自动化仪表与过程控制
- 格式:doc
- 大小:106.50 KB
- 文档页数:7
第一章绪论本章提要1.过程控制系统的基本概念2.过程控制的发展概况3.过程控制系统的组成4.过程控制的特点及分类5.衡量过程控制系统的质量指标授课内容第一节过程控制的发展概况1.基本概念过程控制系统-----指自动控制系统的被控量是温度、压力、流量、液位成分、粘度、湿度以及PH值(氢离子浓度)等这样一些过程变量时的系统。
(P3) 过程控制-----指工业部门生产过程的自动化。
(P3)2.过程控制的重要性z进入90年代以来自动化技术发展很快,是重要的高科技技术。
过程控制是自动化技术的重要组成部分。
在现代工业生产过程自动化电过程控制技术正在为实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。
3.过程控制的发展概况z19世纪40年代前后(手工阶段):手工操作状态,凭经验人工控制生产过程,劳动生产率很低。
z19世纪50年代前后(仪表化与局部自动化阶段):过程控制发展的第一个阶段,一些工厂企业实现了仪表化和局部自动化。
主要特点:检测和控制仪表-----采用基地式仪表和部分单元组合仪表(多数是气动仪表);过程控制系统结构------单输入、单输出系统;被控参数------温度、压力、流量和液位参数;控制目的------保持这些参数的稳定,消除或者减少对生产过程的主要扰动;理论-----频率法和根轨迹法的经典控制理论,解决单输入单输出的定值控制系统的分析和综合问题。
z19世纪60年代(综合自动化阶段):过程控制发展的第二个阶段,工厂企业实现车间或大型装置的集中控制。
主要特点:检测和控制仪表-----采用单元组合仪表(气动、电动)和组装仪表,计算机控制系统的应用,实现直接数字控制(DDC)和设定值控制(SPC);过程控制系统结构------多变量系统,各种复杂控制系统,如串级、比值、均匀控制、前馈、选择性控制系统;控制目的------提高控制质量或实现特殊要求;理论-----除经典控制理论,现代控制理论开始应用。
第四章过程控制仪表⏹本章提要1.过程控制仪表概述2.DDZ-Ⅲ型调节器3.执行器4.可编程控制器⏹授课内容第一节概述✧过程控制仪表---是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。
在自动控制系统中,过程检测仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。
过程控制仪表包括调节器(也叫控制器)、执行器、操作器,以及可编程调节器等各种新型控制仪表及装置。
过程控制仪表的分类:●按能源形式分类:液动控制仪表、气动控制仪表和电动控制仪表。
●按结构形式分类:基地式控制仪表、单元组合式控制仪表、组件组装式控制仪表、集散控制装置等。
[基地式控制仪表]以指示、记录仪表为主体,附加某些控制机构而组成。
基地式控制仪表特点:—般结构比较简单、价格便宜.它不仅能对某些工艺变量进行指示或记录,而已还具有控制功能,因此它比较适用于单变量的就地控制系统。
目前常使用的XCT系列动圈式控制仪表和TA系列简易式调节器即属此类仪表。
[单元组合式控制仪表]将整套仪表划分成能独立实现一定功能的若干单元,各单元之间采用统一信号进行联系。
使用时可根据控制系统的需要,对各单元进行选择和组合,从而构成多种多样的、复杂程度各异的自动检测和控制系统。
特点:使用灵活,通用性强,同时,使用、维护更作也很方便。
它适用于各种企业的自动控制。
广泛使用的单元组合式控制仪表有电动单元组合仪表(DDZ型)和气动单元组合仪表(QD2型)。
[组件组装式控制仪表]是一种功能分离、结构组件化的成套仪表(或装置)。
它以模拟器件为主,兼用模拟技术和数字技术。
整套仪表(或装置)在结构上由控制柜和操作台组成,控制柜内安装的是具有各种功能的组件板,采用高密度安装,结构紧凑。
这种控制仪表(或装置)特别适用于要求组成各种复杂控制和集中显示操作的大、中型企业的自动控制系统。
