的概念与应用- 直线与曲线的方程- 点、线、面间的几何关系三、统计与概率1. 统计- 数据的收集与整理- 统计图表的绘制与解读- 平均数、中位数、众数的计算- 方差与标准差的概念及计算2. 概率- 随机事件的概念- 概率的计算与表示- 事件的可能性分析- 独立事件与条件概率四、综合应用题1. 数学问题的实际应用- 利用数学知识解决实际问题- 数学建模的基本概念- 应用题的解题策略与方法2. 数学探究活动- 数学问题的发现与提出- 数学探究的方法与步骤- 数学结论的归纳与证明以上是苏教版初中数学的主要知识点概述,每个部分都包含了相应的概念、性质、公式和解题方法。
在实际教学过程中,教师会根据学生的具体情况和学习进度,逐步深入讲解每个知识点,并通过大量的练习题来巩固学生的理解和应用能力。
第一部分教材知识梳理系统复习第一单元数与式 第1讲实数知识清单梳理知识点一:实数的概念及分类③开方开不尽的数:女口,;④三角负实数无限不循环小数关键点拨及对应举例(1) 按定义(1)0既不属于正数,也不属于负数.(2)按正、负性分(2)无理数的几种常见形式判断:①有理数限小澈或 正有理数正实数含π的式子;②构造型:如3.010010001…(每两个1之间多个0)就是一个无限不循环小数;负有理数函数型:女口 sin60 ° tan25 °1.实数限循环小数 实数 0(3)失分点警示:开得尽方的含根号实数的数属于有理数,如=2,=-3 ,它们 正无理都属于有理数.最后加减;同级运算,从 左向右进行;如有括号,先 做括号内的运算,按小括 号、中括号、大括号一次进行.计算时,可以结合运 算律,使问题简单化第2讲整式与因式分解二、知识清单梳理10.混合运算第3讲分式三、知识清单梳理第4讲二次根式四、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组)五理第6讲一元二次方程六、知识清单梳理第7讲分式方程七理第8讲一元一次不等式(组) 八、知识清单梳理元一次不等式,贝U m的值为-1.(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为14.解知识点三(2)解集在数轴上表示x> a兀一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.6.解法先分别求岀各个不等式的解集,再求岀各个解集的公共部分7.不等式组解集的类型假设av b 解集数轴表示口诀X aX bX≥bI I ------- _大大取大X aX b X≤3小小取小r i ].a bX aX ba≤<≤3^^1大小,小大中间找βbX aX b无解大大,小小取不了a时,注意系数的正负性,若系数是负数,则不等式改变方向.(1 )在表示示含有,要用实心圆点表示;表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一第三单元函数第9讲平面直角坐标系与函数九、知识清单梳理(5)点M (x,y )平移的坐标特征:M (x,y ) M ι(x+a,y)M 2(χ+a,y+b)(1) 点M(a,b)到X 轴,y 轴的距离:到X 轴的距离为IbJ ;)到y 轴 的距离为|a|.(2) 平行于X 轴,y 轴直线上的两点间的距离:点 M I (XI ,0),M 2(x 2,O)之间的距离为 X i - X 2|,点 M 1(X 1, y),M 2(X 2, y)间的距离为X i — X 2|;点 M i (0,y i ),M 2(0,y 2)间的距离为 Iy i - y 2∣,点 M ι(x , y i ),M 2(x ,(2)坐标轴上点的坐标特征:①在横轴上 y = 0;②在纵轴上X = 0;③原点? X = 0, y = 0.第二象限 32 - 第一象限 (—,+ )i(+,+ )XB I丄ιL —-3 -2IUi 23 第三象限-1 - 第四象限 (—,—)-2 •(+ ,—)-3 一(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标 相等;②第二、四象限角平分线上的点的横、纵坐标 互为相反数(4)点 P ( a,b )的对称点的坐标特征:①关 的点P i(a ,- b);②关于y 轴对称的点 于X 轴对称的坐标为P 2的坐标为(—a , b);③关于原点对称的点 P 3的坐标为(一a , — b).(3)平面直角坐标 系中求图形面积 时,先观察所求图 形是否为规则图 形,若是,再进一步 寻找求这个图形面 积的因素,若找不 到,就要借助割补法,割补法的主要 秘诀是过点向X 轴、 y 轴作垂线,从而将 其割补成可以直接 计算面积的图形来 解决.3.坐标点的距离问 题平行于X 轴的直线 上的点纵坐标相 等;平行于y 轴的 直线上的点的横坐 标相等.第10讲一次函数十、知识清单梳理第11讲反比例函数的图象和性质知识清单梳理4.待疋系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求岀反比例函数系数k即可.例:已知反比例函数图象过点(一3, —1), 则它的解析式是y=3∕x.知识点二:反比例系数的几何意义及与一次函数的综合k(1)意义:从反比例函数y= -(k≠ 0图象上任意一点向X轴和y轴作垂线,X垂线与坐标轴所围成的矩形面积为∣k∣,以该点、一个垂足和原点为顶点的三角形的面积为1∕2∣k∣.(2)常见的面积类型:5.系数k的几何丿意、义失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k< 0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3 ,则该反比例函数解析式为:3yX3y _X7 .