立体几何试题中关键点坐标的确定方法初探
- 格式:doc
- 大小:11.00 KB
- 文档页数:1
第08讲:立体几何探究点的位置的方法【知识要点】一、立体几何中经常出现探究点的位置的习题,有些同学遇到这种类型的习题, 感到比较迷茫. 立体几何中探究点的位置的方法一般有三种:猜想证明法、直接探究法和设点解方程法.二、由于文科生没有空间向量,所以文科生一般不用设点解方程法,文科生一般选择猜想证明法和直接探究法.【方法讲评】方法一猜想证明法使用情景点的位置刚好很特殊(中点或1:2等分点等),证明也比较方便.解题步骤一般先猜想特殊位置(中点,等分点等),再证明.【例1】如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(1)求证:平面;(2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明,若不存在,请说明理由;(3)求二面角的余弦值.在底面中,因为,,所以,所以.又因为,所以平面.(3)由(1)知,底面,以为原点,分别为轴建立空间直角坐标系,设,则(0,0,1),(1,0,0),(0,2,0),(1,1,0),则=(1,1,-1),=(-1,1,0),显然平面,所以为平面的一个法向量.设面的一个法向量=(),则==0且==0,取=1,则=1,=2,则.设二面角的大小为,由图可知,为锐角,所以,即二面角的余弦值为.【点评】 (1)由于,所以观察联想取的中点试验证明,刚好又可以证明点满足条件,所以这种方法此时是可行的. (2)这种猜想证明法是有局限的,如果动点不是特殊点,那就不好处理,既浪费了考试的时间,又给自己制造了紧张气氛 . 【反馈检测1】在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.(1)证明:直线∥平面;(2)求棱的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.方法二直接探究法使用情景直接求解.解题步骤直接通过解三角形(正弦定理、余弦定理、直角三角函数和相似三角形) 等求解.【例2】如图,直三棱柱中,侧棱长为2,,是的中点,上是否存在点,交于点,且,如果存在,求线段的长.【解析】假设上是否存在点,设则.【点评】(1)本题如果利用猜想证明法,猜想中点,但是本题恰好不是中点,所以显示出猜想证明法的局限性了. (2)本题利用的是直接探究法,直接通过解三角形(相似三角形)求得. 解三角形可以利用正弦定理、余弦定理、三角函数和相似三角形.【反馈检测2】如图,四边形为矩形,平面,,平面,且点在上.(1)求证:;(2)求三棱锥的体积;(3)设点在线段上,且满足,试在线段上确定一点,使得平面.方法三设点解方程法使用情景方法比较普遍,已知条件适合建立空间直角坐标系,适用于大多数题目 .(文科生一般不用此法,因为文科没有空间向量)解题步骤先设点,且,再用表示点的坐标,最后把点的坐标代入已知的某个条件等式求出的值,即得点的位置.【例3】如图,四棱柱中, 侧棱底面,,,,为棱的中点.(1) 证明:;(2) 设点在线段上, 且直线与平面所成角的正弦值为, 求线段的长.(2) 设有.可取为平面的一个法向量.设为直线与平面所成角,则于是解得所以.【点评】(1)本题试验中点,发现证明不了,所以最好直接利用设点解方程组法.先设点,且,再用表示点的坐标,最后把点的坐标代入已知的某个条件等式求出的值,即得点的位置.(2)在设点时,要注意的范围,以免出现增解.(3)设点时,有时不需要设三个未知数,要结合实际情况,确定未知数的个数,未知数越少越好.【反馈检测3】如图所示,正方形与矩形所在平面互相垂直,,点为的中点.(1)求证:∥平面;(2)求证:;(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.【反馈检测4】如图,的外接圆的半径为,所在的平面,,,,且,.(1)求证:平面平面.(2)试问线段上是否存在点,使得直线与平面所成角的正弦值为?若存在,确定点的位置,若不存在,请说明理由.高中数学热点难点突破技巧第08讲:立体几何探究点的位置的方法参考答案【反馈检测1答案】(1)证明见解析;(2)4;(3)存在,(2)解:设,∵几何体的体积为,∴,即,即,解得.∴的长为4.(3)在平面中作交于,过作交于点,则.因为,而,又,且.∽.为直角梯形,且高.【反馈检测2答案】(1)见解析;(2)见解析.(3)点为线段上靠近点的一个三等分点.【反馈检测2详细解析】(3)解:在△中,过点作∥交于点,在△中过点作∥交于点,连结,则由=,得=.由∥,⊂平面,⊄平面,则∥平面.再由∥,∥,⊂平面,⊄平面,得∥平面,所以平面∥平面.又⊂平面,则∥平面.故当点为线段上靠近点的一个三等分点时,∥平面.