[标签:标题]篇一:自动化仪表与过程控制课后答案自动化仪表与过程控制课后答案0-1自动化仪表是指哪一类仪表?什么叫单元组合式仪表?自动化仪表:是由若干自动化元件构成的,具有较完善功能的自动化技术工具单元组合式调节仪表: 由具有不同功能的若干单元仪表按调节系统具体要求组合而成的自动调节仪表0-2DDZ-II型与DDZ-III型仪表的电压,电流信号输出标准是什么?在现场与控制室之间采用直流电流传输信号有什么好处?P5 第二段0-3什么叫两线制变送器?它与传统的四线制变送器相比有什么优点?试举例画出两线制变送器的基本结构,说明其必要的组成部分?P5~60-4什么是仪表的精确度?试问一台量程为-100~100C,精确度为0.5级的测量仪表,在量程范围内的最大误差为多少?一般选用相对误差评定,看相对百分比,相对误差越小精度越高x/(100+100)=0.5% x=1 摄氏度1-1试述热电偶的测温原理,工业上常用的测温热电偶有哪几种?什么叫热电偶的分度号?在什么情况下要使用补偿导线?答:a、当两种不同的导体或半导体连接成闭合回路时,若两个接点温度不同,回路中就会出现热电动势,并产生电流。
b、铂极其合金,镍铬-镍硅,镍铬-康铜,铜-康铜。
c、分度号是用来反应温度传感器在测量温度范围内温度变化为传感器电压或电阻值变化的标准数列。
d、在电路中引入一个随冷端温度变化的附加电动势时,自动补偿冷端温度变化,以保证测量精度,为了节约,作为热偶丝在低温区的替代品。
1-2 热电阻测温有什么特点?为什么热电阻要用三线接法?答:a、在-200到+500摄氏度范围内精度高,性能稳定可靠,不需要冷端温度补偿,测温范围比热电偶低,存在非线性。
b、连接导线为铜线,环境温度变化,则阻值变,若采用平衡电桥三线连接,连线R使桥路电阻变化相同,则桥路的输出不变,即确保检流计的输出为被测温度的输出。
1-3说明热电偶温度变送器的基本结构,工作原理以及实现冷端温度补偿的方法。
《自动化仪表与过程控制》练习题及参考答案、填空题1、过程控制系统一般由控制器执行器被控过程和测量变送等环节组成。
2、仪表的精度等级又称准确度级,通常用引用误差 作为判断仪表精度等级的尺度。
3、过程控制系统动态质量指标主要有衰减比n、超调量C和过渡过程时间t s ;静态质量指标有稳态误差eSS 。
4、真值是指被测变量本身所具有的真实值,在计算误差时,一般用或相对真值约定真值来代替。
5、根据使用的能源不同,调节阀可分为气动调节阀动调节阀三大电动调节阀和—液类。
&过程数学模型的求取方法一般有机理建模试验建模和混合建模。
7、积分作用的优点是可消除稳态误差(余差),但引入积分作用会使系统稳定性下降。
8、在工业生产中常见的比值控制系统可分为和变比值控制三种。
并联在被控过程上,使其对过程中的纯滞后进行补偿。
10、随着控制通道的增益K 。
的增加,控制作用增强,克服干扰的能力最系统的余差减小,最大偏差减小。
口、从理论上讲,干扰通道存在纯滞后,不影响系统的控制质量。
12、建立过程对象模型的方法有机理建模和系统辨识与参数估计 13、控制系统对检测变送环节的基本要求是准确、讯速和可靠。
14、控制阀的选择包括结构材质的选择、□径的选择、流量特性的选择吊正反作用的选择。
15、防积分饱和的措施有对控制器的输出限幅、限制控制器积分部分的输出和积分切除法。
16、如果对象扰动通道增益K f 增加,扰动作用增强,系统的余差增大,最大偏差增大。
17、在离心泵的控制方案中,机械效率最差的是通过旁路控制。
二、名词解释题】、衰减比答:衰减比n定义为:n=——B2衰减比是衡量系统过渡过程稳定性的一个动态指标。
为保证系统足够的稳定程度,一般取衰减比为4:110:1。
2、自衡过程答:当扰动发生后,无须外加任何控制作用,过程能够自发地趋于新的平衡状态的性质称为自衡性。
称该类被控过程为自衡过程。
单闭环比值控制值控制双闭环比 9、Smith预估补偿原理是预先估计出被控过程的数学模型,然后将预估器3、分布式控制系统答:分布式控制系统DCS,又称为集散控制系统,一种操作显示集中、控制功能分散、采用分级分层体系结构、局部网络通信的计算机综合控制系统。
过程控制与自动化仪表知识点过程控制与自动化仪表是现代工业领域中的重要组成部分,对于生产过程的控制和监测具有关键作用。
本文将介绍一些与过程控制与自动化仪表相关的知识点,包括仪表的分类、工作原理以及在工业过程中的应用。
一、仪表的分类在过程控制与自动化领域中,仪表按照测量信号类型和测量原理可以分为多个不同的分类。
常见的仪表分类包括以下几种:1.按照测量信号类型:- 模拟仪表:能够对连续变化的物理量进行测量和显示,如压力、温度等。
- 数字仪表:使用数字方式对物理量进行测量和显示,一般通过传感器将信号转换为数字信号,例:数字压力计、数字温度计等。
2.按照测量原理:- 电气仪表:基于电气效应进行测量,如电流、电压等。
- 机械仪表:通过机械结构完成测量,如转速、位移等。
- 光学仪表:利用光原理进行测量,如光电传感器、光谱分析仪等。
二、仪表的工作原理不同类型的仪表在工作原理上也存在差异。
1.模拟仪表的工作原理:模拟仪表一般通过传感器将被测量的物理量转换为电信号,然后经过放大、调节等处理,最终将结果以模拟信号的形式进行显示和输出。