(1题意找岀自变量与因变量之间的乘积关系;(2设岀函数表达式;(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b ),则根据中心 对称性,可得另一个交点坐标为 (-a,-b ).【方法二】联立两个函数解析 式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解涉及与面积有6.与次 函 数 的 综 合(3) 在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关 系,可采用假设法,分k > 0和kV 0两种情况讨论,看哪个选项符合要 求即可.也可逐一选项判断、排除.(4) 比较函数值的大小: 主要通过观察图象,图象在上方的值大,图象在 下方的值小,结合交点坐标,确定岀解集的范围关的问题时, ①要善于把点 的横、纵坐标 转化为图形的 边长,对于不 好直接求的面 积往往可分割 转化为较好求的三角形面 积;②也要注 意系数k 的几 何意义.例:如图所示, 三个阴影部分 的面积按从小 到大的顺序排 列为:S A AOC =S知识点三:反比例函数的实际应用(3)依题意求解函数表达式;△OPE > S A BOD J 7 .(4)根据反比例函数的表达式或性质解决相关问题第12讲二次函数的图象与性质十二、知识清单梳理点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与X轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.次函数的图象和性质(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函大而减小.减小;当XV J b时,y随X的——2a增大而增大.b 4ac b2 X= ——y最小= ---------- 2a 4a X=b 4ac b2—y最大=------------2a 4a质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画岀草图,描点后比较函数值大小.失分点警示(2 )在自变量限定范围求二次函数的最值时,首先第13讲二次函数的应用十三、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线过推理来判断命题是否成立的过程证明一个命题是假命题时,只要举岀一个反例署名命题不成立就可以了 .第15讲一般三角形及其性质卜五、知识清单梳理。
初中数学知识点大全第一章 实数一、 重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法 ②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法 ②性质:A.a ≠0时,a ≠-a; B.a 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数) 7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
实数 无理数(无限不循环小数) 有理数 正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数 正无理数负无理数0 实数负数 整数分数 无理数 有理数正数整数 分数 无理数有理数 │a │ 2a a (a ≥0)(a 为一切实数)a(a≥0) -a(a<0) │a │= 单项式 多项式 整式分有理式 无理式 代数式 51整式和分式统称为有理式。
苏教版数学必考知识点归纳苏教版数学教材以其系统性和逻辑性著称,涵盖了从小学到高中的各个阶段。
以下是苏教版数学必考知识点的归纳,以供学生复习和教师教学参考:小学数学必考知识点:1. 数的认识:包括整数、小数、分数、百分数等基本概念和性质。
2. 四则运算:加法、减法、乘法、除法的运算规则和简便计算方法。
3. 应用题:解决实际问题的能力,如购物、旅行、时间计算等。
4. 几何初步:平面图形(如正方形、长方形、三角形等)和立体图形(如立方体、圆柱体等)的基本特征和面积、体积的计算。
5. 度量单位:长度、面积、体积、质量、时间等单位的换算和应用。
6. 数据的收集与处理:简单的统计图表,如条形图、折线图等。
初中数学必考知识点:1. 代数基础:变量与常数、代数表达式、方程和不等式的解法。
2. 函数:一次函数、二次函数、反比例函数的图像和性质。
3. 几何进阶:相似三角形、圆的性质、多边形的面积和体积的计算。
4. 统计与概率:数据的收集、整理和描述,概率的基本概念。
5. 数列:等差数列和等比数列的概念、通项公式和求和公式。
6. 解析几何:坐标系中点的坐标、直线和曲线的方程。
高中数学必考知识点:1. 集合与逻辑:集合的概念、运算和逻辑推理。
2. 函数与方程:函数的单调性、奇偶性、复合函数、反函数,以及方程的根的性质。
3. 导数与微分:导数的定义、几何意义、基本导数公式和应用。
4. 积分:定积分和不定积分的概念、计算方法和几何意义。
5. 解析几何深入:圆锥曲线、极坐标和参数方程、向量的概念和运算。
6. 立体几何:空间直线和平面的位置关系,多面体和旋转体的体积和表面积。
7. 三角学:三角函数的定义、图像、性质和恒等变换。
8. 概率与统计:随机变量、概率分布、期望值、方差等统计量的计算。
结束语:数学是一门需要不断练习和思考的学科。
掌握这些必考知识点,可以帮助学生在考试中取得优异的成绩。
同时,数学思维的培养对于解决现实生活中的问题也具有重要意义。
苏教版初中数学知识点大全初中数学是一个逐步深入和拓展的知识体系,苏教版教材涵盖了丰富的内容。