【反馈检测3答案】(1)证明见解析;(2)证明见解析;(3)存在,【反馈检测3详细解析】(1)连结交于,连结,因为四边形为正方形,所以为的中点,又点为的中点,在中,有中位线定理有//,而平面,平面,所以,//平面.依题意,以为坐标原点,、、分别为轴、轴、轴建立空间直角坐标系,因为,则,,,所,易知为平面的法向量,设,所以平面的法向量为,所以,即,所以,取,则,又二面角的大小为,所以,解得.故在线段上是存在点,使二面角的大小为,且. 【反馈检测4答案】(1)答案详见解析;(2)存在,且.【反馈检测4详细解析】(1)∵C⊥平面,∴⊥平面,∴⊥∵=1,∴,从而∵⊙的半径为,∴是直径,∴⊥又∵CD ⊥平面,∴CD⊥,故⊥平面平面BCDE,∴平面平面(2)方法1:假设点存在,过点作⊥于,连结,作⊥于,连结∵平面平面,∴⊥平面,∴为与平面所成的角故,从而满足条件的点存在,且方法2:建立如图所示空间直角坐标系,则:(4,0,0),(0,2,0),(0,0,4),(0,2,1),(0,0,0),则易知平面的法向量为,假设点存在,设,则,再设,即,从而设直线与平面所成的角为,则:解得,其中应舍去,而故满足条件的点存在,且点的坐标为。
B 1C 1BCDAD 1A 1EFEADBCP空间立体,寻求建系的方法,学会找坐标 一、标准化的正方体,长方体,四棱锥问题1.正方体ABCD-A 1B 1C 1D 1,建立适当的坐标系,并表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AA 1所在直线为x,y,z 轴,建立如图空间直角坐标系,设正方体棱长为1,则ABCD是直角梯形,90=∠=∠BAD ABC ,2.如图,四边形ABCD SA 平面⊥,1===BC AB SA ,21=AD ,SC 中点是P ,建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AD ,AB ,AS 所在直线为x,y,z 轴,建立如图空间直角坐标系,则3.在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE= 21AD=1,建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AF 所在直线为x,y,z 轴,建立如图空间直角坐标系,则4:如图,四棱锥P ABCD-中,底面ABCD为矩形,PA ⊥底面ABCD,6,3PA AB AD ===,点E 为棱PB 的中点。
建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AB ,AD ,AP 所在直线为x,y,z 轴,建立如图空间直角坐标系,则5..如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M 为PB 的中点. 建立适当的坐标系,表示图中所有点的坐标。
解;以A 为坐标原点.以AD ,AB ,AP 所在直线为x,y,z 轴,建立如图空间直角坐标系,则6.多面体EDABC 中,AD ⊥平面ABC , AC ⊥BC,,AD=21CE=1,AC=1.BC=2,M 为BE 中点.,建立适当的坐标系,表示图中所有点的坐标。
掌握高中数学中的立体几何问题解析与技巧立体几何是高中数学中重要的一部分,它研究的是空间图形的性质,具有广泛的应用价值。
在解决立体几何问题时,我们需要掌握一些解析技巧和方法。
本文将介绍几种常见的立体几何问题解析与技巧,帮助读者更好地掌握高中数学中的立体几何知识。
一、立体几何中的坐标系运用在解决立体几何问题时,合理选取坐标系能够简化问题、提高求解效率。
对于空间中的点,我们可以使用三维坐标系表示其位置。
在利用坐标系解决问题时,需要注意以下几点:1. 建立合适的坐标系:根据问题的特点,灵活选择坐标系的原点和坐标轴方向,使问题的求解变得简单明了。
2. 利用坐标系进行计算:在确定坐标系后,可以利用距离公式、斜率公式等基本的代数方法计算点与点、线与线、面与面之间的距离关系。
二、平面与空间几何图形的判定方法在解决立体几何问题时,我们常需要判断一个图形是平面图形还是立体图形。
以下是几种常见的图形判定方法:1. 垂直判定:对于平面图形而言,可以通过判断线段的斜率是否互为负倒数来判断是否垂直。
对于立体图形而言,可以通过判断两个平面的法向量是否垂直来判断是否垂直。
2. 共面判定:对于平面图形而言,可以通过判断三点是否共线来判断是否共面。
对于立体图形而言,可以通过判断四个点是否共面来判断是否共面。
3. 平行判定:对于平面图形而言,可以通过判断线段的斜率是否相等来判断是否平行。
对于立体图形而言,可以通过判断两个平面的法向量是否平行来判断是否平行。
三、立体几何问题的投影在解决立体几何问题时,我们常需要求解一个图形在某个平面上的投影。
以下是几种常见的投影问题的解析方法:1. 平行投影:当图形和投影平面平行时,可以通过计算线段的长度和角度关系来求解投影长度。