2.数字仪表的工作原理:数字仪表一般通过传感器将被测量的物理量转换为电信号,然后经过模数转换器将模拟信号转换为数字信号,数字信号经过处理后以数字方式进行显示和输出。
三、过程控制与自动化仪表的应用过程控制与自动化仪表在各个工业领域中广泛应用,主要包括以下几个方面:1.工艺参数监测与控制:过程控制与自动化仪表能够实时监测生产过程中的工艺参数,如温度、压力、液位等,并根据设定值进行控制,确保生产过程的稳定性和优化。
2.安全监测与报警:仪表还能够监测危险工作环境中的各项参数,如有毒气体浓度、火焰温度等,并及时发出警报,保护工作人员的生命安全。
3.数据采集与分析:过程控制与自动化仪表能够将各种参数数据进行采集和记录,并通过数据分析软件进行分析和优化,帮助企业提高生产效率和质量。
4.远程监控与操作:仪表系统可以与计算机网络集成,实现远程监控和操作,方便运维人员对生产过程进行远程管理和调试。
第一章1、不设反馈环节的,称为开环控制系统;设有反馈环节的,称为闭环控制系统。
2、开环控制是最简单的一种控制方式。
它的特点是,仅有从输入益到输出端的前向通路,而没有从输出端到输入端的反馈通路。
3、开环控制系统的特点是:操纵情度取决于组成系统的元器件的精度,因此对元器件的要求比较高。
4、开环控制系统普通是根据经验来设计的。
5、为了实现系统的自动控制,提高控制精度,可以改变控制方法,増加反馈回路来构成闭环控制系统。
6、系统的输岀量通过测量变送元件返回到系统的输入端,并和系统的输入量作比较的过程就称反馈。
7、如果输入量和反馈量相减则称为负反馈;反之若二者相加,则成为正反馈。
8、闭环控制系统的自动控制或者自动调节作用是基于输出信号的负反馈作用而产生的,所以经典控制理论的主要研究对象是负反馈的闭环控制系统,研究目的是得到它的普通规律,从而可以设计岀符合要求的、满足实际需要的、性能指标优良的控制系统。
9、由人工来直接进行的控制称为人工控制。
10、人在控制过程中起到了祖测、比较、判断和控制的作用,而这个调基过程就是n栓测偏差、纠正偏差”的过程。
11、液位变送器代替玻璃管液位计和人眼;控制器代替人脑;调节阀代替人手。
过程控制系统普通由自动化装置及生产装置两部份组成。
生产装置包括:被控对象;自动化装置包括:变送器,控制器,执行器。
12、系统的各种作用虽:①被控变量②设定值③测量值④控制变量⑤扰动量⑥偏差13、在生产过程中,如果要求控制系统使被控变量保持在一个生产指标上不变,或者说要求工艺参数的设定值不变,则将这种控制系统称为定值控制系统。
14、该定值是一个未知变化虽的控制系统称为随动控制系统,又称为自动跟踪系统。
15、程序控制系统的设定直也是变化的,但它是时间的已知函致,即頑定直按一定的时间顺序变化。
16、过程控制系统有两种状态:①系统的稳态②系统的动态。
17、过程控制系统从一个平衡状态过渡到另一个平衡状态的过程称为过程控制系统的过渡过程。
过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中不可缺少的一部分,它们在监测、控制和优化工业过程中起着重要的作用。
过程控制与自动化仪表技术的应用可以提高工业生产的效率、质量和安全性,减少人力资源的消耗,实现工业自动化。
本文将介绍过程控制与自动化仪表的基本概念、发展历程以及在工业生产中的应用。
同时还会讨论一些常见的过程控制与自动化仪表的类型和工作原理,以及它们在不同行业中的具体应用案例。
2. 过程控制与自动化仪表基本概念过程控制与自动化仪表是指一系列用于监测、控制和调节工业过程的设备和系统。
它们可以通过测量和分析过程变量,控制工艺参数并实现自动化控制。
通过使用合适的传感器、执行器和控制算法,可以实现对工业过程的精密控制和优化。
过程控制与自动化仪表主要由以下几个组成部分构成:•传感器:用于测量各种物理量,如温度、压力、流量等;•控制器:根据传感器测量值和设定值进行逻辑运算,生成控制信号;•执行器:接收控制信号,并执行相应的动作,如开关、阀门等;•监控系统:用于监视和记录工业过程中的各种参数和状态;•人机界面:提供工业过程的可视化显示和人机交互界面。
3. 过程控制与自动化仪表的发展历程过程控制与自动化仪表的发展可以追溯到工业革命时期。
在工业革命之前,工业生产主要依靠人工操作,效率低下且易出错。
随着机械设备和工业化的发展,工业生产越来越复杂,对自动化控制的需求也越来越迫切。
20世纪初,工程师们开始研究和开发过程控制与自动化仪表技术。
最早的控制系统是基于机械和电气设备的。