以下是对苏教版初中数学知识点的详细梳理。
一、数与代数1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
数轴是规定了原点、正方向和单位长度的直线,有理数可以在数轴上表示出来。
相反数是绝对值相等,符号相反的两个数,例如 5和-5 互为相反数。
绝对值是一个数在数轴上所对应点到原点的距离。
有理数的加法、减法、乘法、除法运算都有特定的法则。
2、实数无理数是无限不循环小数,例如π和√2。
实数包括有理数和无理数。
平方根和立方根是数的开方运算。
3、代数式用运算符号把数和字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的加减运算实质就是合并同类项。
4、方程与不等式一元一次方程是只含有一个未知数,并且未知数的最高次数是 1 的整式方程。
解一元一次方程的一般步骤包括去分母、去括号、移项、合并同类项、系数化为 1 等。
二元一次方程组由两个二元一次方程组成,通过消元法(代入消元法或加减消元法)求解。
一元二次方程的一般形式是 ax²+ bx + c = 0(a ≠ 0),求解方法有配方法、公式法和因式分解法。
不等式的性质是解不等式的依据,不等式组的解集是各个不等式解集的公共部分。
5、函数函数是表示两个变量之间关系的一种数学表达式。
一次函数的一般形式是 y = kx + b(k、b 为常数,k ≠ 0),它的图象是一条直线。
反比例函数的一般形式是 y = k/x(k 为常数,k ≠ 0),图象是双曲线。
二次函数的一般形式是 y = ax²+ bx + c(a ≠ 0),图象是抛物线,其性质包括开口方向、对称轴、顶点坐标等。
二、图形与几何1、线与角直线没有端点,射线有一个端点,线段有两个端点。
苏教版人教版初中数学中考必考知识点21个必考的21个知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
初中数学知识点总结苏教一、数与代数1. 整数和有理数- 整数的概念:正整数、零、负整数及其运算(加、减、乘、除)。
- 有理数的概念:分数、小数、整数和分数的混合运算。
- 绝对值、相反数、科学计数法。
2. 代数表达式- 单项式和多项式的概念及运算。
- 合并同类项、分配律、结合律、交换律、整式的加减乘除。
- 因式分解:提公因式、公式法(平方差公式、完全平方公式)。
3. 一元一次方程与不等式- 方程和不等式的概念及基本性质。
- 解一元一次方程的基本方法:移项、合并同类项、系数化为1。
- 解一元一次不等式的基本方法:去分母、去括号、移项、合并同类项、系数化为1。
4. 二元一次方程组- 二元一次方程组的概念。
- 解方程组的基本方法:代入法、消元法(加减消元、代数代入)。
5. 函数- 函数的概念:定义、函数关系式、函数图像。
- 线性函数、二次函数、反比例函数的图像和性质。
- 函数的基本运算:函数的和、差、积、商。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对角、平行线与对角的关系。
- 三角形的分类与性质:等边、等腰、直角三角形的性质和判定。
- 四边形的分类与性质:平行四边形、矩形、菱形、正方形。
2. 图形的变换- 平移:平移的性质和作图方法。
- 旋转:旋转的性质和作图方法。
- 轴对称:轴对称图形的性质和作图方法。
3. 圆的基本性质- 圆的定义、圆心、半径、直径。
- 圆的对称性、切线的性质、弦的概念。
- 圆周角定理、圆心角定理、圆的面积和周长计算公式。
4. 空间图形- 空间几何体的基本概念:点、线、面、体。
- 多面体的分类与性质:长方体、正方体、棱柱、棱锥、圆柱、圆锥。
- 体积和表面积的计算公式。
5. 相似与全等- 全等图形的判定条件:SSS、SAS、ASA、AAS。
- 相似图形的判定条件:SSS、SAS、ASA。
- 相似三角形的性质:对应角相等、对应边成比例、面积比等于边长比的平方。
人教版、苏教版初中数学知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.有理数知识框架二.知识概念1.有理数:1 凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2 有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:1 只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;2 相反数的和为0 a+b 0 a、b互为相反数.4.绝对值:1 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab 1 a、b互为倒数;若ab -1 a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b b+a ;(2)加法的结合律:(a+b)+c a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab ba;(2)乘法的结合律:(ab)c a(bc);(3)乘法的分配律:a(b+c) ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: -a n -an或 a -b n - b-a n , 当n为正偶数时: -a n an 或 a-b n b-a n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
苏教版初中数学最全面知识点大全苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。