2. 斜投影:当图形和投影平面不平行时,可以通过向量的投影计算来求解投影长度和角度关系。
3. 透视投影:当图形和投影平面相交时,可以通过相似三角形关系来求解投影长度和角度关系。
Oyxz FEGH IJ O yx z A'C'B B'C D'A 第63炼 立体几何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
三维立体几何中的坐标定位与距离计算在三维立体几何中,坐标定位和距离计算是非常重要的概念和技巧。
通过准确的坐标定位,我们可以确定一个点在三维空间中的位置,而距离计算则可以帮助我们衡量两个点之间的距离。
本文将探讨三维立体几何中的坐标定位和距离计算,并介绍一些常用的方法和公式。
一、坐标定位在三维空间中,我们可以使用三个坐标轴(x、y、z)来定位一个点。
这些坐标轴相互垂直,并且通过原点(0,0,0)来确定位置。
例如,一个点的坐标可以表示为(x,y,z),其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。
通过坐标定位,我们可以准确地描述和定位一个点在三维空间中的位置。
这对于计算机图形学、建筑设计和物理模拟等领域非常重要。
例如,在计算机图形学中,我们可以通过给定的坐标来绘制一个点,从而创建出各种形状和物体。
二、距离计算在三维空间中,距离是一个重要的概念。
它可以帮助我们衡量两个点之间的距离,并在许多应用中起到关键作用。
距离的计算可以通过欧几里得距离公式来实现,即:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)其中,(x1,y1,z1)和(x2,y2,z2)分别表示两个点的坐标,d表示这两个点之间的距离。
距离计算在许多领域都有广泛的应用。
例如,在物理学中,我们可以使用距离计算来确定两个物体之间的距离,并根据它们之间的距离来计算力的大小。
在导航系统中,我们可以使用距离计算来确定两个地点之间的距离,并找到最短的路径。
三、坐标变换在三维立体几何中,坐标变换是一种常见的操作。
通过坐标变换,我们可以将一个点从一个坐标系转换到另一个坐标系。
这在计算机图形学和机器人学等领域中非常有用。
常见的坐标变换包括平移、旋转和缩放。
平移是将一个点沿着坐标轴移动一定的距离,旋转是将一个点绕着某个中心点旋转一定的角度,缩放是改变一个点的大小。
通过坐标变换,我们可以改变一个点在三维空间中的位置和大小,从而实现各种复杂的效果和动画。
新课标高考立体几何的考点分布及解法探析新课标高考立体几何的考点分布及解法探析一、考点分布1. 空间直角坐标系2. 立体图形的性质3. 等腰三角形,正方体,正四面体等特殊图形的性质4. 立体几何中的立体角5. 立体几何中的距离、面积与体积等量的求解二、解法探析1. 空间直角坐标系在解空间直角坐标系题目时,需要注意以下几点:(1)建立坐标系:首先需要确认坐标系的位置和方向,然后建立直角坐标系。
(2)写出空间直线和平面方程:空间直线和平面的方程可以通过已知条件求得,在选择方程时,需要根据题目中的信息进行选择。
2. 立体图形的性质(1)平面切割法:在解决空间图形的题目时,往往可以采用平面截割的方法,将空间图形切割成为平面图形,然后再进行计算。
(2)拆分法:将立体图形拆分成为小的空间图形,然后计算各个小图形的面积或体积,再进行求和求解。
3. 特殊图形的性质(1)等腰三角形:在解决等腰三角形的题目时,需要注意其特殊性质:等腰三角形的底角和顶角相等。
(2)正方体和正四面体:在解决正方体和正四面体的题目时,需要注意它们的特殊性质:正方体的六个面都是正方形,正四面体的四个面都是正三角形。
4. 立体角(1)立体角的定义:立体角是由于空间中的点集把空间划分成为两部分所形成的角。
(2)重要结论:立体角与所对立的面积成正比例。
5. 距离、面积与体积等量的求解(1)立体图形的体积:在求解立体图形的体积时,需要注意其特殊性质,如正方体的体积可以通过边长的三次方求解。
(2)距离公式:在解决空间点的距离问题时,可以使用勾股定理求解。
(3)面积公式:在解决空间图形的面积问题时,需要根据不同的空间图形选择不同的公式,如棱台的面积为棱台的底面积加上四个等腰三角形的面积。
总之,解决立体几何的题目需要掌握基本的公式和解题方法,同时需要深入掌握立体图形的性质和特殊性质,对于难度较大的题目,可以运用拆分法和平面切割法进行求解。
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释1.引言1.1 概述空间立体几何是数学中的一个重要分支,它研究三维空间中的几何结构和性质。
在空间立体几何中,线和面是两个基本的几何元素,线面交点坐标的求解是一个常见且重要的问题。
本文主要介绍了两种方法来求解线面交点的坐标:坐标法和向量法。
通过这两种方法,可以方便地求解线面交点的坐标,进而解决一些实际问题。