随着电子技术的发展,电子仪表逐渐取代了机械仪表,实现了对工业过程更加精确的控制。
到了20世纪中叶,随着计算机技术的进一步发展,数字化控制系统开始应用于工业生产。
数字化控制系统通过采集和处理大量数据,实现了对工业过程的智能化控制,并提高了系统的可靠性和稳定性。
近年来,随着互联网和物联网技术的快速发展,过程控制与自动化仪表也越来越趋向于网络化和智能化。
过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中非常重要的一部分。
通过使用自动化仪表,可以实现对工业过程的监测、控制和调整,从而实现生产过程的自动化。
本文将介绍过程控制与自动化仪表的基本概念、分类、应用场景以及相关技术。
2. 过程控制与自动化仪表的基本概念过程控制是指通过对工业过程的监测和调整来实现目标产量或质量。
自动化仪表是过程控制的关键组成部分,通过测量各种物理量,并将其转换为电信号,进而控制工业过程的运行。
过程控制与自动化仪表可分为两个基本部分:测量和控制。
测量部分主要涉及采集、转换和传输过程中产生的各种信号,如压力、温度、流量等。
控制部分则是根据测量到的信号进行反馈控制,通过对工业过程的调整来实现预定的目标。
3. 过程控制与自动化仪表的分类根据功能和应用场景的不同,过程控制与自动化仪表可分为以下几类:3.1. 测量仪表测量仪表是用于测量工业过程中各种物理量的仪器。
根据测量原理和测量范围的不同,测量仪表可分为压力仪表、温度仪表、流量仪表等。
其主要功能是对工业过程中各个物理量进行准确的测量。
3.2. 控制仪表控制仪表是用于调节和控制工业过程的仪器。
根据控制方式的不同,控制仪表可分为手动控制仪表和自动控制仪表。
手动控制仪表需要人工干预进行操作和调整,而自动控制仪表则能根据测量到的信号自主进行控制策略的调整。
3.3. 信号传输和处理仪表信号传输和处理仪表是用于采集、传输和处理过程中产生的各种信号的仪器。
根据信号传输方式的不同,信号传输和处理仪表可分为模拟仪表和数字仪表。
模拟仪表通过模拟电信号进行传输和处理,而数字仪表则将信号转换为数字形式进行传输和处理。
4. 过程控制与自动化仪表的应用场景过程控制与自动化仪表广泛应用于各个行业的工业生产过程中。
以下是一些常见的应用场景:•石油化工行业:用于控制反应器温度、压力和流量等参数,确保生产过程的稳定和安全。
•电力行业:用于监测和控制发电机的电压、电流和频率等参数,保证电力系统的稳定运行。
自动化仪表与过程控制被控对象的数学模型一、填空题(本大题共1小题,总计1分)1.滞后时间又叫时滞,它是从输入产生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___二、选择题(本大题共31小题,总计62分)1.当对象受到阶跃输入作用后,被控变量如果保持初始速度变化,达到新的稳态之所需的时间称为()。
(A)时间常数(B)滞后时间(C)振荡周期(D)过渡时间2.被控对象可以存放物料量或能量的能力称为对象的()。
(A)负荷(B)容量(C)时间常数(D)惯性3.被控对象在受到输入作用后,被控变量不能立即而迅速的变化,这种现象称为()。
(A)滞后现象(B)滞后时间(C)容量滞后(D)传递滞后4.被控对象的传递滞后,输出变量的变化落后于输入变量变化的时间称为()。
(A)滞后时间(B)传递滞后(C)滞后现象(D)过渡滞后5.被控对象的传递滞后也称为()。
(A)容量滞后(B)纯滞后(C)过渡滞后(D)系统滞后6.一个具有容量滞后对象的反应曲如图所示,被控对象的容量滞后是()秒。
122050(A)12(B)20(C)8(D)507.操作变量的选择时干扰通道的放大系数尽可能小些,时间常数尽可能大些,干扰作用点尽量靠近(),加大对象干扰通道的容量滞后,使干扰对被控变量的影响减小。
(A)调节阀(B)被控对象(C)测量点(D)采样点8.干扰通道的()要尽可能大些。
(A)放大系数(B)时间常数(C)微分时间(D)滞后时间9.测量元件安装位置不当,会产生()。
它的存在将引起最大偏差增大,过渡时间延长,控制质量变差。
(A)放大系数(B)时间常数(C)纯滞后(D)滞后时间10.测量元件安装位置不当,会产生纯滞后。
它的存在将引起最大偏差(),过渡时间延长,控制质量变差。
(A)减少(B)增大(C)变化(D)不一定11.减少由于测量变送单元引起的纯滞后,可以选取惰性小的测量元件,减小时间常数。