以下是一个基本的数学知识点大全,供你参考:1. 四则运算及其性质- 加法- 减法- 乘法- 除法2. 整数- 整数的读写与比较- 整数的加减乘除- 整数的绝对值和相反数 - 整数的乘方和乘方根3. 分数- 分数的读写与比较- 分数的加减乘除- 分数的化简与约分- 分数的运算性质4. 小数- 小数的读写与比较- 小数的加减乘除- 小数与分数的相互转换- 小数的运算性质5. 负数- 负数的加减乘除- 负数的乘方和乘方根- 负数在实际问题中的应用6. 代数与方程- 代数式的化简- 简单方程的求解- 一元一次方程与二元一次方程的求解 - 一次方程组的解法7. 平面图形与空间图形- 直线和角的性质- 三角形、四边形、多边形的性质- 圆和圆的性质- 立体图形的名称和性质8. 空间几何- 直线和面的关系- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质- 同位角、内错角和同旁内角的性质9. 比例与相似- 比例的概念与性质- 比例的四则运算- 图形的相似性质与相似判定- 相似三角形的性质和应用10. 数据分析- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算11. 几何证明- 线段垂直的证明- 等腰三角形性质的证明- 相等角、相似三角形的证明- 过定点作直线的证明以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。
希望这些知识点对你有所帮助。
如果你对特定的知识点有问题,欢迎继续提问。
初中数学知识点苏教版总结一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
- 有理数的性质:绝对值、相反数、倒数。
2. 整式与分式- 整式的概念:由数和字母的有限次幂的和或差构成的代数式。
- 单项式与多项式:单项式是只有一个项的整式,多项式是多个单项式的和。
- 整式的加减乘除:合并同类项、分配律、结合律、交换律。
- 分式的概念:分母中含有字母的有理式。
- 分式的运算:加减、乘除、通分、约分。
3. 一元一次方程与不等式- 一元一次方程的概念:只含有一个未知数,且未知数的最高次数为1的整式方程。
- 解一元一次方程:移项、合并同类项、系数化为1。
- 不等式的概念:用符号“<”、“>”、“≤”、“≥”表示大小关系的式子。
- 解一元一次不等式:移项、合并同类项、乘除时注意不等号方向的变化。
4. 二元一次方程组- 二元一次方程组的概念:含有两个未知数的一次方程的集合。
- 解二元一次方程组:代入法、消元法(加减消元、代数消元)。
5. 函数- 函数的概念:从一个数集到另一个数集的映射,每个输入对应一个输出。
- 函数的表示:解析式、图象、表格。
- 线性函数:形如y=kx+b的函数,其中k为斜率,b为截距。
- 函数的性质:单调性、对称性、周期性。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对顶角、同位角、内错角。
- 三角形:分类(锐角、直角、钝角三角形)、性质(边角关系、三角形内角和定理)。
- 四边形:分类(平行四边形、矩形、菱形、正方形)、性质(对边相等、对角相等、内角和定理)。
2. 圆的基本性质- 圆的定义:平面上所有与给定点距离相等的点的集合。
- 圆的要素:圆心、半径、直径、弦、弧、切线。
- 圆的性质:圆周角定理、垂径定理、切割线定理。
3. 空间图形- 立体图形的基本概念:多面体、旋转体。
- 棱柱、棱锥、圆柱、圆锥的结构特征。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上a 1;89(a-b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题.体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章整式的加减一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第二章 一元一次方程一. 知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=;(3)比率问题: 部分=全体·比率 全体部分比率=比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
第三章 图形的认识初步知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 本章书涉及的数学思想:1.分类讨论思想。
在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。
2.方程思想。
在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。
在研究角的概念时,要充分体会对射线旋转的认识。
在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。
在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
七年级数学(下)知识点人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。
另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。
掌握本节内容对以后学习和生活有着积极的意义。
教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。