通过本文的学习,读者将能够掌握空间立体几何中线面交点坐标的求解方法,为进一步深入学习和应用空间几何提供了基础。
同时,本文还将探讨线面交点坐标的应用和展望,展示其在现实生活中的重要性和价值。
1.2 文章结构:本文主要分为引言、正文和结论三部分。
引言部分将从概述、文章结构和目的三个方面介绍本文的主要内容和研究背景。
正文部分将分为三个小节,首先是关于空间立体几何概念的介绍,接着是详细讨论如何利用坐标法求解线面交点坐标的方法,最后则是向量法求解线面交点坐标的具体过程。
结论部分将总结本文的主要观点和研究成果,探讨该方法的应用前景,并进行最终的结语。
1.3 目的:本文旨在介绍如何利用空间立体几何中的坐标法和向量法来求解线面交点坐标的方法。
通过深入讨论这两种方法的原理和步骤,我们希望读者能够更加深入地理解空间几何中的相关概念,并能够灵活运用这些方法解决实际问题。
通过掌握线面交点坐标求解的技巧,读者能够提升空间几何解题的效率和准确性,同时也能够为进一步学习和研究提供一定的参考和指导。
希望本文能够为读者提供一定的启发和帮助,让大家在空间几何学习中取得更好的成绩和收获。
2.正文2.1 空间立体几何概念空间立体几何是几何学中研究三维空间中图形与几何体的一门学科,是平面几何的延伸和拓展。
在空间立体几何中,我们不再局限于研究平面上的图形,而是考虑到三维空间中的物体和结构。
在空间立体几何中,我们研究的主要对象包括点、线、面和体。
点是空间中的一个位置,用于确定空间中的一个具体位置;线是由无数个点按照一定规律连成的直线段;面是由无数个点和线按照一定规律组成的平面图形;而体则是由无数个面组成的一个三维实体。
解说立体几何中的“坐标法”江苏省姜堰中学张圣官(225500)空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。
利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。
用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。
下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。
一、如何确定空间点的坐标空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。
要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。
1.点的坐标的符号判断点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。
如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。
2.点的坐标的绝对值确定过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。
如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。
二、常见特殊点的坐标特点1.坐标轴上点的坐标的特点①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。
2.坐标平面上点的坐标的特点①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。
三、利用“坐标法”解(证)立体几何题的步骤第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。
龙源期刊网
立体几何试题中关键点坐标的确定方法初探作者:宋正道
来源:《福建中学数学》2019年第01期
在立体几何中引入空间向量后,实现了几何问题代数化,由为主考查抽象的空间想象能力转化为为主考查具体的运算能力,从而使立体几何的解题难点转化成求关键点的坐标,本文拟以2018年高考数学全国I卷第18题第(Ⅱ)问关键点坐标的确定为例,探讨立体几何问题中关键点坐标的确定方法,
例(2018年高考全国卷I.理18)如图1,四边形ABCD为正方形,E,F分别为AD,BC 的中点,以DF为折痕把ADF1折起,使点C到达点P的位置,且PF⊥BF.
(I)证明:平面PEF⊥平面ABFD;
(Ⅱ)求DP与平面ABFD所成角的正弦值,
該立体几何题第(I)问的求解思路是线⊥线线⊥面面⊥面,在此不再赘述,下面主要就第(Ⅱ)问中关键点P坐标的求解方法解析如下:
如图2,以E为坐标原点建系,不妨取正方形ABCD的边长为4,则A,B,C,D,E,F 各点坐标均可写出,故该立体几何问题的关键点是点P的坐标,若能求出点P的坐标,则剩余问题均为计算,再无思维难度,而由面PEF上面ABFD知关键点P在底面的投影点一定在EF 上,如图3,做PH⊥ EF,垂足为H.。