自动化仪表与过程控制复习资料1、过程控制的特点?答:①对象复杂②对象存在滞后③ 对象特性具有非线性④控制系统复杂2、过程控制系统的3个主要发展阶段答:①仪表自动化阶段②计算机控制阶段③综合自动化阶段3、过程控制系统的基本组成答:①被控对象②传感器和变送器③控制器(调节器)④执行器⑤控制阀4、定值控制系统、随动系统、程序控制系统的定义答:①定值控制系统:设定值保持不变(为一恒定值)的反馈控制系统称为定值控制系统。
②随动系统:设定值不断变化,且事先是不知道的,并要求系统的输出(被控变量)随之而变化。
③程序控制系统:设定值也是变化的,但它是一个已知的时间函数,即根据需要按一定时间程序变化。
5、递减比(衰减比)、超调量、过渡过程时间、静态偏差、相应曲线评价准则(IAE/ISE/ITAE )。
答:(1)递减比:根据实际操作经验,为保持足够的稳定裕度,一般希望过渡过程有两个波左右,与此对应的衰减比在4:1到10:1的范围内。
(2)超调量:最大动态偏差占设定值的百分比称为超调量。
(不能过大)(3)过渡过程时间:原处于平衡的控制系统受扰动后,由于系统的控制作用,被控量过渡到被控量稳态值的2%~5%时,达到新的平衡状态所经历的时间,也称为过渡过程时间、稳定时间。
(4)静态偏差:过渡过程结束,设定值与被控参数的稳态值之差。
(5)相应曲线评价准则:误差积分IE (不合理);绝对误差积分IAE (公认,常用);平方误差积分ISE (抑制大误差);偏差绝对值与时间乘积积分(ITAE )(抑制长时间过渡过程)。
1、量程调整的目的:使变送器的输出信号上限值与测量范围的上限值相对应。
量程调整相当于改变变送器的输入输出特性的斜率,也就是改变变送器输出信号y 与输入信号x 之间的比例系数。
2、零点调整和零点迁移:零点调整使变送器的测量起点为零,而零点迁移是把测量的起始点由零迁移到某一数值(正值或负值)。
测量的起始点由零变为某一正值,称为正迁移;反之称为负迁移。
过程控制与自动化仪表介绍1. 引言过程控制是指在工业生产中,通过监测和调整工艺参数,以实现对生产过程的控制和优化。
自动化仪表则是过程控制的重要工具,用于测量、传输和处理工艺参数,为控制系统提供准确的反馈信息。
本文将详细介绍过程控制与自动化仪表的基本概念、原理和应用。
2. 过程控制的基本概念过程控制是指通过监测和调整工艺参数,使生产过程达到预期目标的过程。
这里的工艺参数可以是温度、压力、流量、液位等物理量,也可以是其他关键的过程指标。
过程控制分为反馈控制和前馈控制两种方法。
反馈控制是根据测量到的实际过程参数值与预期目标值之间的差异,通过调整控制器输出信号来纠正偏差,使过程参数保持在合理范围内。
前馈控制则是根据已知的过程变化规律,提前调整控制器输出信号,以使过程参数能够在预期的变化中保持稳定。
3. 自动化仪表的基本原理自动化仪表是过程控制的关键设备,可以完成对工艺参数的测量、传输和处理。
常见的自动化仪表包括温度传感器、压力传感器、流量计、液位计等。
3.1 温度传感器温度传感器用于测量和监控物体或环境的温度。
常见的温度传感器有热电偶、热电阻和红外线传感器。
热电偶利用两种不同金属的电动势差来测量温度,热电阻则利用电阻与温度呈线性关系的特性来测量温度。
3.2 压力传感器压力传感器用于测量和监控气体或液体的压力。
常见的压力传感器有压阻式传感器和压电式传感器。
压阻式传感器通过测量电阻的变化来间接测量压力,而压电式传感器则是利用压电晶体的压电效应来直接测量压力。
3.3 流量计流量计用于测量和监控液体或气体的流量。
常见的流量计有浮子流量计、涡轮流量计和电磁流量计等。
浮子流量计通过测量浮子位置的变化来间接测量流量,涡轮流量计则是利用涡轮的旋转速度与流体的流速成正比关系来测量流量。
3.4 液位计液位计用于测量和监控液体的液位高度。
常见的液位计有浮子液位计、压力液位计和超声波液位计等。
浮子液位计通过测量浮子的位置变化来间接测量液体的液位,而超声波液位计利用超声波的传播时间来直接测量液位的高度。
过程控制与自动化仪表简介过程控制是指通过测量与调节技术来实现对工业过程的控制,以达到预定的工艺要求。
而自动化仪表则是过程控制中不可或缺的一部分,它用来测量、记录和控制各种过程变量,为过程控制提供准确的数据与反馈信息。
本文将对过程控制与自动化仪表进行详细介绍。
过程控制过程控制是指对工业过程进行监测与调节,以实现所需的工艺要求。
过程控制可以分为两种类型:开环控制和闭环控制。
开环控制开环控制是一种基本的控制方式,它仅通过设置一组固定的控制参数来实现对工业过程的控制。
开环控制没有反馈机制,因此无法对过程中的变化进行实时调节。
这种控制方式适用于对过程中变化不大的情况,例如温度或压力稳定的控制。
闭环控制闭环控制是一种更为高级的控制方式,它通过测量过程变量并与设定值进行比较,然后根据比较结果进行调整。
闭环控制能够实时监测过程中的变化,并通过反馈机制来调整控制参数,使得过程保持稳定。
这种控制方式适用于对过程变化较大的情况,例如温度、液位或流量等。
自动化仪表自动化仪表是过程控制中的核心设备,用于测量、记录和控制各种过程变量。
自动化仪表通常由传感器、执行器和控制器组成。
传感器传感器是自动化仪表中最基本的部件,用于将物理量转换为电信号。
常见的传感器包括温度传感器、压力传感器、液位传感器等。
传感器的选择需要根据需要测量的物理量和工艺要求来确定。
执行器执行器是用于控制过程变量的设备,它根据控制器的指令进行动作。
常见的执行器包括电动阀、电动调节阀、气动执行器等。
执行器的选择需要考虑控制要求、工作环境和应用场景等因素。
控制器控制器是自动化仪表的核心,用于接收传感器的信号并根据设定值进行控制。
常见的控制器有PID控制器、PLC控制器等。
控制器的选择需要根据控制要求和控制策略来确定。
过程控制与自动化仪表的应用领域过程控制与自动化仪表广泛应用于各个工业领域,包括石化、制药、电力、冶金等。
以下是一些典型的应用领域:石化工业在石化工业中,过程控制与自动化仪表用于监测与控制各个工艺单元,例如蒸馏塔、反应器、炉窑等。
过程控制与自动化仪表介绍过程控制与自动化仪表的工作原理是通过传感器采集各种生产参数,如温度、压力、流量、液位等,然后将这些参数转换成电信号,并送到控制器进行处理。
控制器根据预设的控制算法,可以自动地调节各种执行器,如阀门、电机等,来达到控制生产过程的目的。
这样就能够实现对生产过程的自动化控制。
过程控制与自动化仪表的种类多种多样,根据其功能可以分为传感器、控制器、执行器等多种类型。
传感器可以根据所测量的参数种类分为温度传感器、压力传感器、流量传感器等;控制器可以分为PID控制器、PLC控制器、DCS控制器等不同类型;执行器可以分为阀门执行器、电机执行器等多种类型。
在工业生产中,过程控制与自动化仪表的应用可以帮助实现对生产过程的精确控制,提高生产效率,降低能耗成本,提高产品质量,减少人为因素对生产过程的影响,从而使得生产过程更加稳定和可靠。
同时,过程控制与自动化仪表还可以实现远程监测和操作,方便管理人员对生产过程的监控和调整。
总的来说,过程控制与自动化仪表是工业生产中不可或缺的重要设备,它能够帮助实现生产过程的自动化、稳定和高效运行,是提高工业生产质量和效率的重要手段。
过程控制与自动化仪表在工业生产中扮演了至关重要的角色。
它们不仅能够确保生产设备的稳定运行和生产质量的一致性,还可以实现高效的生产过程,节约能源并降低成本。
在本文中,我们将深入探讨过程控制与自动化仪表的工作原理、类型、应用以及未来发展趋势。
## 工作原理过程控制与自动化仪表的工作原理基于控制系统的闭环反馈原理。
首先,传感器可以通过各种不同的检测方法,如电阻、电容、光电、超声波等,来实时获取生产过程中的各种参数。
接下来,传感器将这些参数转换成电信号,并通过电缆或者wifi等传输方式传送给控制器。
控制器是过程控制与自动化仪表的核心部件,它接收传感器传来的信息,并通过预设的算法来处理这些信息。
比如,通过PID控制算法,控制器可以根据实际测量到的参数值与设定的目标值之间的差异,来调节执行器。
被控对象的数学模型一、填空题(本大题共1小题,总计1分)1.滞后时间又叫时滞,它是从输入产生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___生变化的瞬间起,到它所引起的输出量开始变化的瞬间为止的___二、选择题(本大题共31小题,总计62分)1.当对象受到阶跃输入作用后,被控变量如果保持初始速度变化,达到新的稳态之所需的时间称为()。
(A)时间常数 (B)滞后时间(C)振荡周期 (D)过渡时间2.被控对象可以存放物料量或能量的能力称为对象的()。
(A)负荷 (B)容量 (C)时间常数 (D)惯性3.被控对象在受到输入作用后,被控变量不能立即而迅速的变化,这种现象称为()。
(A)滞后现象 (B)滞后时间 (C)容量滞后 (D)传递滞后4.被控对象的传递滞后 ,输出变量的变化落后于输入变量变化的时间称为()。
(A)滞后时间 (B)传递滞后 (C)滞后现象 (D)过渡滞后5.被控对象的传递滞后也称为()。
(A)容量滞后 (B)纯滞后(C)过渡滞后 (D)系统滞后6.一个具有容量滞后对象的反应曲如图所示,被控对象的容量滞后是()秒。
12s20s50s(A)12 (B)20 (C)8 (D)507.操作变量的选择时干扰通道的放大系数尽可能小些,时间常数尽可能大些,干扰作用点尽量靠近( ),加大对象干扰通道的容量滞后,使干扰对被控变量的影响减小。
(A) 调节阀(B) 被控对象(C)测量点(D) 采样点8.干扰通道的( )要尽可能大些。
(A) 放大系数(B) 时间常数(C)微分时间 (D) 滞后时间9.测量元件安装位置不当,会产生( )。
它的存在将引起最大偏差增大,过渡时间延长,控制质量变差。
(A) 放大系数(B) 时间常数(C) 纯滞后(D) 滞后时间10.测量元件安装位置不当,会产生纯滞后。
它的存在将引起最大偏差( ),过渡时间延长,控制质量变差。
(A) 减少(B) 增大(C)变化 (D) 不一定11.减少由于测量变送单元引起的纯滞后,可以选取惰性小的测量元件,减小时间常数。
选择快速的测量元件,保证测量元件的时间常数小于( )控制通道的时间常数,减少动态误差。
(A) 1/4 (B) 1/6 (C) 1/8 (D) 1/1012.根据对象特性来选择控制规律时,( )控制适用于控制对象负荷变化大和对象滞后较大、工艺要求无偏差,控制质量要求较高的系统。
如温度控制系统。
对于纯滞后,微分作用无效。
对于容量滞后较小的对象,不必加微分。
(A) 比例(B) 比例积分(C) 比例微分(D) 比例积分微分13.传递函数是对加到方块上的输入信号的特定(),运算结果即是输出信号。
(A)运算符号 (B)运算规律 (C)函数关系 (D)限制范围14.根据下图写出传递函数式,正确的表达式是()。
(A)(B)(C)(D)15.根据下面方块图写出传递函数式,正确的表达式是()。
(A)G(S)= G1(S)X1(S)+ G2(S)X2(S)+ G3(S)X3(S);(B)G(S)= G1(S)X1(S)* G2(S)X2(S)* G3(S)X3(S);(C)G(S)= G1(S)+ G2(S)+ G3(S);(D)G(S)= G1(S)* G2(S)* G3(S)X3(S);16.自动控制系统的传递函数表示了整个系统动态特性,它反映了在给定量或干扰量作为系统的输入信号变化时,()作为系统的输出随时间变化的规律。
(A)被控变量 (B)控制变量 (C)偏差变量 (D)测量变量17.自动控制系统的传递函数,当反馈回路断开,系统处于开环状态,方块图如下:主(正向)通道的传递函数为()。
(A)()()()S ESYSG=(B)()()()SXSYSG=(C)()()()S ESZSG=(D)()()()SXSZSG=18.环节的特性是,当输入信号加入环节后,其输出信号()变化的规律。
(A)按指数(B)按比例积分微分(C) 随时间(D)随控制条件19.一阶环节的动态特性,是一条()曲线。
(A)对数 (B)平方根(C)指数(D)抛物线20.一阶环节的动态特性之一是曲线变化速度;Y(t)的变化速度在t=0时刻();随着时间变化会越来越慢;当t=∞时,变化速度为零,输出信号Y(t)达到新的稳定值。
(A)为零 (B)最小 (C)较大(D)最大21.一阶环节微分方程一般表达式为()。
(A)(B)(C)(D)22.一阶环节传递函数式为()。
(A)(B)(C)(D)23.一阶环节的放大系数K是个()参数。
(A)输入 (B)输出 (C)静态(D)动态24.一阶环节的放大系数K决定了环节的过渡过程()。
(A)变化速度 (B)曲线斜率 (C)开始时的数值(D)结束后的新的稳态值25.对于一阶环节,当输入信号X(t)=A时,输出信号Y(t)若以()的速度恒速上升,当达到稳态值Y(∞)=KA时所用的时间就是时间常数T。
(A)在t任意时刻 (B)在t=0时刻(C)在t=∞时刻(D)在t>0时刻26.对于一阶环节,时间常数T越大,环节的反映越慢。
因此,时间常数T表征了环节的()。
(A)滞后(B)惯性(C)变化阻力(D)变化速度27.微分环节的微分方程一般表达式为()。
(A)(B)(C) (D)28.过度时间通常规定为,从干扰发生起,到被调参数进入稳态值的()范围内,并不再越出时为止所经历的时间。
A、±10%B、±1 %C、±2 %D、±0.529.T是反映对象()的参数。
A、放大能力B、动态特性C、静态特性D、抗干扰能力30.根据下面方块图写出传递函数式,正确的表达式是()。
(A)G(S)= G1(S)X1(S)+ G2(S)X2(S)+ G3(S)X3(S);(B)G(S)= G1(S)X1(S)* G2(S)X2(S)* G3(S)X3(S);(C)G(S)= G1(S)+ G2(S)+ G3(S);(D)G(S)= G1(S)* G2(S)* G3(S)X3(S);31.积分环节的微分方程一般表达式为()。
(A)(B)(C)(D)三、问答题(本大题共8小题,总计40分)1.什么是被控对象特性?什么是被控对象的数学模型?2.描述简单对象特性的参数有哪些?各有何物理意义?5.什么是控制通道和扰动通道?6.什么是被控对象特性?什么是被控对象的数学模型?7.描述简单对象特性的参数有哪些?各有何物理意义?8.什么是控制通道和扰动通道?四、判断题(本大题共23小题,总计23分)1.研究被控对象的特性与选用测量元件和控制器无关( )。
2.时间常数T可以反映被控变量变化的快慢,在输出相同的情况下,时间常数越大,说明变化的速度越快( )3.容量是指被控对象的生产处理能力和运转能力( )4.容量系数小的对象与容量系数大的对象相比,在负荷变化相同的情况下,被控变量的变化更慢、更小( )。
5.被控对象的传递滞后如果非常小,那么就不会对控制质量有影响( )6.传递滞后和过渡滞后产生的原因不同,对控制质量的影响也不同( )7.在滞后时间内,被控对象的输出不发生任何变化( )。
8.干扰通道的放大系数尽可能小些,时间常数尽可能大些,干扰作用点尽量靠近调节阀,减少对象干扰通道的容量滞后。
( )9.传递函数实质就是,利用拉氏变换把时间函数f(t)转化成初始条件为零的复变量S的函数F(S),从而把输入与输出复杂的微积分关系简化为较简单的代数关系。
()10.传递函数定义是,一个系统或一个环节的传递函数就是在初始条件为零下,系统环节的输出拉氏变换式与输入拉氏变换式之比。
()11.方块图的反馈环节的运算,正反馈系统总传递函数:()12.自动控制系统的传递函数表示了整个系统动态特性。
反映了在给定量或干扰量作为系统的输入信号变化时,被控变量作为系统的输出随时间变化的规律。
( )13.自动控制系统的传递函数,是系统在两个输入量X(S)、F(S)同时作用下的输出响应,根据线性叠加原理,其输出响应为“随动定值”之和。
()14.一阶环节的动态特性,是一条指数曲线。
当输入信号X(t)作阶跃变化后,输出信号Y (t)在开始时,曲线斜率最大;而后曲线逐渐趋于平直,最后达到一个新的稳定状态。
()15.一阶环节的动态特性,是一条指数曲线。
Y(t)的变化速度在t=0时刻最小;随着时间变化会越来越快;当t=∞时,变化速度为零,达到新的稳定值;即两头小中间大。
()16.一阶环节的特征参数应是输入信号幅值A、曲线斜率t gθ、放大系数K和时间常数T,其数值的大小,都将直接影响环节输出的大小和变化速度。
()17.一阶环节传递函数式:。
()18.一阶环节输出变量的传递函数式:。
()19.对于一阶环节,把输出信号稳态值Y(t)与输入信号稳态值X(t)的比值称为放大系数。
()20.一阶环节的放大系数K决定了环节在过渡过程结束后的新的稳态值。
在相同输入信号下,若K值越大,达到新的输出稳态值时间越长。
()21.时间常数T是一阶环节的动态参数。
()22.对于一阶环节,如果时间常数T越大,则输出信号的稳态值越大,环节的反映越快。
()23.对于一阶环节,当输入信号X(t)=A时,输出信号Y(t)实际上沿其指数曲线上升,当Y(t)达到稳定值的36.8%处,所经历的时间其数值恰好为时间常数T。
()※※参考答案※※一、填空题1.时间间隔。
二、选择题1.A2.B3.A4.B5.B6.D7.A8.B9.C10.B11.D12.D13.A14.D15.C16.A17.A18.C19.C20.D21.C22.D23.C24.D25.B26.B27.C28.D29.B30.C31.C三、问答题1.答被控对象特性是指被控对象输入与输出之间的关系。
即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。
对象的输入量有控制作用和扰动作用,输出量是被控变量。
因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。
2.答被控对象特性是指被控对象输入与输出之间的关系。
即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。
对象的输入量有控制作用和扰动作用,输出量是被控变量。
因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。
3.答被控对象特性是指被控对象输入与输出之间的关系。
即当被控对象的输入量发生变化时,对象的输出量是如何变化、变化的快慢程度以及最终变化的数值等。
对象的输入量有控制作用和扰动作用,输出量是被控变量。
因此,讨论对象特性就要分别讨论控制作用通过控制通道对被控变量的影响,和扰动作用通过扰动通道对被控变量的影响。